

Ministry of Energy and Environmental Protection of Ukraine

UKRAINE'S GREENHOUSE GAS INVENTORY 1990-2018

Annual National Inventory Report for Submission under the United Nations Framework Convention on Climate Change and the Kyoto Protocol

FOREWORD

The Ukraine's Greenhouse Gas (hereinafter GHG) Inventory Report (hereinafter - National Inventory Report, NIR) is submitted for consideration of the Secretariat of the United Nations Framework Convention on Climate Change (UNFCCC). The National Inventory Report contains the balance of GHG emissions and removals for the period from 1990 through 2018 with a detailed description of the methods applied and findings of scientific researches of national circumstances. The National Inventory Report was prepared in the framework of the national inventory system, which includes the complex of all the organizational, legal, and procedural mechanisms adopted by Ukraine for estimating anthropogenic GHG emissions and removals, as well as for the purpose of reporting in accordance with the revised Guidelines for the preparation of national communications by Parties included in Annex I to the Convention, Part I: UNFCCC reporting guidelines on annual greenhouse gas inventories (FCCC/CP/2013/10/Add.3), taking into account the structure of the report proposed in the appendix to Annex I of Decision 24/CP.19 ("An outline and general structure of the national inventory report"). Moreover, being a party to the Kyoto Protocol, in this report Ukraine submits additional information set out in paragraph 1, Article 7 of the Kyoto Protocol (hereinafter - KP) in accordance with Decision 15/CMP.1.

The state authority responsible for preparation, approval, and submission of the National Inventory Report is the Ministry of Energy and Environmental Protection of Ukraine (hereinafter - MEEP).

Ministry of Energy and Environmental Protection of Ukraine

35 Vasylia Lypkivskogo str., Kyiv Phone: +38 (044) 206-31-64 Fax: +38 (044) 206-31-07 E-mail: gr_priem@menr.gov.ua

The National Inventory Report was prepared by the Ministry of Energy and Environmental Protection of Ukraine and the Budget Institution "National Center for GHG Emission Inventory" (hereinafter referred to as BI "NCI").

We thank everyone who was involved in preparing of this report for their contribution and support. The list of authors can be found in Chapter 16 of this report.

EXECUTIVE SUMMARY

ES.1 Background information on greenhouse gas inventories, climate change and supplementary information required under Article 7.1 of the Kyoto Protocol

The Verkhovna Rada (Parliament) of Ukraine has ratified the United Nations Framework Convention on Climate Change (UNFCCC) on October 29, 1996. Ukraine became a Party to the UNFCCC on August 11, 1997. In accordance with Articles 4 and 12 of the UNFCCC, Ukraine as a Party to the UNFCCC have the commitments to develop, periodically update, publish, and submit to the UNFCCC Secretariat national inventories of anthropogenic emissions by sources and removals by sink of all GHGs not regulated under Montreal Protocol.

This report is part of the Ukraine's Greenhouse Gas Inventory. It presents calculation results of national GHG emissions and removals in the period of 1990-2018 and describes the methods used to perform the calculations.

The duties of ensuring the inventory of anthropogenic GHG emissions by sources and removals by sink at the national level in order to prepare the NIR, as well as its approval and submission to the UNFCCC Secretariat, as mentioned above, is assigned to the MEEP.

The inventory covers emissions of seven GHGs:

- carbon dioxide (CO₂);
- methane (CH₄);
- nitrous oxide (N₂O);
- hydrofluorocarbons (HFCs);
- perfluorocarbons (PFCs);
- sulfur hexafluoride (SF₆);
- nitrogen trifluoride (NF₃).

As well as following precursor gases:

- carbon monoxide (CO);
- nitrogen oxides (NO_x);
- non-methane volatile organic compounds (NMVOCs)
- sulfur dioxide (SO₂).

This report consists of two parts.

The first part encloses chapters from 1 to 10 which contain the information related to annual GHG inventory.

Chapter 1 provides background information on climate change and general information on GHG inventories. This chapter offers a description of the national GHG inventory system under Article 5.1 of the Kyoto Protocol, which is designed to ensure compliance with the requirements for reporting on GHG emissions and removals. Besides, this chapter provides a brief description of the basic principles and methods of GHG emission and removal estimations, description of key quality assurance and quality control categories and procedures (QA/QC). The final part of this chapter is focused on assessment of the overall uncertainty of the NIR and its completeness.

Chapter 2 describes and explains trends in both total emissions and removals of GHGs and precursors, as well as detailing by gas and by sector.

Chapter 3 to 9 describe specific sectors and categories of GHG sources and sinks. These chapters describe methods that were used to estimate GHG emissions and removals, sources of activity data and emission factors, QA/QC procedures applied, emission recalculations conducted, and planned improvements in the context of the specific categories.

Chapter 10 contains detailed information regarding recalculations of GHG emissions, and improvements made comparing with previous submission within the primary improvement of the

national inventory system and QA/QC system, as well as aiming to consider and implement recommendations and encouragements, gained from ERT during the process of annual inventory review, according to Decision 22/CMP.1.

The second part of this report encloses chapters from 11 to 15 which are related to reporting of Ukraine in accordance with Article 7 of the Kyoto Protocol.

Chapter 11 presents all information on LULUCF activities under Articles 3.3 and 3.4 of Kyoto Protocol, as defined by Decisions 11/CMP.1, 15/CMP.1, 16/CMP.1, and 6/CMP.3. In particular, this chapter provides a definition of the term "Forest", describes the activities defined by Ukraine for reporting under Articles 3.3 and 3.4 of the Kyoto Protocol, as well as describes methods, activity data, and emission factors used to estimate emissions and removals.

Chapter 12 is focused on describing accounting of Kyoto units in Ukraine, as required under Decision 13/CMP.1.

The process of preparation of national registry functioning report and its review by independent experts (Standard Independent Assessment Report - SIAR) should be performed with accordance with Decisions 16/CP.10 (paragraphs 5(a), 6(c) and 6(k)), and with accordance of requirements, formats and methodological recommendations of administrator of International Transaction Log (ITL), which are approved by Registry System Administrators Forum of the Kyoto Protocol.

Chapters 12 and 14 in terms of Registry operation shall be maximum updated, if possible.

Chapter 13 describes the changes in the national inventory system of Ukraine, in accordance with Decision 15/CMP.1.

The key objective of submitting the information in Chapters 13 and 14 is to demonstrate that the changes implemented have not led to any unacceptable deviations from the reporting requirements under the Kyoto Protocol.

Chapter 15 describes actions of Ukraine aimed at minimizing of adverse impacts, in accordance with Article 3.14 of the Kyoto Protocol.

In addition to the main chapters as described above, the NIR contains eight annexes containing more detailed information, not included in these chapters: in-depth analysis of the key categories; description of the methods for calculating emissions in particular categories; comparison of emissions in case of the reference and sectoral approaches and analysis of any discrepancies arising; assessment of completeness and uncertainty of the inventory; additional information required under Article 7.1 of the Kyoto Protocol.

ES.2 Summary on national trends of emissions and removals, including KP-LULUCF activities

ES.2.1 GHG inventory

As a result of the occupation and attempted annexation of Crimea and armed aggression by the Russian Federation, since 2014 slightly over 7 % of the territory of Ukraine temporarily remains out of control of the Government of Ukraine¹. This fact complicates, and sometimes makes impossible, the process of data collecting and reporting, needed for the annual National GHG Inventory.

The temporary occupation by the Russian Federation of part of the territory of Ukraine – the Autonomous Republic of Crimea and the city of Sevastopol is steadfastly condemned by international community, territorial changes by force are not recognized, sanctions remain in place till full compliance of the RF with international law. In particular, the UN General Assembly resolution 68/262 of March 27, 2014 «Territorial Integrity of Ukraine» confirmed the internationally recognized borders of Ukraine and the absence of any legal basis to change the status of the Autonomous Republic of Crimea and the city of Sevastopol. The same stance was confirmed by the UN General Assembly resolutions 71/205 of 19 December 2016, 72/190 of 19 December 2017, 73/263 of 22 December 2018 and 74/168 of 18 December 2019 "Situation of human rights in the Autonomous Republic of Crimea

¹ On 18 January 2018, the Parliament of Ukraine adopted the law "On the peculiarities of State policy on ensuring Ukraine's State sovereignty over temporarily occupied territories in Donetsk and Luhansk regions", which defines the legal status of certain areas of the Donetsk and Luhansk regions as temporarily occupied territories of Ukraine

and the city of Sevastopol (Ukraine)", as well as 73/194 of 17 December 2018 and 74/17 of 9 December 2019 "Problem of the militarization of the Autonomous Republic of Crimea and the city of Sevastopol, Ukraine, as well as parts of the Black Sea and the Sea of Azov" which unambiguously define Russia as an occupying power.

Besides that, numerous documents in support of Ukraine's territorial integrity within its internationally recognized borders were approved by the Committee of Ministers of the Council of Europe, Parliamentary Assembly of the Council of Europe, OSCE Parliamentary Assembly and other international organizations.

It should be noted that the ongoing armed aggression of the Russian Federation against Ukraine has a strong negative impact on the overall economic situation in Ukraine and has led to the reduction in industrial production.

Thus for emission and reduction estimations on temporarily occupied by the Russian Federation territory of Ukraine expert estimation was performed [1], and the results of the inventory are an aggregation of this assessment with the results of inventory made on the basis of official data for the years 2014-2018 for the rest of the territory of Ukraine.

GHG emissions in Ukraine in 2018 amounted to 339.24 Mt CO₂-eq. excluding LULUCF, what is 64.0 % lower than in the base 1990 level, but 5.1 % higher than in 2017. With the LULUCF sector, emissions in 2018 amounted to 341.89 Mt CO₂-eq. and decreased in comparison with base year by 61.3 %, while in comparison with 2017 increased by 9.4 %.

The largest share of GHG emissions in the base year is carbon dioxide - 73.2 % with LULUCF. Methane emissions in 1990 were 20.7 %, and those of nitrous oxide - 6.1 %. In 2018 carbon dioxide remained the largest emitted gas - 68.5 % of all GHG emissions, with 19.8 % and 11.4 % of methane and nitrous oxide respectively.

CO₂ emissions take place in all sectors, as well as net removals of CO₂ in the LULUCF sector. CO₂ emissions in 1990 amounted to 646.41 Mt and decreased as of 2018 by 63.8 %, to the level of 234.15 Mt (Table ES.2.1). The economic decline that followed the collapse of the USSR in 1991 led to initial significant reduction of energy consumption, and thus in decreasing of CO₂ emissions. In the period from 2000 through 2007, CO₂ emissions stabilized with a slight upward trend. Despite the increase in CO₂ emissions in this period was due to growth of the economy, the emissions are not directly correlated with the rate of economic development. This was due to restructuring of the economy, outstripping growth in the trading, services, and the financial sector compared to industrial production, which made a significant contribution to GDP growth in this period. The second important factor that had a significant impact on CO₂ emission trends in this period was modernization of production, which made possible to reduce energy consumption, and, correspondingly, CO₂ emissions, i.e. carbon-intensity of major commodity group production.

CO₂ emission trend in 2008-2018 was determined by the influence of the global financial and economic crisis in 2008-2009 and a temporary occupation by the Russian Federation of the Autonomous Republic of Crimea, the city of Sevastopol and certain districts of Donetsk and Luhansk regions in 2014, which largely determined commodity production in the major export-oriented industries (metallurgy, chemical, mechanical engineering, etc.), which in turn affect supply sectors - electric power generation, mining (ore and coal mining)².

Totals of 2015-2018 are presenting the results of number of factors, connected with overall economy growth of Ukraine, structure and amount of fuels used in Energy and industry products outputs.

Moreover, during the entire time series since 1990 to 2017, GHG removals were decreasing in LULUCF, and in 2018 the sector for the first time became a net source, what was connected mainly with national practices of cropland and grassland management, as well as forestry management and natural disturbances frequency and severity.

Emissions of CH_4 are the second largest after CO_2 if considering their share in total GHG emissions. In 2018 CH_4 emissions in Ukraine amounted to 67.54 Mt CO_2 -eq., what is 63.0% lower compared to 1990, but 6.1 % higher than in 2017 (Table ES.2.1). The largest CH_4 source in the energy

² On 18 January 2018, the Parliament of Ukraine adopted the law "On the peculiarities of State policy on ensuring Ukraine's State sovereignty over temporarily occupied territories in Donetsk and Luhansk regions", which defines the legal status of certain areas of the Donetsk and Luhansk regions as temporarily occupied territories of Ukraine

sector is coal mining, as well as the processes of production, transportation, storage, distribution, and consumption of oil and natural gas. In agriculture, the main source of CH₄ emissions is enteric fermentation of cattle. The economic decline and structural changes was accompanied by reduction in agricultural production, which led to reduced methane emissions in the Agriculture sector in 2018 to 375.68 kt, what is more than four times lower than in 1990.

Nitrous oxide emissions in Ukraine with the LULUCF sector in 2018 amounted to 38.82 Mt CO_2 -eq., which in comparison with 1990 (53.63 Mt CO₂-eq.) is 27.6 % lower (Table ES.2.1). Compared with 2017, emissions of nitrous oxide increased by 10.9 %. The dominant source of nitrous oxide emissions in Ukraine, as in the previous submissions, is the Agriculture sector - 88.8 % of total nitrous oxide emissions in 2018. Emission sources in this sector are agricultural soils and manure management. Moreover, N₂O emissions take place in the sector IPPU (3.9 %), Energy (4.0 %), Waste (2.9 %), as well as LULUCF (0.4 %).

Table ES.2.1 contains data on direct action GHG emissions expressed in the carbon dioxide equivalent.

ES.2.2 KP-LULUCF activities

In the current NIR Ukraine provides data on the GHG emissions and removals, that take place in the LULUCF sector in regarding afforestation and reforestation activities (paragraph 3, Article 3 KP) and forest management (paragraph 4, Article 3 KP) for the first years of the second KP reporting period (Table ES.2.2).

Table ES.2.2. GHG emissions (+) / removals (-) from activities under paragraphs 3 and 4, Article 3 KP, kt CO₂-eq.

Therete 3 III, he 332 sq.						
The volume of emissions/sinks from the activities	2013	2014	2015	2016	2017	2018
Afforestation and reforestation activities	-2286.65	-2268.97	-2247.24	-2503.27	-2528.85	-2538.72
Deforestation	158.66	152.66	151.97	136.04	142.03	50.72
Activities under Article 3.3	-2127.99	-2116.31	-2095.27	-2367.23	-2386.82	-2488.00
Activities under Article 3.4 Land category B.1 Forest management	-53930.68	-52619.32	-50661.73	-49316.00	-49150.29	-47175.82

Table ES.2.1. GHG emissions, Mt CO₂-eq.

Gas	1990	1995	2000	2005	2010	2011	2012	2013	2014	2015	2016	2017	2018	Current year compared to base
CO ₂ (excluding LULUCF)	705.8	389.9	285.3	313.1	294.1	308.0	304.0	297.3	257.6	223.9	234.2	223.2	231.7	year, % -67.2
CH ₄	182.6	138.7	118.0	102.5	84.6	86.0	80.5	75.2	68.8	61.3	66.0	63.7	67.5	-63.0
N_2O	53.6	33.1	24.1	25.9	27.6	33.5	32.1	35.6	35.5	33.1	36.4	35.0	38.8	-27.6
HFCs*	NO	NO	15.7	285.1	743.8	820.0	840.7	881.2	847.8	775.3	887.3	1009.5	1349.3	100.0
PFCs*,**	235.8	178.1	115.7	142.3	26.7	NO	NO	-100.0						
SF ₆ *	0.0	0.1	0.4	4.5	9.7	8.4	11.0	12.5	16.7	19.6	24.3	28.5	33.3	436113.4
NF ₃ *	NO	NO	-											
Net CO ₂ from LULUCF	-59.4	-54.0	-45.8	-30.2	-31.5	-15.5	-19.4	-6.3	-4.0	-6.4	-1.9	-10.4	2.5	-104.1
CO ₂ (including LULUCF)	646.4	335.9	239.6	282.9	262.6	292.4	284.5	290.9	253.6	217.5	232.3	212.8	234.2	-63.8
Total (excluding LULUCF)	942.1	561.5	427.2	441.6	406.8	428.1	417.2	408.8	362.5	318.9	337.4	322.8	339.2	-64.0
Total (including LULUCF)	882.9	507.9	381.7	411.8	375.6	412.8	398.0	402.6	358.7	312.8	335.7	312.5	341.9	-61.3
Total (excluding LULUCF), including indirect CO ₂	942.1	561.5	427.2	441.6	406.8	428.1	417.2	408.8	362.5	318.9	337.4	322.8	339.2	-64.0
Total (including LULUCF), including indirect CO ₂	882.9	507.9	381.7	411.8	375.6	412.8	398.0	402.6	358.7	312.8	335.7	312.5	341.9	-61.3

^{*}emissions quoted in kt CO₂-eq.

** there is no PFC emissions, as cooling agents containing the gas were not imported in 2011-2018

ES.3 Overview of source and sink category emission estimates and trends, including KP-LULUCF activities

ES.3.1 GHG inventory

In Ukraine, GHG emissions occur in the following sectors set by the IPCC:

- Energy;
- Industrial Processes and Product Use (IPPU);
- Agriculture;
- Land Use, Land Use Change and Forestry (LULUCF);
- Waste.

The largest GHG emissions in Ukraine take place in the Energy sector. In 2018, the share of this sector accounted for around 66 % without the LULUCF sector. About 80% of emissions in this sector account for emissions in the Fuel Combustion category, which include the categories of Energy Industries, Manufacturing Industries and Construction, Transport, Other Sectors, and Other, as well as 20 % – emissions in the category of Fugitive Emissions from Fuels.

It should be noted that the share of GHG emissions in the category of Fugitive Emissions from Fuels in total GHG emissions in the Energy sector gradually increased in the period of 1990-2000: from 17.6 % in 1990 to 28.7 % in 2000. This period is characterized by aging of the infrastructure and industrial capital of the country. Since 2001, the proportion of emissions associated with fugitive fuels was gradually decreasing to 20.2 % in 2018, which is due to activities in the field of energy efficiency and energy source replacement implemented in the country.

The GHG emission structure is shown in Figure ES.3.1.

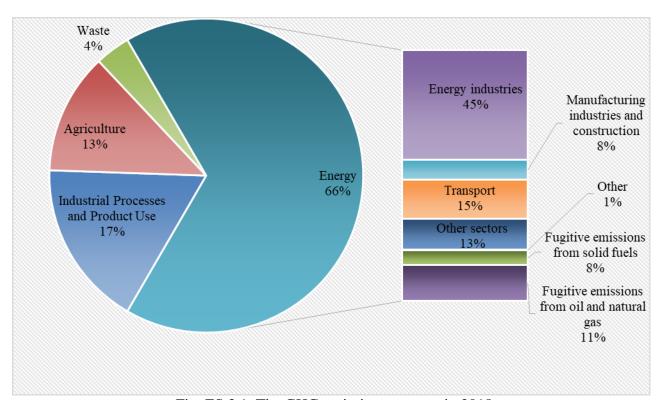


Fig. ES.3.1. The GHG emission structure in 2018

The economic decline that followed the collapse of the USSR in 1991 led to significant reduction of production, energy consumption, and thus to lower CO₂ emissions. In the period between 2000 and 2007, there was some stabilization with a slight increase in production, and in the period since 2008, due to the global financial and economic crisis, there was a drop in production and, thus, in CO₂ emissions. In 2018, emissions in the IPPU sector decreased by 52.1 % compared to the base year. The key reasons for the reduction of emissions are the decreased production level due to the outflow of investment capital, unstable export dynamics, contraction of the domestic market, as well

as the discrepancies in established "raw material-production-sales" connections in the regions of the country. Significant impact on industry development has situation on the East of the country. It is not only connected with catastrophic industry production drop in Donetsk and Lugansk regions. For neighboring regions, which had strong production-sales connections with Donbass region, it is challenging to compensate those losses by other supply chains.

The share of the Agriculture sector in total GHG emissions without LULUCF was 13.0 % in 2018. The major sources of emissions in the Agricultural sector are enteric fermentation and agricultural soils, 18.8 % and 75.7 % (60.3 % from direct emissions, and 15.4 % – indirect emissions) of the total emissions in the sector in 2018, respectively. Emissions in this sector decreased by 49.1 % compared to the base year, and increased by 7.7 % as compared to previous year.

Changes in emissions over the reporting period in category 3.A Enteric Fermentation (-78.9 and -3.5 % to base and previous years respectively) is associated with the change in the number of livestock, herd structure and net energy values.

The significant rate of methane emissions fluctuation in the category 3.B Manure Management in comparison with emissions in the other categories in the period of 1990-2018 is first of all directly related to partial replacement in the structure of manure distribution at cattle breeding enterprises of liquid slurry MMS with solid storage. Thus, in 1990 the percentage of cattle manure in liquid slurry amounted to 21.0 % of the total produced manure, while in 2018 – to only about 5.1 %.

The methane emissions fluctuation in reported year (compared to the base year, as well as to the previous year) in category 3.C Rice Cultivation caused by a harvested area variation (from 27.7 kha in 1990 to 12.6 kha in 2018).

Nitrous oxide emissions change in category 3.D Agricultural Soils by 2018 is due to the changes in the amount of applied fertilizers, areas under certain crops and their productivity.

The LULUCF sector includes both emissions and reductions of carbon dioxide, as well as emissions of CH₄, and N₂O. The resulting values of the inventory in the LULUCF sector in 2018 became net emissions, while the time series 1990-2017 the sector is net sink. The value of net CO_2 removals in the sector in 2018 decreased by 104.4 % compared to the base 1990 year. The main reason for such decline is change in agriculture management system on croplands, what has resulted in change from 4.6 Mt CO_2 -eq. of removals in 1990 to 48.2 Mt CO_2 -eq. of emissions in 2018. Particularly, significant influence has the areas, yield and structure of harvested crops from those lands, as well as fertilizers applied.

Also big influence has decrease in peat extraction areas and volumes, what caused decrease in GHG emissions from 12.0 Mt CO₂-eq. in 1990 to 0.3 Mt CO₂-eq. in 2018.

Moreover, rapid changes in land use, especially those resulting in emissions from living biomass, has significant impact on general level of emissions in the sector.

The contribution of the Waste sector in 2018 in total emissions is 3.6 %. The main source of CH_4 emissions is landfills of municipal solid waste (MSW), and that of emissions of N_2O – human sewage. In relation to the base year, emissions in the sector increased by 2.2 % in 2018.

Fig. ES.3.2 presents emissions as positive values and removals as negative.

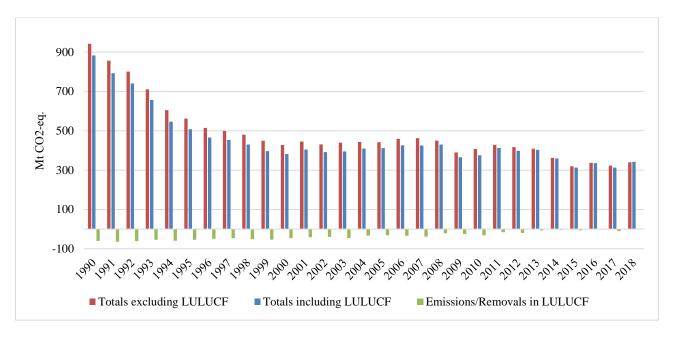


Fig. ES.3.2. Total GHG emissions (+) and removals (-) with and without the LULUCF sector for the period of 1990-2018, Mt CO₂-eq.

Table ES.3.1 reflects trends in aggregate GHG emissions by sector for the period of 1990-2018.

Table ES.3.1. Trends in aggregate direct action GHG emissions by sector, Mt CO₂-eq.

Sector	1990	1995	2000	2005	2010	2011	2012	2013	2014	2015	2016	2017	2018	Current year com- pared to base year, %
Energy	725.3	431.4	311.3	315.1	286.4	296.5	290.3	282.2	246.7	210.8	224.8	217.8	226.3	-68.8
IPPU	118.0	58.0	67.1	80.6	74.5	80.8	77.3	72.4	61.9	56.5	58.1	51.8	56.5	-52.1
Agriculture	86.8	60.6	37.3	33.9	33.5	38.4	37.2	41.7	41.5	39.5	42.2	41.1	44.2	-49.1
LULUCF (removals)	-59.2	-53.7	-45.5	-29.9	-31.2	-15.3	-19.2	-6.2	-3.8	-6.2	-1.7	-10.2	2.6	-104.5
Waste	11.9	11.5	11.4	12.0	12.4	12.5	12.4	12.5	12.4	12.2	12.3	12.2	12.2	2.2
Total (including LULUCF)	882.9	507.9	381.7	411.8	375.6	412.8	398.0	402.6	358.7	312.8	335.7	312.5	341.9	-61.3
Total (excluding LULUCF)	942.1	561.5	427.2	441.6	406.8	428.1	417.2	408.8	362.5	318.9	337.4	322.8	339.2	-64.0
Total (including LULUCF), including indirect CO ₂	882.9	507.9	381.7	411.8	375.6	412.8	398.0	402.6	358.7	312.8	335.7	312.5	341.9	-61.3
Total (excluding LULUCF), including indirect CO ₂	942.1	561.5	427.2	441.6	406.8	428.1	417.2	408.8	362.5	318.9	337.4	322.8	339.2	-64.0

ES.3.2 KP-LULUCF activities

Implementation of activities under paragraphs 3 and 4, Article 3 KP leads to a change in carbon stocks as a result of:

- increasing in carbon stocks (removals) accumulated in the processes of:
 - afforestation and reforestation;

- forest management.
- decreasing in carbon stocks (emissions) resulting from:
 - deforestation;
 - harvesting;
 - fires occurring not due to human-induced activity.

The category Afforestation and Reforestation in the context of paragraph 3, Article 3 KP includes volumes of net carbon emissions/removals as a result of activities of afforestation and further forest management on these areas. The report provides data for the second KP reporting period.

The category Deforestation in the context of paragraph 3, Article 3 KP count the territories, which were deforested with aim to use it in other land-use categories. The report provides information for the years 2013-2018. For afforestation activities, an assessment of carbon stock changes for all required pools was conducted separately. In addition, in accordance with requirements of 2006 IPCC Guidelines, nitrogen losses were estimated at land conversion to other land-use types.

In the context of paragraph 4, Article 3 KP, changes in carbon stocks in the pool of living biomass and dead organic matter in forest territories constantly covered with forest vegetation are accounted for. The report presents data for 2013-2018. For forest management activities, carbon stocks reduction in the pool of living biomass as a result of harvesting in managed forests is accounted for (under statistical form 3-lg). Estimation of changes in carbon stocks was held for all required pools separately (an exception is estimation of carbon losses in the below-ground biomass pool, which is accounted for in the above-ground, as well as a proof of absence of emissions from the pool is offered for the pool of mineral forest soils under managed forests).

Separately emissions from fires were reported, occurred in forests without human-induced activities on burning for 3.3 and 3.4 KP activities.

Separate assessment was conducted for carbon stock changes in harvested wood products for afforestation and forest management activities. Wood from deforestation-related harvesting was reported as loss of biomass with the instantaneous oxidation approach.

ES.4 Other Information

This section indicates sulfur dioxide and precursors emissions: nitrogen oxides, carbon monoxide, NMVOC. Precursors emissions take place in the Energy, IPPU, as well as Agriculture and LULUCF sectors. Table ES.4.1 reflects trends in summary precursors emissions and sulfur dioxide for the period of 1990-2018.

Table ES.4.1. Summary information on precursors emissions, kt

Gas	1990	1995	2000	2005	2010	2011	2012	2013	2014	2015	2016	2017	2018	Change,
NO _x	2273.8	1091.6	856.7	895.9	774.4	809.8	775.8	771.2	674.5	562.3	580.4	573.0	590.2	-74.0
CO	4323.0	1713.8	1213.6	1278.1	1149.8	1138.3	1139.9	1144.2	1035.4	927.1	822.9	854.4	865.4	-80.0
NMVOC	3549.9	2009.8	1492.3	1553.6	1213.3	1255.5	1157.0	1149.7	1002.6	859.7	869.5	801.9	812.0	-77.1
SO_2	1652.2	846.7	734.4	820.0	867.1	949.1	994.6	1016.0	880.0	750.6	800.8	724.3	787.8	-52.3

Comparing with 1990, precursors and sulfur dioxide emissions in Ukraine decreased by 52.3-80.0 %. The main source of emissions of these gases is the Energy sector.

Estimations of indirect N_2O were also conducted which take place in Energy and IPPU sectors. The estimations are presented below, and detailed description as well as full time series are reported in Chapter 9.

Table ES.4.2. Summary information on indirect CO₂ and N₂O emissions, kt

Gas	1990	1995	2000	2005	2010	2015	2016	2017	2018	Change,
Indirect CO ₂	NO.NA	-								
Indirect N ₂ O	11.8	6.0	4.1	4.3	3.7	2.7	2.8	2.7	2.8	-76.1

CONTENT

EXECUTIVE SUMMARY	3
ES.1 BACKGROUND INFORMATION ON GREENHOUSE GAS INVENTORIES, CLIMATE C	HANGE AND
SUPPLEMENTARY INFORMATION REQUIRED UNDER ARTICLE 7.1 OF THE KYOTO PRO	
ES.2 SUMMARY ON NATIONAL TRENDS OF EMISSIONS AND REMOVALS, INCLUDING	
ACTIVITIES	4
ES.2.1 GHG inventory	4
ES.2.2 KP-LULUCF activities	6
ES.3 OVERVIEW OF SOURCE AND SINK CATEGORY EMISSION ESTIMATES AND TREN	DS, INCLUDING
KP-LULUCF ACTIVITIES	
ES.3.1 GHG inventory	
ES.3.2 KP-LULUCF activities	
ES.4 OTHER INFORMATION	11
ABBREVIATIONS AND ACRONYMS	22
1 INTRODUCTION	25
1.1 Background information on greenhouse gas inventories, climate ch	ANGE AND
SUPPLEMENTARY INFORMATION REQUIRED UNDER ARTICLE 7.1 OF THE KYOTO PRO	
1.1.1 Background information on climate change	
1.1.2 Background information on greenhouse gas inventories	31
1.1.3 Background information on information required under Article 7, paragr	
Kyoto Protocol	
1.2 INSTITUTIONAL ARRANGEMENTS FOR NATIONAL INVENTORY REPORT PREPARA	ATION,
INCLUDING LEGAL AND PROCEDURAL ARRANGEMENTS FOR INVENTORY PLANNING,	
AND MANAGEMENT	
1.2.1 Overview of institutional, legal, and procedural aspects of preparing the	
Inventory Report, as well as supplementary information required pursuant to A	
Kyoto Protocol	
1.2.2 Planning, preparation, and management of the process of greenhouse ga	
1.2.3 Quality assurance, quality control and planning of inspections. Details of	_
1.2.4 Changes in the National Inventory System	
1.3 Inventory preparation	
1.3.1 The basic stages of the inventory	
1.3.2 Planning and control of activities on greenhouse gas inventory and repor	
	•
1.4 Brief general description of methodologies and data sources used	49
1.4.1 Greenhouse gas inventory	49
1.4.2 KP-LULUCF inventory	51
1.5 Brief description of key categories, including KP-LULUCF	51
1.5.1 Greenhouse gas inventory	
1.5.2 KP-LULUCF inventory	
1.6 EVALUATION OF THE TOTAL UNCERTAINTY OF THE NATIONAL INVENTORY REP	
DATA ON THE OVERALL UNCERTAINTY FOR THE ENTIRE INVENTORY	
1.6.1 Uncertainty of the GHG Inventory	
1.6.2 Uncertainty of KP-LULUCF	
1.7 GENERAL ASSESSMENT OF COMPLETENESS	
1.7.1 Completeness assessment of GHG inventory	
1.7.2 Completeness assessment for KP-LULUCF	
2 TRENDS IN GREENHOUSE GAS EMISSIONS	57
2.1 Trends in total greenhouse gas emissions	57
2.1.1 Emissions of carbon dioxide	

2.1.2 Methane emissions	
2.1.3 Emissions of nitrous oxide	61
2.1.4 Emissions of hydrofluorocarbons, perfluorocarbons, sulfur hexafli	oride, and nitrogen
trifluoride	
2.1.5 Trends in emissions of precursor gases and SO ₂	63
2.2 Emission trends by sector	64
3 ENERGY (CRF SECTOR 1)	68
3.1 Sector Overview	68
3.2 FUEL COMBUSTION ACTIVITIES (CRF CATEGORY 1.A)	69
3.2.1 Reference CO ₂ emission calculation approach. Comparison of sec	
approaches	•
3.2.2 International Bunker Fuels (CRF category 1.D.1)	71
3.2.3 Use of fuels as a raw material and non-energy use of fuels	72
3.2.4 CO ₂ sequestration	
3.2.5 CO ₂ emissions from biomass	
3.2.6 National features	
3.2.7 Energy Industries (CRF category 1.A.1)	73
3.2.8 Manufacturing Industries and Construction (CRF category 1.A.2)	
3.2.9 Transport (CRF category 1.A.3)	
3.2.10 Other sectors (CRF category 1.A.4)	
3.2.11 Unspecified Categories (CRF category 1.A.5)	
3.3 FUGITIVE EMISSIONS FROM FUELS (CRF CATEGORY 1.B)	
3.3.1 Solid Fuels (CRF category 1.B.1)	
3.3.2 Oil and Natural Gas (CRF category 1.B.2)	
3.4 MULTILATERAL OPERATIONS	99
4 INDUSTRIAL PROCESSES AND PRODUCT USE (CRF SECTOR 2)	100
4.1 Sector Overview	100
4.2 CEMENT PRODUCTION (CRF CATEGORY 2.A.1)	102
4.2.1 Category description	
4.2.2 Methodological issues	103
4.2.3 Uncertainties and time series-consistency	103
4.2.4 Category-specific QA/QC procedures	104
4.2.5 Category-specific recalculations	104
4.2.6 Category-specific planned improvements	104
4.3 LIME PRODUCTION (CRF CATEGORY 2.A.2)	104
4.3.1 Category description	104
4.3.2 Methodological issues	105
4.3.3 Uncertainties and time series-consistency	105
4.3.4 Category-specific QA/QC procedures	105
4.3.5 Category-specific recalculations	106
4.3.6 Category-specific planned improvements	
4.4 GLASS PRODUCTION (CRF CATEGORY 2.A.3)	
4.4.1 Category description	
4.4.2 Methodological issues	
4.4.3 Uncertainties and time series-consistency	
4.4.4 Category-specific QA/QC procedures	
4.4.5 Category-specific recalculations	
4.4.6 Category-specific planned improvements	
4.5 OTHER PROCESS USES OF CARBONATES (CRF CATEGORY 2.A.4.)	
4.5.1 Ceramics Production (CRF category 2.A.4.a)	
4.5.2 Other Uses of Soda Ash (CRF category 2.A.4.b)	
4.6 Ammonia Production (CRF category 2.B.1)	
4.6.1 Category description	110

4.6.2 Methodological issues	
4.6.3 Uncertainties and time-series consistency	
4.6.4 Category-specific QA/QC procedures	
4.6.5 Category-specific recalculations	
4.6.6 Category-specific planned improvements	
4.7 NITRIC ACID PRODUCTION (CRF CATEGORY 2.B.2)	112
4.7.1 Category description	112
4.7.2 Methodological issues	113
4.7.3 Uncertainties and time-series consistency	113
4.7.4 Category-specific QA/QC procedures	113
4.7.5 Category-specific recalculations	113
4.7.6 Category-specific planned improvements	114
4.8 ADIPIC ACID PRODUCTION (CRF CATEGORY 2.B.3)	
4.8.1 Category description	
4.8.2 Methodological issues	114
4.8.3 Uncertainties and time-series consistency	
4.8.4 Category-specific QA/QC procedures	114
4.8.5 Category-specific recalculations	
4.8.6 Category-specific planned improvements	
4.9 CAPROLACTAM, GLYOXAL, AND GLYOXYLIC ACID PRODUCTION (CRF CATEGORY)	
4.9.1 Category description	,
4.9.2 Methodological issues	
4.8.3 Uncertainties and time-series consistency	
4.9.4 Category-specific QA/QC procedures	
4.9.5 Category-specific recalculations	
4.9.6 Category-specific planned improvements	
4.10 CARBIDE PRODUCTION AND USE (CRF CATEGORY 2.B.5)	
4.10.1 Category description	
4.10.2 Methodological issues	
4.10.3 Uncertainties and time-series consistency	
4.10.4 Category-specific QA/QC pro cedures	
4.10.5 Category-specific recalculations	
4.10.6 Category-specific planned improvements	
4.11 TITANIUM DIOXIDE PRODUCTION (CRF CATEGORY 2.B.6)	
4.11.1 Category description	
4.11.2 Methodological issues	
4.11.3 Uncertainties and time-series consistency	
4.11.4 Category-specific QA/QC procedures	
4.11.5 Category-specific recalculations	
4.11.6 Category-specific planned improvements	
4.12 SODA ASH PRODUCTION AND USE (CRF CATEGORY 2.B.7)	
4.12.1 Category description	
4.13 PETROCHEMICAL AND CARBON BLACK PRODUCTION (CRF CATEGORY 2.B.8)	
4.13.1 Category description	
4.13.2 Methodological issues	
4.13.3 Uncertainties and time-series consistency	
4.13.4 Category-specific QA/QC procedures	
4.13.5 Category-specific recalculations	
4.13.6 Planned improvements	
4.14 Iron and Steel Production (CRF category 2.C.1)	
4.14.1 Category description	
4.14.2 Methodological issues	
4.14.3 Uncertainties and time-series consistency	
4.14.4 Category-specific OA/OC procedures	

4.14.5 Category-specific recalculations	
4.14.6 Category-specific planned improvements	124
4.15 Ferroalloys Production (CRF category 2.C.2)	124
4.15.1 Category description	
4.15.2 Methodological issues	125
4.15.3 Uncertainties and time-series consistency	125
4.15.4 Category-specific QA/QC procedures	126
4.15.5 Category-specific recalculations	126
4.15.6 Category-specific planned improvements	126
4.16 ALUMINUM PRODUCTION (CRF CATEGORY 2.C.3)	
4.16.1 Category description	126
4.16.2 Methodological issues	126
4.16.3 Uncertainties and time-series consistency	126
4.16.4 Category-specific QA/QC procedures	126
4.16.5 Category-specific recalculations	
4.16.6 Category-specific planned improvements	
4.17 MAGNESIUM PRODUCTION (CRF CATEGORY 2.C.4)	
4.18 LEAD PRODUCTION (CRF CATEGORY 2.C.5)	127
4.18.1 Category description	
4.18.2 Methodological issues	
4.18.3 Uncertainties and time-series consistency	
4.18.4 Category-specific QA/QC procedures	127
4.18.5 Category-specific recalculations	
4.18.6 Category-specific planned improvements	
4.19 ZINC PRODUCTION (CRF CATEGORY 2.C.6)	
4.19.1 Category description	
4.19.2 Methodological issues	
4.19.3 Uncertainties and time-series consistency	
4.19.4 Category-specific QA/QC procedures	
4.19.5 Category-specific recalculations	
4.19.6 Category-specific planned improvements	
4.20 Lubricant Use (CRF category 2.D.1)	
4.20.1 Category description	
4.20.2 Methodological issues	
4.20.3 Uncertainties and time-series consistency	
4.20.4 Category-specific QA/QC procedures	
4.20.5 Category-specific recalculations	
4.20.6 Category-specific planned improvements	
4.21 PARAFFIN WAX USE (CRF CATEGORY 2.D.2)	
4.21.1 Category description	
4.21.2 Methodological issues	
4.21.3 Uncertainties and time-series consistency	
4.21.4 Category-specific QA/QC procedures	
4.21.5 Category-specific recalculations	
4.21.6 Category-specific planned improvements	
4.22 ASPHALT PRODUCTION AND USE (CRF CATEGORY 2.D.3)	
4.22.1 Asphalt roofing (CRF category 2.D.3.a.1)	
4.22.2 Road paving with asphalt (CRF category 2.D.3.a.2)	
4.23 SOLVENTS USE (CRF CATEGORY 2.D.3.B)	
4.23.1 Category description	
4.23.2 Varnishes and Paints Use (CRF category 2.D.3.b.1)	
4.23.3 Degreasing and Dry Cleaning (CRF category 2.D.3.b.2)	
4.23.4 Chemical Products: Production and Processing (CRF category 2.D.3.b.3)	
4.24 FI FOTRONICS INDUSTRY	

4.25 PRODUCT USES AS SUBSTITUTES FOR OZONE-DEPLETING SUBSTANCES (CRF CA	,
4.25.1 Refrigeration and Air Conditioning Systems	
4.25.2 Foam Blowing Agents (CRF category 2.F.2)	
4.25.3 Fire protection (CRF category 2.F.3)	
4.25.4 Aerosols (CRF category 2.F.4)	
4.25.5 Solvents (CRF category 2.F.5)	
4.25.6 Other Applications of Substitutes for Ozone-Depleting Substances	
4.26 OTHER PRODUCT MANUFACTURE AND USE (CRF CATEGORY 2.G)	
4.26.1 Electrical Equipment (2.G.1 CRF)	
4.26.2 N ₂ O from Product Uses (2.G.3 CRF)	
4.27 Pulp and Paper Production (CRF category 2.H.1)	
4.27.1 Category description	
4.27.2 Methodological issues	
4.27.3 Uncertainties and time-series consistency	161
4.27.4 Category-specific QA/QC procedures	161
4.27.5 Category-specific recalculations	161
4.27.6 Category-specific planned improvements	
4.28 FOOD AND BEVERAGES INDUSTRY (CRF CATEGORY 2.H.2)	
4.28.1 Category description	
4.28.2 Methodological issues	162
4.28.3 Uncertainties and time-series consistency	162
4.28.4 Category-specific QA/QC procedures	162
4.28.5 Category-specific recalculations	162
4.28.6 Category-specific planned improvements	162
AGRICULTURE (CRF SECTOR 3)	163
5.1 Sector Overview	
5.2 Enteric Fermentation (CRF category 3.A)	
5.2.1. Category description	
5.2.2 Methodological issues	
5.2.3 Uncertainty and time-series consistency	170
5.2.4 Category-specific QA/QC procedures	
5.2.5 Category-specific recalculations	
5.2.6 Category-specific planned improvements	174
5.3 MANURE MANAGEMENT (CRF CATEGORY 3.B)	
5.3.1. Category description	174
5.3.2 Methodological issues	175
5.3.3 Uncertainty and time-series consistency	
5.3.4 Category-specific QA/QC procedures	
5.3.5 Category-specific recalculations	186
5.3.6 Category-specific planned improvements	
5.4 RICE CULTIVATION (CRF CATEGORY 3.C)	
5.4.1. Category description	
5.4.2 Methodological issues	
5.4.3 Uncertainty and time-series consistency	
5.4.4 Category-specific QA/QC procedures	
5.4.5 Category-specific recalculations	
5.4.6 Category-specific planned improvements	
5.5 AGRICULTURAL SOILS (CRF CATEGORY 3.D)	
5.5.1. Category description	
5.5.2 Methodological issues	
5.5.3 Uncertainty and time-series consistency	
5.5.4 Category-specific QA/QC procedures	

5.5.5 Category-specific recalculations	196
5.5.6 Category-specific planned improvements	
5.6 Prescribed Burning of Savannas (CRF category 3.E)	
5.7 FIELD BURNING OF AGRICULTURAL RESIDUES (CRF CATEGORY 3.F)	
5.8 LIMING (CRF CATEGORY 3.G)	
5.8.1. Category description	197
5.8.2 Methodological issues	198
5.8.3 Uncertainty and time-series consistency	
5.8.4 Category-specific QA/QC procedures	198
5.8.5 Category-specific recalculations	
5.8.6 Category-specific planned improvements	
5.9 UREA APPLICATION (CRF CATEGORY 3.H)	
5.9.1. Category description	199
5.9.2 Methodological issues	199
5.9.3 Uncertainty and time-series consistency	200
5.9.4 Category-specific QA/QC procedures	200
5.9.5 Category-specific recalculations	200
5.9.6 Category-specific planned improvements	200
6 LAND USE, LAND-USE CHANGE AND FORESTRY (CRF SECTOR 4)	201
6.1 Sector Overview	
6.1.1 Land-use change matrix	
6.2 Forest Land (CRF category 4.A)	
6.2.1 Category description	
6.2.2 Methodological issues	
6.2.3 Uncertainties and time-series consistency	
6.2.4 Category-specific QA/QC procedures	
6.2.5 Category-specific recalculations	
6.2.6 Category-specific planned improvements	
6.3 CROPLAND (CRF CATEGORY 4.B)	
6.3.1 Category description	
6.3.2 Methodological issues	
6.3.3 Uncertainties and time-series consistency	
6.3.4 Category-specific QA/QC procedures	
6.3.5 Category-specific recalculations	
6.3.6 Category-specific planned improvements	
6.4 GRASSLAND (CRF SECTOR 4.C)	
6.4.1 Category description	
6.4.2 Methodological issues	
6.4.3 Uncertainties and time-series consistency	
6.4.4 Category-specific QA/QC procedures	
6.4.5 Category-specific recalculations	
6.4.6 Category-specific planned improvements	
6.5.1 Category description	
6.5.2 Methodological issues	
6.5.3 Uncertainties and time-series consistency	
6.5.4 Category-specific QA/QC procedures	
6.5.5 Category-specific recalculations	
6.5.6 Category-specific planned improvements	
6.6 SETTLEMENTS (CRF SECTOR 4.E)	
6.6.1 Category description	
6.6.2 Methodological issues	
6.6.3 Uncertainties and time-series consistency.	

6.6.4 Category-specific QA/QC procedures	228
6.6.5 Category-specific recalculations	228
6.6.6 Category-specific planned improvements	228
6.7 Other Land (CRF sector 4.F)	
6.7.1 Category description	
6.7.2 Methodological issues	
6.7.3 Uncertainties and time-series consistency	
6.7.4 Category-specific QA/QC procedures	
6.7.5 Category-specific recalculations	
6.7.6 Category-specific planned improvements	
6.8 HARVESTED WOOD PRODUCTS (HWP, CRF SECTOR 4.G)	
6.8.1 Category description	
6.8.2 Methodological issues	
6.8.3 Uncertainties and time-series consistency	
6.8.4 Category-specific QA/QC procedures	
6.8.5 Category-specific recalculations	
6.8.6 Category-specific planned improvements	231
7 WASTE (CRF SECTOR 5)	232
7.1 Sector Overview	232
7.1 SECTOR OVERVIEW 7.2 SOLID WASTE DISPOSAL (CRF CATEGORY 5.A)	
7.2.1 Category description	
7.2.2 Methodological issues	
7.2.3 Uncertainties and time-series consistency	
7.2.4 Category-specific QA/QC procedures	
7.2.5 Category-specific recalculations	
7.2.6 Category-specific planned improvements	
7.3 BIOLOGICAL TREATMENT OF SOLID WASTE (CRF CATEGORY 5.B)	
7.3.1 Category description	
7.3.2 Methodological issues	
7.3.3 Uncertainties and time-series consistency	
7.3.4 Category-specific QA/QC procedures	249
7.3.5 Category-specific recalculations	249
7.3.6 Category-specific planned improvements	250
7.4 INCINERATION AND OPEN BURNING OF WASTE (CRF CATEGORY 5.C)	250
7.4.1 Category description	
7.4.2 Methodological issues	252
7.4.3 Uncertainties and time-series consistency	
7.4.4 Category-specific QA/QC procedures	
7.4.5 Category-specific recalculations	
7.4.6 Category-specific planned improvements	259
7.5 WASTEWATER TREATMENT AND DISCHARGE (CRF CATEGORY 5.D)	
7.5.1 Category description	
7.5.2 Methane emissions from domestic wastewater treatment (CRF sub-category 5.D	
7.5.3 Nitrous Oxide Emissions from Human Waste Water (CRF category 5.D.1.2)	
7.5.4 Industrial Wastewater Treatment and Discharge (CRF category 5.D.2)	272
8 OTHER (CRF SECTOR 7)	283
9 INDIRECT CO2 AND NITROUS OXIDE EMISSIONS	284
10 RECALCULATIONS AND IMPROVEMENTS	
11 KP-LULUCF	
11.1 GENERAL INFORMATION	287 288
III Definition of the forest	/AX

11.1.2 Elected activities under Article 3, paragraph 4, of the Kyoto Protocol	288
11.1.3 Description on how the definitions of each activity under Article 3.3 and each elect	
activity under Article 3.4 have been implemented and applied consistently over time	
11.1.4 Description of precedence conditions and/or hierarchy among Article 3.4 activities	, and
how they have been consistently applied in determining how land was classified	290
11.2 Land-related information	290
11.2.1 Spatial assessment unit used for determining the area of the units of land under Art	
3.3	
11.2.2 Methodology used to develop the land-use transition matrix	290
11.2.3 Maps and database to identify the geographical locations, and the system of	201
identification codes for the geographical locations	
11.3 ACTIVITY-SPECIFIC INFORMATION	
11.3.1 Methods for carbon stock change and GHG emission and removal estimates	293 296
11.4 ARTICLE 3.3	
January 1990 and before 31 December 2012 and are directly human-induced	
11.4.2 Information on how harvesting or forest disturbance that is followed by the re-	270
establishment of forest is distinguished from deforestation	296
11.4.3 Information on the size and geographical location of forest areas that have lost for	
cover but which are not yet classified as deforestation	
11.5 ARTICLE 3.4	297
11.5.1 Information that demonstrates that the activities under Article 3.4 have occurred sin	nce 1
January 1990 and are human-induced	297
11.5.2 Information relating to Cropland Management, Grazing Land Management,	
Revegetation and Wetland Drainage and Rewetting if elected, for the base year	
11.5.3 Information relating to Forest Management	
11.5.4 Conversion of natural forest to planted forest	
11.5.5 Technical adjustments proposed by Ukraine pursuant to paragraph 14 of the Annex decision 2/CMP.7	x to 298
12 INFORMATION ON ACCOUNTING OF KYOTO UNITS	
12 INFORMATION ON ACCOUNTING OF KTOTO UNITS	
12.1 Background information	
12.2 SUMMARY OF INFORMATION REPORTED IN THE SEF TABLES	
12.3 DISCREPANCIES AND NOTIFICATIONS	
12.4 PUBLICLY ACCESSIBLE INFORMATION	
12.5 CALCULATION OF THE COMMITMENT PERIOD RESERVE (CPR)	
12.6 KP-LULUCF ACCOUNTING	
13 INFORMATION ON CHANGES IN THE NATIONAL GHG INVENTORY SYSTEM	
14 INFORMATION ON CHANGES IN THE NATIONAL REGISTRY	305
14.1 Information on changes according to Decision 15/CMP.1	305
14.2 Previous Annual Review recommendations	305
15 MINIMIZATION OF ADVERSE IMPACTS IN ACCORDANCE WITH ARTICLE 3.	_
PARAGRAPH 14	,
16 AUTHORS	308
17 REFERENCES	309
ANNEX 1 KEY CATEGORIES	320
ANNEX 2 METHODOLOGY FOR EMISSION ASSESSMENT IN THE ENERGY SECT	
A2.1 THE METHOD TO DETERMINE GHG EMISSIONS FROM STATIONARY FUEL COMBUSTION	329
A2.2 Sources of activity data	329

A2.2.1 Statistical reporting form No. 4-MTP "Fuel usage report"	329
A2.2.2 Statistical reporting form No. 11-MTP "Report on results of fuel, heat, and electr	
consumption"	
A2.2.3 Fuel and energy balances of Ukraine	331
A2.3 FUEL STRUCTURE	
A2.4 METHODS TO DETERMINE THE FUEL COMBUSTION VOLUME BY CRF CATEGORY	332
A2.4.1 Stationary fuel combustion	332
A2.4.2 Mobile fuel combustion	333
A2.5 EMISSION FACTORS	335
A2.6 DETERMINATION OF PHYSICAL AND CHEMICAL PARAMETERS OF NATURAL GAS AND PO	WER-
GENERATING COALS	342
A2.6.1 Natural gas	342
A2.6.2 Hard coal	343
A2.6.3 Motor fuels	347
A2.7 METHODS TO ESTIMATE GHG EMISSIONS FROM AIRCRAFT EQUIPPED WITH JET ENGINES	348
A2.7.1 Data preprocessing	348
A2.7.2 Distribution of GHG emissions between domestic and international aviation	
A2.7.3 Estimation of GHG emissions	
A2.8 THE METHODOLOGY TO ESTIMATE LEAKAGE AT TRANSPORTATION AND DISTRIBUTION OF	
NATURAL GAS	
A2.9 ACTIVITY DATA	
A2.10 OTHER MATTERS RELATED TO ACTIVITY DATA IN ENERGY SECTOR IN 2014-2018	365
ANNEX 3	
A3.1 INDUSTRIAL PROCESSES AND PRODUCT USE (CRF SECTOR 2)	366
A3.1.1 Results of GHG inventory in the Industrial Processes and Product Use sector	
A3.1.2 Determination of the amount of limestone and dolomite use	389
A3.1.3 Method of CO ₂ emission factor determination for coal coke use	396
A3.1.4 Carbon balance in the blast furnace process	396
A3.2 AGRICULTURE (CRF SECTOR 3)	
A3.2.1 Livestock	397
A3.2.2 Enteric Fermentation	408
A3.2.3 Manure Management	421
A3.2.4 Rice Cultivation	445
A3.2.5 Agricultural Soils	446
A3.2.6 Liming	450
A3.2.7 Urea Application	450
A3.2.8 Emission factors	451
A3.2.9 Emissions	461
A3.2.10 Recalculations	471
A3.3 LAND USE, LAND USE CHANGE AND FORESTRY (CRF SECTOR 4)	476
A3.3.1 Methodological issues of the land-use category Forest land	476
A3.3.2 Methodological issues for the land-use categories Cropland and Grassland	497
A3.3.3 Methodological aspects of the HWP category	
A3.4 WASTE (CRF SECTOR 5)	
ANNEX 4 FUEL BALANCES	5 10
A4.1 Energy balance of Ukraine in 2018 (thd. tonnes of oil eq.)	
A4.2 BALANCE OF NATURAL GAS	
A4.3 COAL BALANCE	
A4.4 THE COKING COAL, COKE, AND COKE GAS BALANCE	523
ANNEX 5 COMPLETENESS ASSESSMENT	525
A5.1 INVENTORY OF GREENHOUSE GASES	525 528
A5.2 KP-LULUCF INVENTORY	72X

ANNEX 6 SUPPLEMENTARY INFORMATION PRESENTED AS PART OF ANNUAL SUBMISSION AND THE INFORMATION REQUIRED IN ACCORDANCE WITH PARAGRAPH 1, ARTICLE 7 OF THE KYOTO PROTOCOL, AND OTHER APPLICA INFORMATION	BLE
A6.1 ANNUAL SUBMISSION OF THE NATIONAL INVENTORY REPORT	
A6.1.1 The legal framework for implementation of Ukraine's commitments under the United Nations Framework Convention on Climate Change and the Kyoto Protocol in terms of the	
national inventory of anthropogenic emissions and removals of greenhouse gases	
A6.1.2 Order of the Ministry of Environmental Protection No.268 of May 31, 2007	
ANNEX 7 UNCERTAINTIES	532
ANNEX 8 INFORMATION ON IMPROVEMENTS IN THE NIR	542
A8.1 Consideration of the recommendations of the expert review team (ERT)	
PRESENTED IN THE REPORT OF THE INDIVIDUAL REVIEW OF THE INVENTORY SUBMISSION OF	
UKRAINE SUBMITTED IN 2019 (ARR 19) IN THE NIR	542
A8.2 IMPROVEMENT PLAN FOR THE NIR	558

ABBREVIATIONS AND ACRONYMS

2006 IPCC Guidelines – 2006 Intergovernmental Panel on Climate Change Guidelines for National Greenhouse Gas Inventories;

2013 Wetlands Supplement – 2013 Supplement to the 2006 Intergovernmental Panel on Climate Change Guidelines for National Greenhouse Gas Inventories: Wetlands;

AC – aircraft;

AD – activity data;

AFBR – Average Fuel Brand Representative;

AMS – Automated Monitoring Systems;

API – American Petroleum Institute;

AR – afforestation and reforestation;

ARR – report of the individual review of the annual submission of Ukraine;

BI «NCI» – Budget Institution «National Center for GHG Emission Inventory»;

BOD - Biochemical Oxygen Demand;

BOF - Basic Oxygen Furnaces;

CE – coal equivalent;

Cherkasky NIITEKHIM – Cherkasy Institute of Technical and Economic Information in the Chemical Industry;

CHP – combined heat and power plants;

CKD - Cement Kiln Dust;

CMP – Conference of Parties serving as the meeting of the Parties to the Kyoto Protocol;

COD – Chemical Oxygen Demand;

COP – Conference of Parties;

CRF – common reporting format;

CS – country specific;

CSC – Carbon stock change;

D – deforestation;

DC – decreasing coefficients;

DDB – departure database;

DOM – dead organic matter;

EAF – Electric Arc Furnaces;

EF – emission factor;

ERT – Expert Review Team;

FAO – Food and Agriculture Organization of the United Nations;

FEB – fuel and energy balance;

FM – forest management;

FMRL – forest management reference level;

GDP – gross domestic product;

GDS – system of gas distribution;

GE – gross energy;

GFFM – Gas fire fighting modules;

GHG – greenhouse gas;

GMS – gas metering stations;

GTS – gas transportation system;

GWP - Global Warming Potential;

HP – heating plants;

HWP – harvested wood products;

IA – Inhalation anesthesia:

IAC – Inter-Agency Commission;

ICAO – International Civil Aviation Organization;

IE – Included elsewhere;

IEA – International Energy Agency;

IPPU – Industrial Processes and Product Use;

IS – International Standards:

JI projects – Joint Implementation projects;

KP Supplement – 2013 Revised Supplementary Methods and Good Practice Guidance Arising from the KP;

LKD - Lime dust correction factor;

LPG – Liquefied Petroleum Gas;

LULUCF – Land Use, Land Use-Change and Forestry;

MCF – Methane correction factor;

MDMex – amount of manure excreted by animals in dry matter;

MEEP – Ministry of Energy and Environmental Protection of Ukraine;

MENR – Ministry of Ecology and Natural Resources of Ukraine;

Minecoenergo – Ministry of Energy and Environmental Protection of Ukraine;

MMS – manure management system;

MSW – municipal solid waste;

NA – Not applicable;

NAASU – National Academy of Agrarian Sciences of Ukraine;

NASU – National Academy of Sciences of Ukraine;

NCEA – National Classification of Economic Activities;

NCV – Net Calorific Value;

NE - Not estimated;

NG – natural gas;

NIR – National Inventory Report;

NJSC "Naftogaz" – National Joint-stock company "Naftogaz";

NO – Not occurring;

ODU – Oxidised During Use;

OHF – Open Hearth Furnaces;

OPF – One-component polyurethane foams;

PUF – Polyurethane foams;

PUL – limit of potential underestimation;

PV – Photovoltaic cells;

QA – quality assurance;

QC – quality control;

RD – revaluated data:

RPUF – Rigid polyurethane foams;

SAC – air-conditioning systems;

SC "Ukrtransgaz" - State Company "Ukrtransgaz";

SE "UkrRTC "Energostal" – State Enterprise «Ukrainian Research & Technology Center of Metallurgy Industry «Energostal»;

SEIA – State Environmental Investment Agency;

SESU – The State Emergency Service of Ukraine;

SKD - Semi Knocked Down;

SOC – soil organic carbon;

SOM – soil organic matter;

SSSU – The State Statistics Service of Ukraine;

TEA – type of economic activity;

TFT-FPD – Flat panel displays on thin film transistors;

TPP – thermal power plants;

UGS – underground gas storages;

Ukrderzhlisproekt – Ukrainian State Project Forest Inventory Production Association;

USSR – Union of Soviet Socialist Republics;

VPP – vacuum pump plants;

WIP – waste incineration plant;

WWTP – Waste water treatment plant;

XPS – Extruded polystyrene foam.

1 INTRODUCTION

1.1 Background information on greenhouse gas inventories, climate change and supplementary information required under Article 7.1 of the Kyoto Protocol

1.1.1 Background information on climate change

Climate of Ukraine is a temperate continental one, with subtropical Mediterranean climate at the South Coast of the Crimea. Generally, Ukraine gets sufficient amounts of heat and moisture, which create favorable natural and climatic conditions in its territory. However, those conditions have been changing substantially throughout recent decades, bringing about serious threats and challenges for country's sustainable development due to increased risks for human health, life and activities, natural ecosystems, and economy sectors.

The main manifestations of regional climate changes in Ukraine within the global warming processes include significant rise of air temperatures, changes of thermal regime and structure of precipitation, increased number of hazard meteorological phenomena and extreme weather events, which all result in losses for country's population and various economy sectors.

Global warming during recent decades is unequivocal, and the first decade of the 21st century turned out to be the warmest in the period of instrumental weather observations (since 1850). In the Northern hemisphere, the period of 1983 to 2012 was probably the warmest 30-year period in the last 1400 years [20].

Intensive increase of surface air temperatures has been also observed in Ukraine since mid-20th century. The rate of change of the average as well as minimum, and maximum annual temperatures in the country was 0.3°C/10 years in 1961-2013. Since late 1990s, a stable transition of the annual air temperature anomaly to above 0°C is observed (Fig.1.1). The period of late 20th and early 21st century was possibly the warmest one for the duration of instrumental weather observations in Ukraine (since 1890s) [3, 8, 13, 15, 17, 19].

Unfortunately, it is not possible to obtain reliable meteorological data for the whole territory of Ukraine since 2014 after the occupation and attempted annexation of Crimea. Information on hydrometeorological parameters from observation stations is not transmitted to Ukrainian Hydrometeorological Center, and, as a result, unavailable for aggregation. Therefore, the data on regional effects of the global climate change in Ukraine are limited by the year 2013.

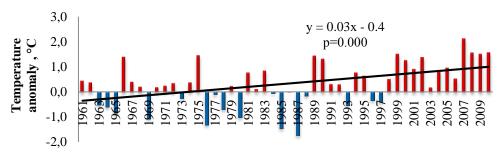


Fig. 1.1. Anomalies of annual air temperature in Ukraine with respect to the 1961–1990 reference period [3]

The summer and winter seasons are the main contributors to the change of annual temperature in Ukraine. Their average temperatures increased by 1.3 and 0.9°C, respectively, in 1991-2013 (Fig.1.2). Also, the air temperature rise was the highest in January (2.3°C) and July (1.4°C). The average temperature in spring increased by 0.8°C mostly due to temperature anomaly observed in March. There was only a minor change of autumn temperature (0.4°C) [3].

Fig.1.2. Anomalies of average (a), minimum (b) and maximum (c) air temperatures per seasons and year in 1991-2013 with respect to the 1961–1990 reference period [3]

Rise of the average annual and monthly air temperatures was determined by the increase of minimum and maximum temperatures throughout the whole year [3]. Also, as seen from Fig.1.2, a greater growth of minimum temperature is observed during a cold period (by 1.2°C in winter), while a growth of maximum temperature is evident for a warm period (by 1.5°C in summer). The average maximum temperature in spring increased by 0.9°C, while the minimum ones by 0.5°C. Minimum and maximum air temperatures in autumn have changed much less [3].

The change of temperature regime in Ukraine features regional aspects. The common pattern of the annual air temperature change in Ukraine in 1991-2013 with respect to the reference period is a growth in the magnitude of temperature anomalies moving from the south to the north and northeast [3]. Rising of annual air temperatures in the country's northeast was significantly greater than averaged over the whole country and made 1.2-1.4°C, while the magnitude of such changes was half as much (0.6°C) in Ukraine's south and in the Carpathian region. Annual air temperature at the South Coast of the Crimea changed insignificantly [3] (Fig.1.3).

Change in the isotherm positions reflects the spatial features of temperature regime change. Thus, the annual isotherms of 6°C and 7°C passed through the northeastern part of Ukraine in 1961-1990, isotherm of 8°C was located in the central regions of the country, and 9°C - in the southern regions. In 1991-2013, each isotherm shifted by 1°C almost throughout the territory of Ukraine [3], but the greatest changes are observed in the far northeast, where the isotherms of 6°C and 7°C are no longer presented, the isotherm of 8°C moved 300-400km northwards being passed through the northern regions of the country, the isotherm of 8°C instead of 7°C emerged in the west, and the isotherms of 9°C and 10°C instead of 8°C and 9°C appeared in the south (Fig.1.3).

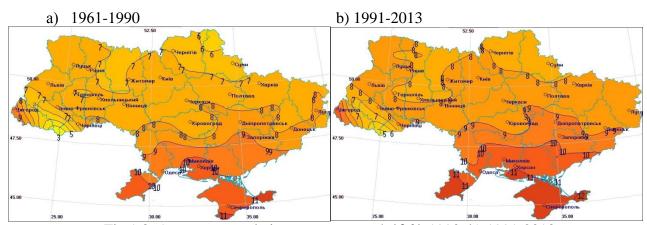


Fig.1.3. Average annual air temperatures: a) 1961-1990; b) 1991-2013

The seasonal changes of temperature regime in Ukraine also demonstrate regional variations. Winters in the second half of the 20^{th} through early 21^{st} century became warmer over the whole territory of Ukraine (Fig.1.4). The average winter air temperature increased by more than 1° C in 1991-

2013 compared to 1961-1990 over a significant part of country's territory [3]. In the north of the country, this growth exceeded 1.4°C, and positive temperature anomalies amounted to 1.6°C and above in the northern Sumy and Chernihiv oblasts. In the Autonomous Republic of Crimea, winter temperature increased by 0.2-0.6°C. Rising of average winter air temperature was caused mainly by the significant growth of minimum temperature. Positive anomalies of the average maximum temperature are also observed in the whole territory of the country in winter, but they are significantly lower than those of the minimum temperature.

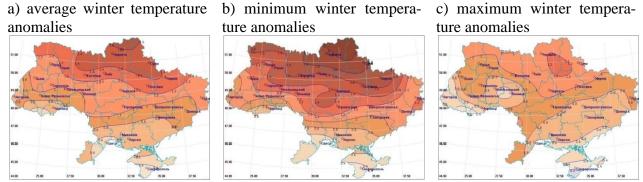


Fig. 1.4. Anomalies (°C) of average, minimum and maximum winter air temperatures in 1991-2013 with respect to the 1961–1990 reference period

Spring season became warmer in 1991-2013 compared to 1961-1990 almost over the whole territory of Ukraine with the exception of the southernmost parts of the Crimea [3]. The highest growth of average spring air temperatures (1.0°C and above) is observed in the far northeast of the country and in the Zhytomyr region (Fig.1.5). Some lowering of temperatures is observed in the Crimea, especially in the south of the peninsula. The average minimum air temperature in spring increased almost over the whole territory of the country, except the Luhansk oblast. Two regions stand apart, viz., the Volhynian-Podolian Upland and the left bank of the Dnipro River, where those changes are the most significant and make 0.6-0.8°C and above. The average maximum spring temperatures increased in the whole territory of the country in 1991-2013. The most significant changes are observed in the north, west, and southwest of the country amounting to 1.0-1.2°C and above [3].

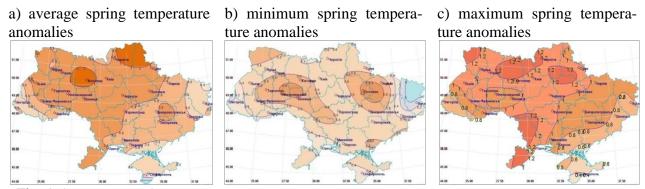


Fig. 1.5. Anomalies (°C) of average, minimum and maximum spring air temperatures in 1991-2013 with respect to the 1961–1990 reference period

Summers were much hotter in Ukraine compared to reference period in the second half of the 20th through early 21st century (Fig.1.6). A significant rise in the average summer air temperatures is observed ranging from 0.8-1.0°C in the east of the country to 1.4°C and above in the Transcarpathian region, in the Odesa oblast, and the South Coast of the Crimea [3]. Rise of the maximum summer air temperatures is significantly greater and intensifying from the east to the west and southwest of the country from 1.2-1.4°C to 1.6-1.8°C and above. The minimum summer air temperatures were also rising over the whole territory of the country. The anomalies of the average summer minimum temperatures were growing from the north and northeast to the south and southwest from 0.4-0.8°C to 1.2°C and above in 1991-2013 (Fig.1.6).

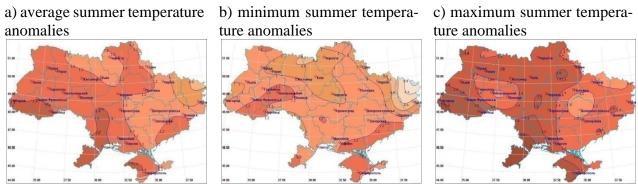


Fig. 1.6. Anomalies (°C) of average, minimum and maximum summer air temperatures in 1991-2013 with respect to the 1961–1990 reference period

Autumn temperatures also increased in Ukraine in 1991-2013 compared to the reference period, however, those changes are minor and their maximum values do not exceed 0.5°C [3]. Such changes are observed in the northeastern, central, eastern, and southern regions of Ukraine. Changes of the minimum temperature are inhomogeneous over the territory with the maximum values of positive anomalies reaching 0.6°C and above in the Volhynian-Podolian Upland and the northern part of the Volynska oblast, left bank of the Dnipro River, and north coast of the Sea of Azov [3]. The average minimum air temperatures in autumn changed marginally or even decreased in some areas in the northwest and far east of the country. Changes in the average maximum autumn temperatures were negligible in recent decades [3] (Fig.1.7).

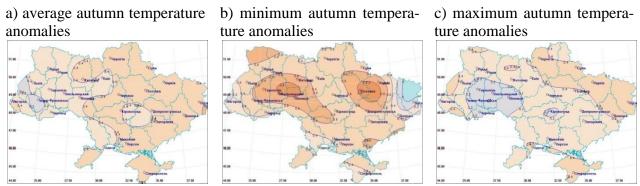


Fig. 1.7. Anomalies (°C) of average, minimum and maximum autumn air temperatures in 1991-2013 with respect to the 1961–1990 reference period

The trend is also observed in Ukraine towards increasing the duration of a warm period when average daily temperatures exceed 0°C [8]. In the Southern Steppe, in the Crimea and Subcarpathia, the warm period has become nearly two weeks longer (12 days) compared to the reference period. Moving further north, the period duration is growing. These changes already amount to 15-18 days in the Forest Steppe zone, and 22-24 days in the western and eastern Polissia. The greatest changes were observed in the central Polissia, where the warm period duration amounted to 278 days at the beginning of the 21st century, which is 40 days longer than the baseline long-time average value. Significant changes in the duration of the warm period were due to its earlier start in spring (by 13-19 days) and later end in all regions of Ukraine [8, 15].

Significant rising of air temperature in the warm period has led to an increase in the number of days with mean daily air temperatures above 15°C and, consequently, to an extended duration of the recreation period. A trend of increasing the frequency and duration of periods with high air temperatures (above 25, 30, 35°C – heat waves) is also observed, that significantly influences the human health and livelihood in Ukraine [4, 8, 15].

Rising of air temperatures in the warm period is not only observed near the ground, but also in the lower troposphere and leads to an increased convection intensity, and, consequently, to increased frequency and intensity of convective weather phenomena, such as thunderstorms, heavy rainfall, hail, squalls, and whirlwinds [1, 2, 6, 13, 15, 19]. These phenomena are sometimes recorded

in the months and seasons, when they did not occur before, and extend to the territories, where they have never been observed.

Due to rising of both the minimum and maximum air temperatures in the cold period, the number of days with subzero temperatures, freezing cold days with minimum temperatures dropping below -10, -20, -25°C, as well as the duration of extremely cold periods have decreased [17]. Rising of air temperatures in the cold period has significantly impacted on the frequency and intensity of extreme weather events and natural disasters of the cold period, such as shower snowfall, sleet, glaze and rime deposits. A trend towards their increase is observed in many regions of Ukraine [2, 6, 13-15, 19].

In the recent decades, the average and maximum wind speed is lowering that leads to decreasing the frequency of such related hazardous weather phenomena as blizzards and dust storms [2, 6, 13, 15, 19]. Reduction of wind speed accompanied by rise of air temperatures results in reduction of cold discomfort in winter and reduced severity of winters. At the beginning of the 21st century, winters have changed from the "moderately severe" to "lightly severe" category over the significant part of the Ukrainian territory.

In contrast to air temperatures, the change in annual precipitation sums was negligible in Ukraine (3-5%). The variations of annual precipitation in the recent period were within the climatic normal variability, but the amplitude of inter-annual variations decreased [4-6, 8, 13, 15, 19]. Notwithstanding the insignificant changes in the annual precipitation sums, their seasonal and monthly values have been redistributed. The greatest changes were observed in autumn, when a significant increase in the amount of precipitation was recorded (about 20%) with maximum in October. The winter precipitation decreased slightly. At the same time a number and intensity of hazardous and heavy precipitation events increased, especially in the warm period [2, 5, 6, 8, 13, 19].

Rising of air temperatures and non-uniform distribution of precipitation events, which are characterized as shower and local in the warm period and fail to ensure efficient accumulation of moisture in the soil, have led to an increased frequency and intensity of drought phenomena. Combined with other anthropogenic factors, this could result in growth of the area of risky farming and even desertification of certain areas in the southern regions of Ukraine. In the last 20 years, the incidence of droughts has nearly doubled. It is observed a dangerous trend towards increasing a occurrence of droughty conditions even within the zone of sufficient moistening, which covers the Polissia and northern part of the Forest Steppe [8,12,15,18].

The change of the temperature and precipitation regimes impacts on the physiological processes, which determine the life of the forest flora and fauna, leads to respective changes in the biota, which is a sensitive indicator of environmental conditions [6]. Phenological changes have been recorded in Ukraine, such as earlier flowering and shedding of leaves, and repeat development. The geographic ranges of plant species are changing significantly, and invasive species appear and spread rapidly. The latter include numerous hazardous weeds, allergens, agents of disease [6].

Rising of air temperatures accompanied by deficit of moisture has an adverse effect on woodlands, especially on growth of trees, increased incidence of diseases, and lead to drying of forests. The hazard of wild fires is growing. This hazard is exacerbated by increased thunderstorm activity [3,4,7,16].

The temperature regime change has a significant impact on energy supplies for human life and activities of the population. A shortening of the cold period and significant rising of winter air temperature results in a reduced duration of a heating season and lower demand for the thermal energy generation [8, 15]. At the same time, rising of air temperatures in the warm period leads to increased electricity consumption for cooling and air conditioning.

The regional effects of climate change are of special interest, which currently goes beyond the scope of scientific issues alone. Since different types of ecosystem response to the transformation of planetary processes, including those caused by anthropogenic effect, are recorded in different areas, there arises an acute need to identify their key trends and regularities. Such analysis is necessary for increasing the accuracy and reliability of forecasting all possible regional climate changes to address comprehensive applied tasks and implement local programs of adaptation to the climate change impact on climate dependent economy sectors.

To carry out a comprehensive analysis of possible regional differences of climatic conditions

in Ukraine in the 21st century, the ensembles of ten regional climate models (RCMs) for air temperature and of four RCMs for precipitation sums from the European project FP-6 ENSEMBLES for the scenario of greenhouse gas emissions IPCC SRES A1B have been elaborated. Absolute values for the forecast periods have been adjusted based on the simulated changes and the data of the gridded dataset E-Obs for the recent period of 1991-2010, employing the additive and multiplicative methods. The RCM ensembles have been developed by researchers of the Ukrainian Hydrometeorological Institute and identified as being optimal for the analysis and forecasting of the regional features of respective climate characteristics over the territory of Ukraine [21]. The analysis under climate projections has been conducted based on all nodes in the model grid of 25x25km separately and averaging over five selected regions and the country's territory in the whole. Individual regions West, North, East, South, and Center have been identified based on similarity of physiographic conditions and accounting for the country's administrative and territorial structure. Such zoning will contribute to subsequent use of research findings for strategic planning of socioeconomic development of individual regions, as well as for development and implementation of the climate change mitigation and adaptation actions.

Three 20-year forecast periods have been examined: 2011-2030, 2031-2050, and 2081-2100. The analysis of projections of average air temperatures has shown (Fig.1.8) that in the nearest period of 2011-2030, the average temperature over the territory of Ukraine will rise by 0.4-0.5°C, ranging from 0.1°C in the western region in spring and up to 0.8°C in the northeast in summer. In the next 20-year period (2031-2050), the average temperature for the territory will increased by 1.2-1.5°C against the present climate, ranging from 0.7°C in the west in spring and to 1.9°C in the northeast in winter. By the end of the century (2081-2100), the average temperature for the territory will rise by 2.9-3.3°C, with the minimum value of 2.1°C in the western region in spring, and the maximum temperature increase by 4.3°C in the southern region and in the south of the eastern region in summer. The smallest changes are projected for the western region in all seasons, as well as for all regions in spring for the whole century [9, 10, 11].

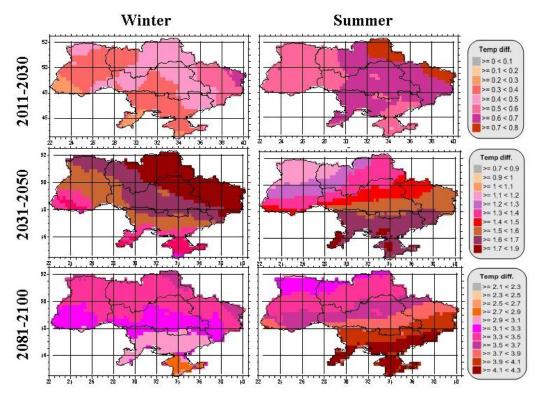


Fig. 1.8. Changes of air temperatures in winter and summer during the three forecast periods (2011-2030, 2031-2050, and 2081-2100) against the present period of 1991-2010 for ensemble with ten RCMs

The main trends of the projected climate conditions in Ukraine in the 21st century are as follows. There will be no winter climatic season in the far west and southern region by the end of the

century, as average temperatures in winter months above 0°C have been obtained. At the same time, average monthly summer temperatures above 25°C are projected for the central, eastern, and southern regions by the end of this century. As is apparent from the obtained values, the change of climatic conditions will significantly impact the duration of climatic seasons in Ukraine in the future.

As regards the moisture regime, both increase and decrease of average monthly and seasonal precipitation is projected for the territory in all the reviewed periods. In the nearest period (until 2030), precipitation will be decreasing by up to 20% in the central, northern, and southern regions in summer and autumn, and will be increasing by up to 42% in the west, north, and east in winter and spring. By the middle of the century (2031-2050), precipitation will be decreasing by up to 30% in the central, southern, and eastern regions in summer, and increasing by up to 50% in the western, northern, and eastern regions and in the eastern part of the southern region in winter and spring. By the end of the century (2081-2100), precipitation will be decreasing by up to 40% in the southern, central, and eastern regions in summer and will be increasing by more than 40% and up to 50% in the west and north in the winter and spring seasons. Therefore, the maximum increase of average monthly precipitation is expected in winter and spring in the country's west and north in all the forecast periods. A decrease in the amount of precipitation is projected in the summer and autumn seasons in the central, southern, and eastern regions in all future periods.

1.1.2 Background information on greenhouse gas inventories

Ukraine signed the UNFCCC in June 1992 year, and became Annex I Party of the UNFCCC in August 1997 year.

According to Decision 3/CP.5 adopted at the 5th session of the UNFCCC Conference of Parties, each of Annex I Parties must submit its annual National Inventory Report, which includes detailed and complete information for the entire time series in accordance with the guidelines of the UNFCCC.

The National Inventory Report was prepared in accordance with the revised "Guidelines for the preparation of national communications by Parties included in Annex I to the Convention, Part I: UNFCCC reporting guidelines on annual greenhouse gas inventories" (FCCC/CP/2013/10/Add.3), taking into account the structure of the report proposed in the appendix to Annex I of Decision 24/CP.19 ("An outline and general structure of the national inventory report"). This report includes the additional information specified in paragraph 1, Article 7 of the Kyoto Protocol. The preparation was carried out with in line with the requirements of Decision 6/CMP.9 on application of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories and the 2013 Revised Supplementary Methods and Good Practice Guidance Arising from the Kyoto Protocol.

GHG emission assessment in Ukraine was carried out under general methodological guidance of the 2006 IPCC Guidelines.

Submission to the UNFCCC Secretariat contains also GHG inventory results in the common reporting format (CRF), as well as CRF tables for reporting information on activities in accordance with paragraphs 3 and 4, Article 3 of the Kyoto Protocol, in accordance with Decision 14/CP.11 and 2/CMP.8.

The inventory covers emissions of seven GHGs: carbon dioxide (CO_2), methane (CH_4), nitrous oxide (N_2O), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride (SF_6), nitrogen trifluoride (NF_3).

There is data on precursor emissions also - carbon monoxide (CO), nitrogen oxides (NO $_x$), and non-methane volatile organic compounds (NMVOCs), as well as data about emissions of sulfur dioxide (SO $_2$).

To bring emissions of various gases to the carbon dioxide equivalent, the inventory used IPCC data on values of the global warming potentials of GHGs, stated in AR4 and contained in Annex III of the revised "UNFCCC Annex I National Inventory Reporting Guidelines, part I: UNFCCC guidelines for reporting annual greenhouse gas inventories", adopted at the nineteenth session of the Conference of Parties.

1.1.3 Background information on information required under Article 7, paragraph 1 of the Kyoto Protocol

Ukraine as UNFCCC Annex I Party, as well as a Party to the Kyoto Protocol submits supplementary information in accordance with the requirements of Article 7.1 of the Kyoto Protocol, as defined in Decision 15/CMP.1. This supplementary information includes data on:

- 1) amounts of emissions and removals by forest ecosystem pools as a result of LULUCF activities, under paragraphs 3 and 4, Article 3 of the Kyoto Protocol, as specified in section I.E in the annex to Decision 15/CMP.1 (Chapter 11);
- 2) on holding accounts ("emission reduction units" ERUs, or "assigned amount units" AAUs, or "removal units" RMUs), as specified in section I.E of the annex to Decision 15/CMP.1 (Chapter 12);
- 3) on changes in the national system, in accordance with Article 5.1 of the Kyoto Protocol and as specified in section I.F of the annex to Decision 15/CMP.1 (Chapter 13);
- 4) on changes in the national registry, as specified in section I.G of the annex to Decision 15/CMP.1 (Chapter 14);
- 5) on minimization of adverse impacts, in accordance with Article 3.14 of the Kyoto Protocol and as specified in section I.H of the annex to Decision 15/CMP.1 (Chapter 15).

1.2 Institutional arrangements for National Inventory Report preparation, including legal and procedural arrangements for inventory planning, preparation, and management

1.2.1 Overview of institutional, legal, and procedural aspects of preparing the National Inventory Report, as well as supplementary information required pursuant to Article 7.1 of the Kyoto Protocol

In order to ensure regulatory and organizational support for GHG inventory, the President Decree was signed, and several Resolutions of the Cabinet of Ministers of Ukraine were adopted. According to Decree of the President of Ukraine of September 12, 2005 of No. 1239/2005 the MENR is authorized as the coordinator of activities for the implementation of Ukraine's commitments under the UNFCCC and Kyoto Protocol to it. To execute the Decree, the Cabinet of Ministers of Ukraine adopted two Resolutions.

Resolution of the Cabinet of Ministers of Ukraine of April 21, 2006 of No. 554 established procedures for the national anthropogenic GHG emissions and removals not controlled by Montreal Protocol evaluation system, and defined its objectives and functions. Later this Resolution of the Cabinet of Ministers of Ukraine was amended (in line with the new Resolution of the Cabinet of Ministers of Ukraine of July 16, 2012 No. 630). The changes mainly concerned the ways of the national system's functioning—additional information (data) request procedure for estimation of anthropogenic GHG emissions and removals, indicating the limited timing for data transfer (provision) by providers (in this case, these are public authorities and institutions, plants, etc.)—within 30 days from the date of receipt of the request.

In turn by the Order of the MENR of January 31, 2017 No. 35 «On approval of the Structure of the Ministry of Ecology and Natural Resources of Ukraine», amendments were introduced that influenced the structure of the central apparatus of the MENR, namely the Department of Climate Change and Ozone Layer Protection was set up.

According to Resolution of the Cabinet of Ministers of Ukraine of September 02, 2019 No. 829 «Some Issues of Optimization of the System of Central Executive Government Bodies», the decision was made to rename of the MENR to the Ministry of Energy and Environmental Protection of Ukraine (hereinafter – MEEP).

In turn by the Order of the MEEP of February 11, 2020 No. 83 «On approval of the Structure and number of independent structural units of the MEEP», amendments were introduced that influenced the structure of the central apparatus of the MEEP, namely the Directorate of Climate Change and Ozone Layer Protection was set up.

For more details on these functions, see the information in the Generalized Scheme of the National GHG Inventory System in Ukraine (Fig. 1.9).

1.2.2 Planning, preparation, and management of the process of greenhouse gas inventory

One of foundational documents within the system of inventory process planning, including preparation of the NIR with its further submission and support during review by the UNFCCC Secretariat, as well final archiving, is Order of the Ministry of Environmental Protection of May 31, 2007 of No. 268 About approving the Work Plan for Annual Preparation and Maintenance of the National Inventory of Greenhouse Gas Emissions and Removals and the Work Plan to Maintain and Control the Quality of Activity Data and Calculations for the Annual Preparation of the National Inventory Report of Emissions and Removals of Greenhouse Gases.

Untill September 09, 2014, the SEIA of Ukraine served as the only national body, that was responsible for preparation of the NIR and its submission to the Secretariat of the UNFCCC. In line with the functions delegated to it, the SEIA of Ukraine carried out general planning of the inventory, as provided for in Resolution 19/CMP.1. In particular, it defined and allocated specific responsibilities in the inventory development process, including duties directly associated with the choice of methodologies, collection of primary data, data on activities of ministries, agencies, and other entities, processing and archiving of data, as well as Quality Assurance and Quality Control procedures. As part of the planning, the SEIA of Ukraine considered the ways to improve the quality of functioning of the National System for estimating GHG emissions and removals and of preparing the NIR. For that operational and medium-term planning were applied.

According to Resolution of the Cabinet of Ministers of Ukraine of September 10, 2014 No. 442 «On Optimizations of Central Executive Authorities», the decision was made on elimination of the SEIA of Ukraine and delegating its functions to the MENR. Consequently after amendments to the Ministry's apparatus by Order of the MENR of January 31, 2017 No. 35 the Department of Climate Change and Ozone Layer Protection was formed. The Department of climate policy functioned before October 31, 2016 in accordance with the order of the mayor of May 12, 2015 № 147.

According to Resolution of the Cabinet of Ministers of Ukraine of September 02, 2019 No. 829 «Some Issues of Optimization of the System of Central Executive Government Bodies», the decision was made to rename of the MENR to the MEEP.

Consequently after amendments to the Ministry's apparatus by Order of the MEEP of February 11, 2020 No. 83 the Directorate of Climate Change and Ozone Layer Protection was formed.

Creation, development, and functioning of the national system of inventory of anthropogenic GHG emissions and removals are governed by the applicable Ukrainian legislation. The National Inventory System includes:

- > State and private organizations and enterprises, as well as private entrepreneurs and individuals who being primary subjects of holding or control of GHG sources and sinks shall submit activity data for GHG inventory, as well results of its production activities by type of products;
- ➤ Public and private corporations being primary subjects of holding or control of GHG sources and sinks, or including primary subjects of primary subjects of holding or control of GHG sources and sinks, which submit activity data for GHG inventory within the corporation by individual GHG sources or sinks and their categories, as well as results of its production activities by type of products;
- ➤ Industrial, regional, and local governmental agencies, which in line with the acting regulatory framework of Ukraine and within their authority shall collect statistical information and submit to the request of the MEEP respective aggregated activity data for GHG inventory in accordance with the forms agreed with the Directorate of Climate Change and Ozone Layer Protection of MEEP;

- ➤ Research institutions involved into collection and preliminary processing of data on GHG emissions and removals or into development of calculation methods;
 - independent experts and organizations involved in public discussion of the inventories;
 - > civic and non-governmental organizations involved in public discussion of inventories;
- ➤ the Budget Institution «National Center for GHG Emission Inventory», which in cooperation with other actors in the systems, conducts inventory of anthropogenic GHG emissions by sources and removals by sinks at the national level;
- ➤ Inter-Agency Commission on implementation of the UNFCCC, which reviews and approves reporting documents submitted to the UNFCCC Secretariat;
- ➤ MEEP is the main body in the system of central executive authorities regarding development and enforcement of the national policy in the field of environmental protection, provides legal regulation within this area, reviews and approves reporting documents submitted to the UNFCCC Secretariat. Within its assigned tasks, the MEEP provides is responsible for inventory of anthropogenic GHG emissions by sources and removals by sinks at the national level in order to prepare the NIR, as well as approval and submission to the UNFCCC Secretariat of the NIR. As a structural unit of the MEEP, the Directorate of Climate Change and Ozone Layer Protection is still performing its duties.

Funding of preparation of the NIR is provided from the state budget of Ukraine.

Preliminary version of the National Inventory Report and the CRF-tables are published by the MEEP on its official website to inform public organizations and all stakeholders so that they could submit their comments and suggestions for improvement. Simultaneously with uploading of the document on the website for free access, requests are sent to independent experts (senior specialists) in the field of GHG inventory in order to obtain expert judgements on particular categories, as one of the components of QA procedures. Stakeholder organizations and experts can submit their comments and suggestions to the draft version of the National Inventory Report within 30 days, which is followed by their presentation for public hearing (discussion). The final version of the NIR – revised and updated with regard to received recommendations – is submitted for consideration by the Inter-Agency Commission to ensure implementation of the UNFCCC in accordance with Resolution of the Cabinet of Ministers of Ukraine of April 14, 1999 of No. 583 with amendments (Resolution of the Cabinet of Ministers of December 04, 2019 of No. 1065). As a result of consideration by the Inter-Agency Commission, the MEEP submits the official version of the NIR and CRF tables to the UNFCCC Secretariat.

A generalized diagram of the National Inventory System in Ukraine is shown below in Fig. 1.9.

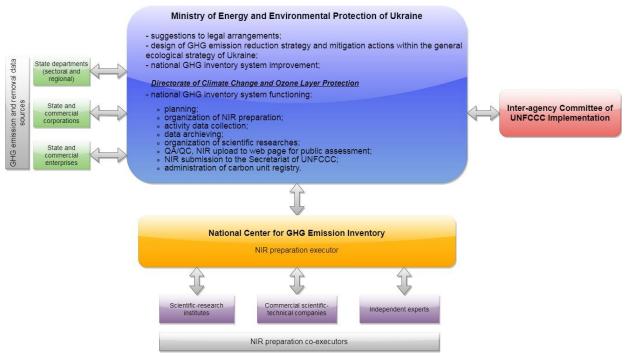


Fig. 1.9 Generalized diagram of the National Inventory System in Ukraine

Capacity building and knowledge exchange

In the framework of the project Clima East CEEF2015-041-UA "Capacity building of the national GHG inventory system in terms of the development of methodological recommendations for determining national GHG emission factors from the use of motor fuels in the transport sector" performed by SE «GosavtotransNIIproekt», a science-based platform was developed for the transition to higher levels of GHG emissions calculation in category 1.A.3.b Road Transportation, taking into account national specific features of fuel use by mobile sources is under formation (ERT Note, «Report on the individual review of the inventory submission of Ukraine submitted in 2015", paragraph E.13, p. 8).

Scientific research "Verification of motor fuel consumption by road transport within the context of annual National Inventory Report preparation" was accomplished by the Institute of Industrial Ecology. The work was performed on the contract between the Institute of Industrial Ecology and Embassy of Denmark In Ukraine acting on behalf of the Danish Energy Agency. The research performed calculation of physical and chemical properties of fuels (gasoline, diesel fuel, LPG, LNG). Fuel consumption by road and off-road transport was also estimated, what has allowed to perform GHG emission calculation by Tier 3 method for entire time series for years 1990-2016.

Scientific research "Development of Data Base on Energy Statistics of Ukraine for 1990-2016 and Improvement the Transparency of National Reporting on GHG Emissions in Energy Sector" was accomplished by the Non-governmental organization "Bureau of integrated analysis and forecasting". The work was performed on the contract between the Non-governmental organization "Bureau of integrated analysis and forecasting" and Royal Danish Embassy in Ukraine on behalf of Ministry of Energy, Utilities and Climate of The Danish Energy Agency. The research developed a Data Base on Energy Statistics of Ukraine for 1990-2016 and Improvement the Transparency of National Reporting on GHG Emissions in Energy Sector.

Within the framework of expert facility project Clima East, supported by EU, two projects were accomplished in LULUCF sector: "Improving reporting system for carbon storage and emissions accounting from harvested wood products (HWP) in the National GHG inventory" and "Development of the GHG emissions inventory in the forestry sector in order to improve national reporting of Ukraine according to the requirements of the UNFCCC and the Kyoto Protocol".

The first report aimed in developing recommendations for GHG inventory methodology on HWP best suited for Ukrainian conditions. Also recommendations were developed to accommodate national statistics into methodology, as well as to the national statistics in order to be more consistent with the methodology.

The second report provided recent scientific approach towards Carbon stock change estimations, developed by International Institute for Applied System Analysis, Austria. The experts made pilot calculations based on forest inventory of 2011 year. Moreover, recommendations were developed on possible alternative approaches of monitoring of GHG emissions and removals in forests, as well as to forest policy makers with regard to future forest inventories.

In order to further improve the National system of anthropogenic GHG emission and removals estimations and according to the Request on the submission of proposals to the prospective plans for 2020-2022 from the MEEP, in 2019 the experts of BI «NCI» updated a list of necessary research projects (13 items).

During 2018-2019, BI "NCI" experts took part in meetings of the subsidiary bodies and workshops of the Secretariat of the UNFCCC, as well as other conferences and forums, in particular:

- The Koronivia dialogue, Rome, March 07-09, 2018;
- 16th meeting of Technology Executive Committee, Bonn, March 13-16, 2018;
- 48th sessions of Subsidiary Bodies of UNFCCC, Bonn, April 30 May 10, 2018;
- The Parliament hearings on the topic "Implementation of international documents regarding mitigation of anthropogenic climate change in Ukraine", Kyiv, July 04, 2018;
- The Training of Trainers GHG Verification and Accredetation, Kyiv, July 24-26 and September 11-12, 2018;
- The Second part of 48th sessions of Subsidiary Bodies of UNFCCC, Bangkok, September 04-09, 2018;
 - The Training on Verification for compleance with ISO 14065, September 13, 2018;

- The Review of GHG inventory under implementation of UNFCCC and KP submitted in 2018 by Ireland, Liechtenstein and Latvia, Bonn, September 17-22, 2018;
 - 17th meeting of Technology Executive Committee, Bonn, September 25-28, 2018;
- The Support to the Government of Ukraine on updating its Nationally Determined Contribution (NDC), Kyiv, November 21, 2018;
- 24th session of COP, 14th session of CMP, third part of first session of CMA, Katowice,
 December 02-14, 2018;
- Training Seminar "Mechanisms for Determining and Establishing a Maximum Greenhouse Gas Emission (CAP) for Emission Trading Scheme (ETS)", Kyiv, February 28, 2019;
 - Ukraine Carbon Pricing Modelling: Interim Meeting, Kyiv, March 06, 2019;
- Eighteenth Meeting of the Technology Executive Committee (TEC) of UNFCCC, Copenhagen, Denmark, March 23-28, 2019;
- Training Seminar "Determination of benchmarks for allocation of greenhouse gas emission allowances in Ukraine", Kyiv, May 14, 16-17, 2019;
- Training on energy statistics "Joint IEAEU4Energy/UNECE/UNESCAP", Dushanbe, Tajikistan, May 19-23, 2019;
- Fiftieth Sessions of Subsidiary Bodies (SB 50) of UNFCCC, Bonn, Germany, June 17-27, 2019;
- Presentation of Results of First Stage of Project "Technology Needs Assessment", Kyiv, August 28, 2019;
- Review of GHG Inventory Submissions submitted by Australia, Cyprus and Hungary in 2019, Bonn, Germany, September 2-7, 2019;
- Nineteenth Meeting of the Technology Executive Committee (TEC) of UNFCCC, Bonn,
 Germany, September 16-19, 2019;
- Presidium Meeting of the National Academy of Agrarian Sciences of Ukraine, Kyiv, September 25, 2019;
- Meeting of Working Group with Regard to Adaptation of Forestry to Climate Change,
 Kyiv, September 26, 2019;
- XIII International Scientific Conference "Monitoring of Geological Processes and Ecological Condition of the Environment", Kyiv, November 12-15, 2019;
- Round-table "Climate change adaptation in the agricultural sector: from strategy to action", Kyiv, November 29, 2019;
- Twenty Fifth Conference of Parties to the UNFCCC, Madrid, Spain, December 2-13, 2019.

1.2.3 Quality assurance, quality control and planning of inspections. Details of the QA/QC plan

QA/QC in the national inventory system is based on planning, preparation, quality control and subsequent improvements, and is an integral part of the inventory process.

For this purpose, regular checks of transparency, consistency, comparability, completeness of data, calculations, measures to identify and eliminate errors, as well as to store inventory information are conducted (performed), which represent the QA/QC system.

The system complies with Tier 1 procedures described in Chapter 6, «Quality Assurance/Quality Control and Verification» of 2006 IPCC Guidelines, and expanded with a number of QA/QC procedures specially designed taking into account sector specifics in accordance with Tier 2.

For more detailed information on implementation of QC procedures for individual categories, see the relevant sections of the NIR.

1.2.3.1 QA/QC procedures

In the framework of the National Inventory System, throughout the NIR development cycle, including its final submission to the UNFCCC Secretariat, implementation of QA/QC procedures is an important component, compliance with which is provided and clearly defined by the internal documents – the general plan of measures for the development of NIR and additional plan for QA/QC. More specified information can be found in Chapter 1.3.2 «Planning and control of activities on greenhouse gas inventory and report development».

Organization of this work is regulated in accordance with the regulations, guidelines, requirements, and procedures outlined in the 2006 IPCC Guidelines and consideration of recommendations provided by the ERT, authorized by the Secretariat of UNFCCC.

It should also be noted that in Ukraine there are further efforts being made to implement requirements of International Standards (IS) ISO 9000 into the National Inventory System.

Constantly in the action plan for the NIR preparation on the stages of QC special attention is given to errors likelihood minimization in the calculations, correspondence of data in the NIR and CRF tables in all the sectors. In particular, enhancements have been considered and introduced into QC reporting forms.

The QA/QC process at all stages of the work performed with documentation and final archiving of all information, including results of support of NIR through all stages of the ERT review. General view of the QA/QC system for the NIR is presented in Fig. 1.10.

Fig. 1.10. The quality assurance/control system of the NIR

The QA/QC system of Ukraine includes the following basic components:

- QA/QC technology, which determines the QA/QC methods and QA/QC supporting tools.
- **Resourcing** experts, involved in implementation of the QA/QC plan with the QA/QC technique available in accordance with distribution of the roles, described in «Roles and Responsibilities».
- QA/QC plan, which is maintained by the GHG inventory QA/QC manager, determines the specific quality objectives and required activities to ensure QA/QC. The plan sets out quality assurance and control activities, responsibilities, and timing for performance of the necessary QA/QC activities.
- QA/QC process (implementation), which includes physical conducting of QA/QC based on the available technique with the available resources in accordance with the plan for all the phases

of data collection, compilation, public discussion, independent review, and submission of annual emission assessment cycle reporting.

• **Description of the QA/QC process** – documenting and archiving, which provide information about the process at a certain detailing level delivery for further use.

The Scope of the QA/QC plan

The QA/QC plan covers all activities at all stages of QA/QC that are integral parts of the process of development and review support of the National Inventory Report.

Quality objectives

The key objective of the QA/QC plan is to ensure that estimates of GHG emissions and removals are:

- > **Transparent** regarding data sources, used to perform the estimates, calculation methods applied, as well as documentation of QA/QC activity implementation process;
- ➤ **Complete,** i.e. they will include all possible emissions/removals, socio-economic indicators and policies, as well as activities for all the required years, gas categories, and scenarios;
- ➤ **Consistent** taking into account emission trends for the entire time series and with regard to internal consistency of emission data aggregation;
- ➤ **Comparable** with other emission estimates provided through use of new reporting templates, correct level of IPCC categories etc.;
 - Accurate in application of methods and use of the appropriate IPCC recommendations.

Roles and responsibilities

In the process of implementation of the various QA/QC activities, specific responsibilities are assigned to the various roles in the process of emission assessment:

- ➤ QA/QC manager supports the QA/QC plan, establishes quality objectives, coordinates QA/QC activities, manages data supplies from providers, sectoral experts, and independent experts, supports cross-cutting QA/QC activities;
- ➤ Sectoral experts conduct sector-specific QC activities and report to the QA/QC manager. Sectoral experts also must cooperate with data providers and other stakeholders to review estimations and conduct QA/QC for data provided;
- > Outsourced expert consultants are the organizations and individuals who perform QA/QC consultancy activities;
- > External expert reviewers are the organizations and individuals who perform peer reviews and provide feedbacks on NIR by specific sectors.

1.2.3.2 Quality control and documentation

QC of the NIR takes place throughout the data collection, compilation, and reporting cycle. The data check system used in the NIR is illustrated in Figure 1.11.

Figure 1.11. The general scheme of the quality assurance process

Checks and documentations are supported by data storage and processing designed specifically for NIR compilation, which include:

- External information database, which is part of the data repository, data storage. It contains information about suppliers of activity data, detailed specification requirements for data, including templates and data provision procedure, as well as incoming activity data, provided by suppliers for the NIR to estimate emissions in the process of inventory compilation. All input and output information for each annual inventory report are stored in the relevant sections of the repository.
- ➤ Individual data processing and QC performance tools that are used to convert the majority of input data into the corresponding aggregated activity data and, using emission factors, to estimate emissions in Ukraine.

QC procedures may be general with possible broadening to procedures of particular categories. They include sector-specific checks (e.g. the energy/weight balance, country-specific emission factors).

Data processing tools are electronic spreadsheets that include the information necessary to perform QC procedures.

➤ The key information database is used to store all emission estimates for reporting, including the CRF format, responses to non-regulated questions, and description of review or recalculation procedures. This guarantees it that conversion of historical data can be easily traced and summarized in the reports. Most of the data are imported into the database directly from data processing tools (the spreadsheets described above). All the key data for each annual NIR are stored in the relevant sections of the repository.

Archiving. As part of inventory management, good practice recommends documenting and archiving all information required to prepare national GHG inventory estimates in accordance with requirements of the 2006 IPCC Guidelines, as well as timely provision of required information requested by the ERT.

At the end of each annual reporting cycle, all repository files, spreadsheets, regulatory and methodological documents, electronic data sources, notification records, paper data sources, output files representing all the calculations for complete time series «freezing» and archiving. Electronic data are stored on hard disks, for which backup is performed regularly. Paper information is archived in a shelved storage, while the repository stores an electronic record of all archived elements.

In general QC measures prescribed in the QA/QC plan are based on 2006 IPCC Guidelines (Chapter 6, «Quality Assurance/Quality Control and Verification», Tab. 6.1) and are described in Table 1.1.

Table 1.1 Types of quality control activities

	Type of control activity						
1.	Check whether assumptions and criteria for the selection of activity data, emission factors,						
1.	and other estimation parameters were documented						
2.	Check for errors in data input transition and references						
3.	Check the correctness of emissions and removals calculations						
4.	Check whether parameters and units are correctly recorded and that appropriate conversion						
4.	factors are used						
5.	Check the integrity of database files						
6.	Check for consistency in data between source categories						
7.	Track of inventory data correctness among processing steps						
8.	Check whether uncertainties in emissions and removals are estimated and calculated cor-						
0.	rectly						
9.	Conduct time series consistency check						
10.	Conduct completeness checks						
11.	Conduct trend checks						
12.	Conduct review of internal documentation and archiving						

The development of NIR is performed with checks according to the scheme of Fig. 1.12 with types of QC activities described in table 1.1.

Figure 1.12. Diagram of general development and QC processes

QC procedures were carried out during preparation of the NIR by its developers, involving, if necessary, experts from other organizations for consultancy and required additional information. Within the framework of QC the approved reporting forms were used in the form of reports, notices and electronic files (tables).

Sector experts have carried out the main part of QC procedures, particularly comprehensive checks of source data, emissions factors, calculations, completeness of documentation etc. The entity responsible for QA/QC inspected general trends, compliance with the methodologies used, etc.

Sectoral experts also carried out detailed checks for specific source categories (Tier 2), especially for the key ones, namely:

- 1) comparison of activity data, emission factors and volumes for the entire time series. Major changes were identified and analyzed (more than 5 %) in different data sources, the results using the current and simplified methods, etc.
- 2) comparison of the results of emission calculation obtained using different approaches (for example, comparison of calculations using the «top down» and «bottom up» approaches in the in the categories 1.A.3.a Domestic aviation, 1.D.1.a International aviation in the Energy sector);
 - 3) assessment of applicability of 2006 IPCC default factors to the national circumstances;
- 4) comparison of national emission factors and 2006 IPCC default factors and definition of the specific national conditions that result in discrepancies in the coefficients;
 - 5) comparison of the data with those of the previous year and time-series trends;
- 6) comparison of data from different sources, especially for the categories with high levels of uncertainty. A comparison was made with data from international or foreign sources in the absence of alternative data at the national level.

Improvements in quality control area

Planned improvements of the QC system are associated with implementation of MS ISO 9000.

Particular attention is given to activities aimed at improving the existing estimation and quality control techniques if discrepancies detected in after checks performed. Fig. 1.13 shows a diagram of the process of analyzing check findings, searching for causes of detected inconsistencies, found errors fixing and reviewing action plans, in particular related to the need to plan and implement corrections of control or calculation techniques, as well as other corrective and preventive actions (for example, checking calculation results in terms of MS ISO 9000 terminology).

In this diagram, the following aspects are considered:

- the methodology and results of the calculations are subject to check;
- check is performed using a specific method;
- found inconsistency requires further analysis it is possible that that is caused by defects of the check method;
- if existence of discrepancies in calculation results is confirmed, in addition to correction of the calculation results, a search for causes of the detected inconsistencies is initiated;
- causes of inconsistencies of calculation results can vary, for example, the calculation method used may be imperfect, negligence or lack of qualification of the executor. Inconsistency may also result from a combination of causes:
- in the case of proved detection of discrepancies, it makes sense to analyze whether these causes have not resulted in other, so far hidden, negative consequences;
- analysis results form the basis for development of the so-called corrective or preventive actions, which, if requiring substantial resources and time to implement them, may results in amendments to the action plan.

Methodologies of control operations must be compliant with methods of basic technological operations (data conversion, calculation, report generation), the results and the process of their preparation being subject to inspection for control operations.

The outcome of control operations is the conclusion on sufficient quality of the primary operation controlled or description of inconsistencies found between the audited operations and requirements placed upon them.

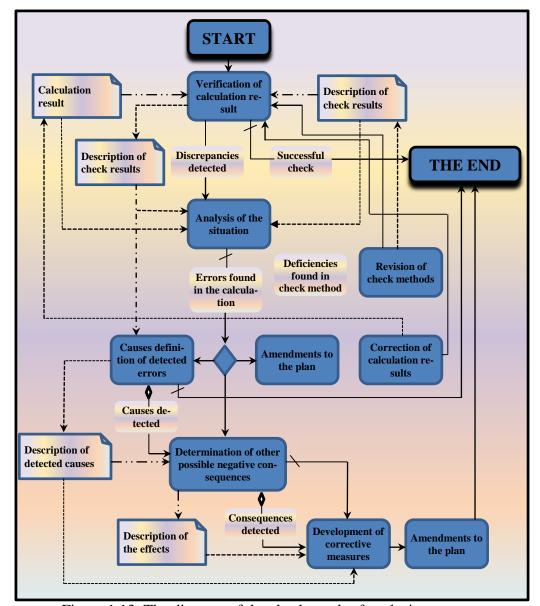


Figure 1.13. The diagram of the check result of analysis process

In case of detection of such discrepancies, the situation should be analyzed and make sure it is not due to possible drawbacks in the check methodology. If such drawbacks are observed, it is necessary to correct the defective control techniques and to repeat this control operation.

Emergence of inconsistencies may be random or non-random. The fact that appearance of inconsistencies may be non-coincidental determines the need of search and identification of their causes.

The identified reason that resulted in the specific inconsistencies found within this technological step may result in similar discrepancies in other similar technological operations, most often this is due to errors in method descriptions or to the tools of realization of the key technological operations that are performed repeatedly. This makes it necessary to conduct pre-emptive targeted search and elimination of such inconsistencies in the similar technological operations results of which have not yet been subject to checks, which may significantly increase effectiveness of the quality control system.

With consideration of abovementioned, within an advanced quality control technique, response to identified inconsistencies may include:

- 1) analytical work to search for causes of detected discrepancies and their possible further consequences;
- 2) development and implementation of measures to eliminate detected nonconformities and normalize the process of executing the activities, which in MS ISO 9000 are referred to corrective actions;

3) in the case of identifying possible potential inconsistencies, response to them should include development and implementation of appropriate measures, which in MS ISO 9000 are referred to preventive actions.

1.2.3.3 Quality assurance (validation, verification)

QA procedures provides an independent expert peer review of the level 1 or conducting more extensive independent expert review or audits as additional QA procedures corresponding to the level 2, within the available resources.

QA was carried out by the involvement of the central executive authorities, organizations, institutions and independent experts with the aim of obtaining review reports, expert opinions, feedback to the inventory as a whole and separate categories.

Among involved in the QA process executors (participants) should be highlighted:

- > Secretariat of the Cabinet of Ministers of Ukraine;
- ➤ Verkhovna Rada Committee for Environmental Policy, Environmental Management;
- ➤ National Security and Defense Council of Ukraine;
- ➤ Ministry for Development of Economy, Trade and Agriculture of Ukraine;
- ➤ Ministry of health of Ukraine;
- ➤ Ministry of Foreign Affairs of Ukraine;
- ➤ Ministry of Finance of Ukraine;
- ➤ Ministry of Infrastructure of Ukraine;
- ➤ Ministry of Education and Science of Ukraine;
- ➤ Ministry for Communities and Territories Development of Ukraine;
- > State Fiscal Service of Ukraine:
- > State Customs Service;
- ➤ State Service of Ukraine for Geodesy, Cartography and Cadastre (hereinafter StateGeo-Cadastre);
 - > State Statistics Service of Ukraine;
 - > State Agency on Energy Efficiency and Energy Saving of Ukraine;
 - > State Forest Resources Agency of Ukraine;
 - ➤ National Academy of Sciences of Ukraine (hereinafter NASU):
 - ➤ National Academy of Agrarian Sciences of Ukraine (hereinafter NAASU);
 - > State Water Resources Agency of Ukraine;
 - > State Emergency Service of Ukraine
- ➤ Ukrainian Hydrometeorological Institute of National Academy of Sciences and State Emergency Service of Ukraine;
 - ➤ Public Organization «Bureau of complex analysis and forecasts «BIAF»;
 - ➤ Institute of Agroecology and Environmental Management of NAASU;
 - ➤ Institute of General Energy of NASU;
- ➤ State Entreprise "The State Road Transport Research Institute" (SRTRI) of Ministry of Infrastructure of Ukraine;
- ➤ State Enterprise «Ukrainian Research & Technology Center of Metallurgy Industry «Energostal» (SE «UkrRTC «Energostal»);
- ➤ State Enterprise «Cherkassy State Research Institute for technical and economic information in chemical industry»;
 - ➤ Institute of Animal Science of NAASU;
 - ➤ Coal Energy Technology Institute of NASU;
- ➤ National Scientific Centre «Institute of Agriculture of the National Academy of Agrarian Sciences of Ukraine»;
- > State Institution «Scientific Centre for Aerospace Research of the Earth Institute of Geological Science National Academy of Sciences of Ukraine»;
 - ➤ Odessa State Environmental University;
- ➤ Ukrainian Order «Badge of Honor» Research Institute of Forestry and agroforestry im. H.M. Vysotskoho;

> Scientific Engineering Centre "Biomass".

External review

Independent external review of the National Inventory Report is generally seen in the framework of Tier 1 Quality Assurance procedures. In preparation of the GHG inventory, external review is performed in two stages:

- 1) At the first stage, developers come up with a draft of the NIR, which is placed on the MEEP website (https://menr.gov.ua) for public discussion with all interested organizations and individuals. Additionally a notice with a link to the draft NIR is sent to the relevant ministries and entities, to leading experts in the field of GHG inventory for delivery their comments and suggestions.
- 2) At the second stage, after the NIR's update to consider the comments received during the public discussion, specialized research organizations and independent experts in the respective sectors are involved for external review of the used activity data, emission factors and calculation methods of GHG inventory in key categories that received significant recommendations during inventory preparation in previous years and in the current year. The set of documents submitted for review, in addition to the current version of the NIR, includes Excel sheets with GHG emission and removals. Moreover, the current estimates of emissions by sectors, if possible, are presented and discussed at various seminars and conferences, as an additional step of external review.

The following describes the results of QA performed for categories of the National Inventory Report.

The **Energy sector**. Within the QA procedures of the NIR the Energy sector categories have been analyzed by experts of the Public Organization «Bureau of complex analysis and forecasts «BIAF», as reflected in the relevant review. Provided comments were taken into account, if possible.

The **Industrial processes and product use sector** have been analyzed by experts of the Public Organization «Bureau of complex analysis and forecasts «BIAF», as reflected in the relevant review. Provided comments were taken into account.

The Agriculture sector received remarks from the National Academy of Agrarian Sciences of Ukraine and National Scientific Centre «Institute of Agriculture of the National Academy of Agrarian Sciences of Ukraine», which will be taken into account, if possible.

The Land Use, Land-Use Change and Forestry sector. The reviews from experts Lialko V. (Academician of NAS of Ukraine, Doctor of geology-mineralogical sciences, professor, Honoured Scientist of Ukraine) and Popov M. (Corresponding Member of NAS of Ukraine, Doctor of Technical Sciences, professor) of the State Institution «Scientific Centre for Aerospace Research of the Earth Institute of Geological Science National Academy of Sciences of Ukraine» was received on the Land Use, Land-Use Change and Forestry sector. Provided suggestions were taken into account, if possible.

Within the QA procedures the NIR have been analyzed by experts of the Ukrainian Order «Badge of Honor» Research Institute of Forestry and Agroforestry H.M. Vysotskoho and experts of the State Forest Resources Agency of Ukraine. Some recommendations/ comments/ remarks were provided that, when possible, were taken into account. In particular, the need for further scientific research was noted.

The **Waste sector** have been analyzed by experts of the Public Organization «Bureau of complex analysis and forecasts «BIAF», as reflected in the relevant review. Provided comments were taken into account.

Within the QA procedures the NIR have been analyzed by experts of the State Water Resources Agency of Ukraine and State Agency on Energy Efficiency and Energy Saving of Ukraine. No comments and recommendations.

Remarks and comments were also received from the National Academy of Sciences of Ukraine, which were taken into account, if possible.

Inter-Agency Commission

The IAC on Implementation of the United Nations Framework Convention on Climate Change was established by Resolution of the Cabinet of Ministers of Ukraine in April 14, 1999 No. 583 with amendments (Resolution of the Cabinet of Ministers of December 04, 2019 of No. 1065) to

organize development and coordination of implementation of the national strategy and national action plan for implementation of Ukraine's commitments under the UNFCCC and KP.

The key tasks of IAC include: organization of preparation of the National Inventory of anthropogenic emissions by sources and absorption by sinks of all greenhouse gases not controlled by Montreal Protocol on Ozone Layer Depleting Substances; organization of preparation of national communications on compliance with the obligations under the UNFCCC; development of proposals for implementation of KP commitment implementation mechanisms; coordination of ministries and other central and local executive bodies, enterprises, institutions and organizations regarding implementation of the national action plan for implementation of Ukraine's commitments under the UNFCCC and KP; consideration of reporting documents to be submitted to the UNFCCC Secretariat, draft directives for official government delegations and representatives of the Cabinet of Ministers of Ukraine at international events on climate change, etc.

According to the existing legal documents, namely Decree of the Cabinet of Ministers of Ukraine of April 14, 1999 No. 583 with the latest amendments from 04.12.2019 No. 1065, the IAC shall include:

- Minister of Energy and Environmental Protection of Ukraine Chairman of the Commission;
- Deputy Minister of Energy and Environmental Protection of Ukraine First Deputy Chairman of the Commission;
- Deputy Minister for Development of Economy, Trade and Agriculture of Ukraine deputy Chairman of the Commission;
 - head of the structural unit of the MEEP Secretary of the Commission;
 - Deputy Minister of health of Ukraine;
 - Deputy Minister of Foreign Affairs of Ukraine;
 - Deputy Minister of Finance of Ukraine;
 - Deputy Minister of Infrastructure of Ukraine;
 - Deputy Minister of Education and Science of Ukraine;
 - Deputy Minister for Communities and Territories Development of Ukraine;
 - Deputy Chairman of the State Fiscal Service of Ukraine;
 - Deputy Chairman of the State Customs Service;
- Deputy Chairman of the State Service of Ukraine for Geodesy, Cartography and Cadastre of Ukraine;
 - Deputy Chairman of the State Statistic Service of Ukraine;
- Deputy Chairman of the State Agency on Energy Efficiency and Energy Saving of Ukraine;
 - Deputy Chairman of the State Forest Resources Agency of Ukraine;
- Chairman of the Verkhovna Rada Committee for Environmental Policy, Environmental Management (if agreed);
 - Verkhovna Rada Committee for Environmental Policy, Environmental Management;
 - Deputy Secretary of the National Security and Defense Council of Ukraine (if agreed);
 - representative of the Secretariat of the Cabinet of Ministers of Ukraine;
- representatives of local governments, academic institutions, non-governmental and self-government organizations (if agreed).

According to the current Ukrainian regulations and procedures, the NIR is finalized with consideration of the recommendations obtained from external review, including in the process of public discussion. The NIR submits to the IAC for its final approval. Based on the decision adopted by the IAC, the MEEP submits the official NIR and CRF tables to the UNFCCC Secretariat.

1.2.3.4 Confidential information handling

In accordance with the Law of Ukraine from September 17, 1992 of No. 2614-XII «About the State Statistics», spreading of information on the basis of which it is possible to figure out confi-

dential information about an individual respondent, as well as any information that allows to indirectly identify confidential information about an individual respondent is prohibited. Therefore, some statistical data on goods produced at fewer than three companies, as well as data on GHG emissions in production of various types of products data on whose activities are confidential and for which default emission factors are applied for GHG inventory are not separately shown in the NIR. Production of most types of these products in Ukraine leads to precursors emissions or negligible GHG emissions. The categories that include production of these types of products are not key ones and are in the sector IPPU (CRF Sector 2), therefore, for estimating emissions in these categories, mostly default emission factors are used.

To reflect GHG emissions in categories for which activity data is considered as confidential information, the following methods were used in preparation of the inventory:

- ➤ merging of emissions as categories belonging to the same group (for example, combining emissions of CO₂ from production of calcium carbide and silicon carbide, combining emissions in the category 2.B.8 Petrochemical and Carbon Black Production;
 - > using information obtained from public sources;
 - > using information obtained directly from enterprises;
 - > using estimated activity data;
 - ➤ using default emission factors.

As a result of applying the latter four methods, in this NIR it was possible to significantly reduce the number categories GHG emission in which were previously merged. Thus, GHG emissions are merged in only two cases:

- ➤ in production of calcium carbide and silicon carbide (data on CO₂ emissions data are presented in category 2.B.5 Carbide Production);
- ➤ in production of ethylene, polystyrene, propylene, polyethylene, and polypropylene in category 2.B.8 Petrochemical and Carbon Black Production;
 - in production of aluminium in category 2.C.3 Aluminium production;
 - in production of zinc in category 2.C.6 Zinc production.

During the technical review of the National Inventory Report, Ukraine presents data on activities, emission factors and GHG emissions in the categories that Ukraine considers as confidential information in accordance with the procedure referred to in the Code of Practice for the Treatment of Confidential Information in the Technical Review of Greenhouse Gas Inventories of Parties to Annex I of the Convention (Annex II to Resolution 12/CP.9).

1.2.4 Changes in the National Inventory System

As it has been repeatedly pointed out above, currently under par. 3, p. 1 of Resolution of the Cabinet of Ministers of Ukraine of September 02, 2019 No. 829 «Some Issues of Optimization of the System of Central Executive Government Bodies», the decision was made to rename of the MENR to the MEEP.

According to subparagraphs 1, 4.2, 4.4, 5.76-5.85 par. 3 of Resolution of the Cabinet of Ministers of Ukraine of September 18, 2019 No. 847 «On Amendments to Some Regulations of the Cabinet of Ministers of Ukraine», the central executive body responsible for preparation, approval, and submission to the UNFCCC Secretariat of information on implementation of Decisions of the Conference of Parties of the UNFCCC and Meetings of the KP Parties is the MEEP, which is guided and coordinated by the Cabinet of Ministers of Ukraine. One of the structural units of the MEEP is the Directorate of Climate Change and Ozone Layer Protection, created by the order MEEP of February 11, 2020 No. 83, which has been assigned as responsible for the preparation of the National inventory of anthropogenic GHG emissions and removals.

Moreover, within its assigned tasks, the MEEP is responsible for inventory of anthropogenic GHG emissions by sources and removals by sinks at the national level in order to prepare the NIR, as well as its approval and submission to the UNFCCC Secretariat.

1.3 Inventory preparation

1.3.1 The basic stages of the inventory

The process of preparation of the NIR includes the basic stages:

- 1. Determining information needs to comply with the methodological requirements stipulated by 2006 IPCC Guidelines for National Greenhouse Gas Inventories.
- 2. Preparation and sending of information queries to select data sources using official correspondence, telephone, and e-mail.
- 3. Identification of potential data sources, including organizations and independent experts.
- 4. Preparation and sending special queries and follow-up work on sources, including contracts for consulting services.
- 5. Obtaining information, its check to establish completeness and compliance with the query form. Analysis of the information obtained on the possibility of its immediate use for calculation of emissions and reductions.
- 6. Investigation of anomaly discrepancies in the data appeared through sharp changes in the time series of activity data or significant deviations compared to previous inventories. Clarification of data provided as a response to additional queries and receiving consultations from experts on issues of National Inventory Report preparation.
 - 7. Preparation of information to be used in the calculations.
 - 8. Conducting calculations to determine GHG emissions and removals.
 - 9. Elimination of errors and omissions in the calculations.
- 10. Preparation of a preliminary version of the NIR (draft of NIR) in accordance with regard to format of the revised "Guidelines on Preparation of National Communications of the Parties included in Annex I to the Convention, Part I: UNFCCC guidelines for reporting annual greenhouse gas inventories" (FCCC/CP/2013/10/Add.3).
- 11. Upload of the draft National Inventory Report on the website of the MEEP and to obtain comments and suggestions from stakeholders and independent experts.
 - 12. Further development of the draft NIR with regard to comments received.
 - 13. Preparation of the final version of the NIR.
 - 14. Provision of the NIR for consideration of the IAC.
 - 15. Submission of the NIR by the MEEP to the UNFCCC Secretariat.
 - 16. Documentation and archiving of all data used in preparation of the NIR.

1.3.2 Planning and control of activities on greenhouse gas inventory and report development

Annual development and support of the NIR are considered as a separate project, an important aspect of management of which is planning.

The annual plan of development of the NIR is a dynamic information object, in which it is possible to consider changes from year to year in the structure of the following NIR and within the work on its development, and to monitor and, if necessary, quickly adjust the course of actual preparation process of the next NIR.

In line with the information presented paragraph 1.2.3.1 "QA/QC procedures", planning development of the NIR to be submitted in 2020 is covered in internal use documents based on typical annual inventory preparation plans and inventory QA and QC activities, approved by Order of the Ministry of Environmental Protection of May 31, 2007 No. 268, namely:

1) 2019-2020 Action Plan to prepare generalized data on GHG emissions on the territory of Ukraine for the National Inventory Report of Anthropogenic GHG Emissions by Sources and Removals by Sinks in Ukraine for the period of 1990-2018 (submitted in 2020);

2) 2019-2020 QA/QC Action Plan when preparing generalized data on GHG emissions on the territory of Ukraine for the National Inventory Report of Anthropogenic GHG Emissions and Removals by Sinks in Ukraine for the period of 1990-2018 (submitted in 2020).

These documents have framework feature, being designed to serve for high-level project management, and is presented in the form of a consolidated schedule, which allows you to include the desired combination of the three types of works:

- core work on development of intermediate or final results (data);
- control work on checks on compliance between the processes on performing basic operations and their results and methodological and regulatory requirements;
- corrective works to remove detected discrepancies in intermediate or final results of core work and, if necessary, adjustment of the work plan in real time.

1.4 Brief general description of methodologies and data sources used

1.4.1 Greenhouse gas inventory

A detailed description of methodological approaches that were used for estimating GHG emissions and removals is described in the relevant sections of this report. Estimates GHG and precursor emissions were performed using the first, second, and third level approaches. Thus, volumes of emissions in key categories were determined mostly using second-level approaches.

Table 1.2 presents generalized information about assessment methods for estimation of GHG emissions and removals in this inventory.

Table 1.2. Generalized information about assessment methods for estimation of GHG emissions and removals

	Telliovais	
CRF cate-gory	Name of the emission category	Comment on the method applied
1.A	Fuel Combustion Activities	T1, T2, T3
1.A.1	Energy Industries	T1, T2, T3
1.A.2	Manufacturing Industries and Construction	T1, T2
1.A.3	Transport	T1, T2, T3
1.A.4	Other sectors	T1, T2
1.A.5	Other (not elsewhere specified)	T1
	Fugitive Emissions from Fuels	CS, T1, T2, T3
1.B.1	Solid Fuels	CS, T1, T2, T3
1.B.2	Oil and natural gas and other emissions from energy production	T1, T2
1.C	CO ₂ Transport and storage	The category is not calculated
	Mineral industry	T1, T2, T3
	Chemical Industry	T1, T2, T3, EMEP/EEA
	Metal Industry	T1, T3, EMEP/EEA
	Non-energy products from fuels and solvent use	T1, EMEP/EEA
	Electronics industry	The category is not calculated
	Product uses as substitutes for ODS	T1a, T1, T2
	Other product manufacture and use	CS, T2,T3
	Other	EMEP/EEA
	Enteric Fermentation	T1, T2
	Manure management	CS, T1, T2
	Rice Cultivation	T1
	Agricultural Soils	CS, T1, T2
	Prescribed burning of savannas	The category is not calculated
	Field burning of agricultural residues	The category is not calculated*
	Liming	T1
	Urea Application	T1
	Forest Land	CS, T1, T2
	Cropland	CS, T1, T3
	Grassland	CS, T1, T3
	Wetlands	T1
	Settlements	T1
4.F	Other Land	T1

CRF cate- gory	Name of the emission category	Comment on the method applied
4.G	Harvested Wood Products	T1
4.H	Other	The category is not calculated
5.A	Solid waste disposal	Т3
	Biological Treatment of Solid Waste	T1
5.C	Incineration and open burning of waste	T1, T2
	Wastewater Treatment and Discharge	CS, T1, T2
5.E	Other	The category is not calculated

T1, T2, T3 – Tiers 1, 2, and 3, respectively, according to 2006 IPCC

M – model-based methodology CS – national methodology

EMEP/CORINAIR – methodology for GHG inventory

* The Burning of agricultural residues in Ukraine is prohibited under the Code of Administrative Offenses (Art. 77-1) and the Law of Ukraine On Air Protection (Art. 16, 22). Fires that occur in agricultural areas are defined as natural fires (wild fires). Therefore, the emissions from them accounted for in LULUCF.

Table 1.3 indicates the key sources of information from which activity data for calculation of GHG emissions and removals was obtained.

Table 1.3. Summary of the key sources of activity data for estimating GHG emissions and

Name of the data source	Name of the activity data
State Statistics Service of Ukraine	Amount of fuel consumed.
	Calorific value of the key fuels.
	Volume of production, import, export, and changes in fuel stocks.
	Volume of oil and natural gas transportation through main oil and gas pipelines.
	Production, import, and export of industrial products.
	Livestock by species and sex and age groups in agricultural enterprises and households by regions.
	Consumption of feed by cows, gender and bulls, and other cattle in agricultural enterprises
	and households in Ukraine by regions.
	Milk yield of cows and sheep.
	Amount of wool produced per sheep.
	Gross harvesting, yield, and total harvested area of agricultural crops.
	Amount of nitrogen and organic fertilizers applied into the soil in Ukraine by regions.
	Grouping of agricultural enterprises by presence of livestock.
	Volume of timber harvesting.
	Production, import, and export of harvested wood products
	Disturbance areas in the forests of Ukraine.
	Statistical reporting form No. 1 – waste "Waste Management" (amount of 1st - 4th class
	of hazard waste, including industrial organic waste at solid municipal waste landfills).
	Average annual consumption of food products by population of Ukraine.
Ministry of Energy and Environmental	Information about the coal industry of Ukraine.
Protection of Ukraine	Information about the oil and gas system of Ukraine.
	Information on methane recovery from landfills.
	Information on the morphology and density of waste.
	Information on household wastewater.
	Information on the volumes of activities performed during the period starting from 1990,
State Fiscal Service of Ukraine	which falls under the activities of paragraphs 3 and 4, Article 3 of Kyoto Protocol. Imports and exports of products containing hydrofluorocarbons, perfluorocarbons and
State Fiscal Service of Ukraine	sulfur hexafluoride.
State Institution "Center of medical sta-	Information on the number of surgeries performed in Ukraine.
tistics of Ministry of health of Ukraine"	information on the number of surgeries performed in Oktaine.
Ministry of Defense of Ukraine	Information on fuel consumption for the needs of the Ministry of Defense.
Willistry of Defense of Oktaine	Information on the volumes of activities performed during the period starting from 1990,
	which falls under the activities of paragraphs 3 and 4, Article 3 of Kyoto Protocol.
Energy generation companies	Technical and economic indicators of activity of condensing thermal power plants.
JSC "Naftogaz of Ukraine"	Information about the oil and gas system of Ukraine.
Ukrainian State Air Traffic Services	Aircraft departures information (database).
Enterprise (SE "Ukraeroruh")	Amerian departures information (database).
Industrial enterprises	Data of mineral, chemical and metallurgy, cement, ceramics, glass production, as well as
maagama chichbiises	Data of inflorar, cheffical and inclaiming, coment, ceramics, glass production, as well as

Name of the data source	Name of the activity data
Ministry of Communities and Territo-	Statistical reporting form No.1-TPV "Report on Solid Waste Management".
ries Development of Ukraine	Information on the implementation of modern methods and technologies in the field of
	household waste management in Ukraine.
State Water Resources Agency of	Statistical form No. 2-TP "Report on Water Use" (data on volumes of treated household
Ukraine	and industrial wastewater).
	Data on the area of cultivated peat soils.
Ministry of Infrastructure of Ukraine	Information on the volumes of activities performed during the period starting from 1990,
	which falls under the activities of paragraphs 3 and 4, Article 3 of Kyoto Protocol.
State Service of Ukraine for Geodesy,	Information on areas of land use.
Cartography and Cadastre of Ukraine	
State Forest Resources Agency of	Information on the volumes of activities performed during the period starting from 1990,
Ukraine	which falls under the activities of paragraphs 3 and 4, Article 3 of Kyoto Protocol.
	Information about forests and forest management activities in the forests of the State For-
	est Resources Agency of Ukraine.
	Areas of forest fires in forests of the State Forest Resources Agency of Ukraine.
Territorial Public Administration	Information on the livestock and its structure in agricultural enterprises and household
	farms, grouping of agricultural enterprises based on the livestock, feed consumption in
	agricultural enterprises and household farms.
	Information about technical parameters of existing Municipal Solid Waste landfills and
	the amount of Municipal Solid Waste deposited.
	Information about thermal disposal of medical waste
Regional Departments of the State	Information about the number of fires on agricultural crops by regions.
Emergency Service of Ukraine	
Ukrainian Civil Protection Research In-	Data on fire areas on grasslands and non-forest wetlands.
stitute (UkrCPRI)	
State Enterprise «Agency of Animal	Data on the livestock of rams and wethers in the sheep herd structure by agricultural
Identification and Registration»	enterprises and household farms.
State Agency of Ukraine on the Exclu-	Data on forest land in the exclusion zone.
sion Zone Management	Information on the volumes of activities performed during the period starting from 1990,
	which falls under the activities of paragraphs 3 and 4, Article 3 of Kyoto Protocol.
Ukrainian State-owned Project Forestry	Information about forests in the forests of the State Forest Resources Agency of Ukraine
Production Association	and some other forest users.
«UKRDERZHLISPROEKT»	
Companies for methane recovery at the	Data on the methane recovery at the MSW landfills.
landfills	

1.4.2 KP-LULUCF inventory

In preparation of additional information on outcomes of activities under paragraphs 3 and 4, Article 3 of Kyoto Protocol, methods and assumptions identical to those used for GHG inventory in the land-use category Forest Land were used for all carbon pools (except for mineral soils in managed forests) and all sources of GHG emissions. The basis for the assumption on mineral soils in forests is the research project [13], which is consistent with IPCC requirements. Identical data sources were used for the calculations. To maintain the time series of activity data in the land-use category Forest Land, in accordance with the methodological guidelines, continues to update the database of activity data with characteristics of activities regulated by paragraph 3 Article 3 of Kyoto Protocol.

In addition, due to national practice of accounting of lands of the State Service of Ukraine for Geodesy, Cartography and Cadastre of Ukraine, during the inventory taken into account 7-year-old step which is applied to the territories covered with forest vegetation [14].

1.5 Brief description of key categories, including KP-LULUCF

1.5.1 Greenhouse gas inventory

In accordance with the requirements of the 2006 IPCC Guidelines, key categories analysis was performed. The assessment is based on Tier 1 approach, which includes analysis of the emission level and trends. The results of key category analysis for 2017 with and without the LULUCF sector are presented in Tables 1.4 and 1.5, respectively. A detailed analysis of the key categories is presented in Annex 1.

Table 1.4. Key category analysis, excluding LULUCF sector (2018)

IPCC source category	Gas	Level	Trend
A	В	D	E
1.A.1 Fuel combustion - Energy Industries - Gaseous Fuels	CO_2	+	+
1.A.1 Fuel combustion - Energy Industries - Liquid Fuels	CO_2	+	+
1.A.1 Fuel combustion - Energy Industries - Other Fossil Fuels	CO_2	+	+
1.A.1 Fuel combustion - Energy Industries - Solid Fuels	CO_2	+	+
1.A.2 Fuel combustion - Manufacturing Industries and Construction - Gaseous Fuels	CO ₂	+	+
1.A.2 Fuel combustion - Manufacturing Industries and Construction - Liquid Fuels	CO ₂		+
1.A.2 Fuel combustion - Manufacturing Industries and Construction - Solid Fuels	CO_2	+	+
1.A.3.b Road Transportation	CO ₂	+	+
1.A.3.d Domestic Navigation - Liquid Fuels	CO_2		+
1.A.3.e Other Transportation	CO_2	+	+
1.A.4 Other Sectors - Gaseous Fuels	CO_2	+	+
1.A.4 Other Sectors - Liquid Fuels	CO_2		+
1.A.4 Other Sectors - Solid Fuels	CO ₂		+
1.B.1 Fugitive emissions from Solid Fuels	CH ₄	+	+
1.B.2.a Fugitive Emissions from Oil and Natural Gas - Oil	CH ₄	+	
1.B.2.b Fugitive Emissions from Oil and Natural Gas - Natural Gas	CO_2	+	
1.B.2.b Fugitive Emissions from Oil and Natural Gas - Natural Gas	CH ₄	+	+
2.A.1 Cement Production	CO_2	+	
2.A.2 Lime Production	CO ₂	+	
2.B.1 Ammonia Production	CO_2		+
2.B.8 Petrochemical and Carbon Black Production	CH ₄	+	+
2.C.1 Iron and Steel Production	CO_2	+	+
2.C.2 Ferroalloys Production	CO_2	+	
2.F.1 Refrigeration and Air conditioning	HFC		+
3.A Enteric Fermentation	CH ₄	+	+
3.D.1 Direct N2O Emissions From Managed Soils	N ₂ O	+	+
3.D.2 Indirect N2O Emissions From Managed Soils	N ₂ O	+	+
5.A Solid Waste Disposal	CH ₄	+	+
5.D Wastewater Treatment and Discharge	CH ₄	+	+

Table 1.5. Key category analysis, including LULUCF sector (2018)

IPCC source category	Gas	Level	Trend
A	В	D	E
1.A.1 Fuel combustion - Energy Industries - Gaseous Fuels	CO_2	+	+
1.A.1 Fuel combustion - Energy Industries - Liquid Fuels	CO_2	+	+
1.A.1 Fuel combustion - Energy Industries - Other Fossil Fuels	CO_2	+	+
1.A.1 Fuel combustion - Energy Industries - Solid Fuels	CO_2	+	+
1.A.2 Fuel combustion - Manufacturing Industries and Construction - Gaseous Fuels	CO_2	+	+
1.A.2 Fuel combustion - Manufacturing Industries and Construction - Liquid Fuels	CO_2		+
1.A.2 Fuel combustion - Manufacturing Industries and Construction - Solid Fuels	CO_2	+	+
1.A.3.b Road Transportation	CO_2	+	+
1.A.3.d Domestic Navigation - Liquid Fuels	CO_2		+
1.A.3.e Other Transportation	CO_2	+	+
1.A.4 Other Sectors - Gaseous Fuels	CO_2	+	+
1.A.4 Other Sectors - Liquid Fuels	CO_2		+
1.A.4 Other Sectors - Solid Fuels	CO_2		+
1.B.1 Fugitive emissions from Solid Fuels	CH ₄	+	+
1.B.2.b Fugitive Emissions from Oil and Natural Gas - Natural Gas	CH ₄	+	+
1.B.2.b Fugitive Emissions from Oil and Natural Gas - Natural Gas	CO_2	+	
2.A.1 Cement Production	CO_2	+	
2.A.2 Lime Production	CO_2	+	
2.B.1 Ammonia Production	CO_2		+
2.B.8 Petrochemical and Carbon Black Production	CH ₄	+	+
2.C.1 Iron and Steel Production	CO_2	+	+
2.C.2 Ferroalloys Production	CO_2	+	
3.A Enteric Fermentation	CH ₄	+	+
3.D.1 Direct N2O Emissions From Managed Soils	N ₂ O	+	+

IPCC source category	Gas	Level	Trend
A	В	D	E
3.D.2 Indirect N2O Emissions From Managed Soils	N ₂ O	+	+
4.A.1 Forest Land Remaining Forest Land	CO_2	+	+
4.A.2 Land Converted to Forest Land	CO_2		+
4.B.1 Cropland Remaining Cropland	CO_2	+	+
4.C.1 Grassland Remaining Grassland	CO_2		+
4.D.1.1 Peat Extraction Remaining Peat Extraction	CO_2		+
4.E.2 Land Converted to Settlements	CO_2	+	+
4.G Harvested Wood Products	CO_2		+
5.A Solid Waste Disposal	CH ₄	+	+
5.D Wastewater Treatment and Discharge	CH ₄	+	·

1.5.2 KP-LULUCF inventory

In determining the key categories methodological recommendations of 2006 IPCC Guidelines were applied. The categories directly related with KP activities are the following: Forest Land remaining Forest Land, Land converted to Forest Land and Forest Land converted to other land uses. According to reporting under the UNFCCC, category 4.A.1 is the key. GHG inventory in AR and D categories resulted in lower emissions/reductions, that the lowest key category.

Table 1.6. Findings of key category analysis of activities under paragraphs 3 and 4, Article 3 of the Kyoto Protocol in 2017

Specification of the key category according to the national disaggre- gation level	Gas	Corresponding key category	Confirmation of exceeding by the selected category of the lowest key one under the inventory, in accordance with UNFCCC requirements (including LULUCF)	Other	Comments
Forest manage- ment	CO ₂	4.A.1 Forest Land remaining Forest Land	Yes		The relevant categories were identified as key in the GHG inventory in accordance with UN-FCCC requirements. Results of the GHG inventory in the specified categories exceed the value of the lowest in the list of key categories.
Afforestation and Reforestation	CO ₂	4.A.2 Land converted to Forest Land	No		The relevant categories were not identified as key in the GHG inventory in accordance with UNFCCC requirements. Results of the GHG inventory in the category do not exceed the value of the lowest in the list of key categories.
Deforestation	CO ₂	Forest land converted to other land uses	NO		The relevant categories were not identified as key in the GHG inventory in accordance with UNFCCC requirements. The sum of results of the GHG inventory in the specified categories do not exceed the value of the lowest in the list of key categories.

1.6 Evaluation of the total uncertainty of the National Inventory Report, including data on the overall uncertainty for the entire inventory

1.6.1 Uncertainty of the GHG Inventory

Uncertainty estimate was performed using the first level approach, provided in 2006 IPCC Guidelines.

The results indicate that the net emissions in 2018 year including the sector Land use, landuse change and forestry (LULUCF) is 341888.57 kt CO_2 equivalent with an uncertainty of 10.57 %; excluding the LULUCF sector - 339244.28 kt CO_2 equivalent with an uncertainty of 8.25 %. Based on totals of years 1990 and 2018, the average trend including the LULUCF sector is 61.28 % reduction of emissions; excluding the LULUCF sector - 63.99 % reduction of emissions. The uncertainty of the trend including the LULUCF sector is 3.26 %; excluding the LULUCF sector - 2.06 %.

For more detailed information see Tables A7.1-A7.2 of Annex 7.

Summary data characterizing the uncertainty with the inventory by sector is shown below, in Tables 1.7 and 1.8 respectively.

Table 1.7. The uncertainty of the inventory by main sectors (including LULUCF)

Sector	Share in total emissions for 1990, %	Share in total emissions for 2018, %	The percentage uncertainties of the emissions for 2018 %		
Energy	82.15	66.19	3.00		
Industrial processes and prod-	13.36	16.53	0.5		
uct use					
Agriculture	9,84	12.94	7.46		
LULUCF	-6.70	0.77	6.68		
Waste	1.35	3.56	1.50		

Table 1.8. The uncertainty of the inventory by main sectors (excluding LULUCF)

Sector	Share in total emissions for 1990, %	Share in total emissions for 2018, %	The percentage uncertainties of the emissions for 2018, %		
Energy	76.99	66.71	3.02		
Industrial processes and product use	12.52	16.66	0.51		
Agriculture	9.22	13.04	7.52		
Waste	1.27	3.59	1.51		

The lowest percentage of emissions uncertainty in 2018 year is observed in the Industrial processes and product use sector.

1.6.2 Uncertainty of KP-LULUCF

Uncertainty level for calculation results in KP-LULUCF is estimated based on use of the same uncertainties of AD and EFs as for LULUCF sector, which are related to activities in forestry. Overall uncertainty value regarding carbon removals on afforestation lands is equal to 39 %. considering uncertainties of carbon removals by litter 38 %, for soils – 29 %.

1.7 General assessment of completeness

1.7.1 Completeness assessment of GHG inventory

The main reasons for the use of notation key (NE, IE) in the GHG inventory in certain categories, are:

▶ Methodology absence (NE):

- when calculating emissions of carbon dioxide (CO₂) in the categories 1.B.1.a.1.ii Post-Mining Activities, 1.B.1.a.2.i Mining Activities, 1.B.1.a.2.ii Post-Mining Activities, 1.B.2.a.4 Refining / Storage, 1.B.2.a.5 Distribution of Oil Products, 5.C.2.1.a Municipal Solid Waste, 5.C.2.1.b Other (please specify), 5.C.2.2.a Municipal Solid Waste, 5.C.2.2.b Other (please specify);
- when calculating emissions of methane (**CH**₄) in the categories 1.B.2.a.5 Distribution of Oil Products, 2.B.1 Ammonia Production, 2.B.5.b Calcium Carbide, 4.A Forest Land/4(II) Emissions and removals from drainage and rewetting and other management of organic and mineral soils/Total Organic Soils/Drained Organic Soils, 4.B Cropland/4(II) Emissions and removals from drainage and rewetting and other management of organic and mineral soils/Total Organic Soils/Drained Organic Soils, 4.C Grassland/4(II) Emissions and removals from drainage and rewetting and other management of organic and mineral soils/Total Organic Soils/Drained Organic Soils, 5.C.2.1.a Municipal Solid Waste, 5.C.2.1.b Other (please specify), 5.C.2.2.a Municipal Solid Waste, 5.C.2.2.b Other (please specify);
- when calculating emissions of nitrous oxide (N₂O) in the categories 1.B.2.a.4 Refining / Storage, 3.B.2.5 Indirect N₂O Emissions, 4.A.2.3 Wetlands converted to forest land, 4.D.1 Wetlands Remaining Wetlands/4(V) Biomass Burn-ing/Wildfires, 5.C.2.1.a Municipal Solid Waste, 5.C.2.1.b Other (please specify), 5.C.2.2.a Municipal Solid Waste, 5.C.2.2.b Other (please specify);
- when calculating emissions of non-methane volatile organic compound (**NMVOC**) in the category 5.C.1 Waste incineration;
- when calculating emissions of nitrogen oxides (**NOx**) in the category 5.C.1 Waste incineration;
- when calculating emissions of sulphur dioxide (SO_2) in the category 5.C.1 Waste incineration;
- when calculating emissions of carbon monoxide (CO) in the category 5.C.1 Waste incineration.

Included elsewhere (IE):

when calculating emissions of carbon dioxide (CO₂) in the categories – 1.A.3.b.ii Light duty trucks (gasoline, diesel oil, liquefied petroleum gases, other liquid fuels, biomass, kerosene, lubricants), 1.A.3.b.iii Heavy duty trucks and buses (gasoline, diesel oil, liquefied petroleum gases, other liquid fuels, biomass, kerosene, lubricants), 1.A.3.b.iv Motorcycles (gasoline, diesel oil, liquefied petroleum gases, other liquid fuels, biomass, kerosene), 1.A.4.c.ii Off-road vehicles and other machinery (gasoline, diesel oil, liquefied petroleum gases, gaseous fuels, biomass), 1.A.4.c.iii Fishing (residual fuel oil, diesel oil, gasoline, gaseous fuels, biomass), 1.AA Fuel Combustion - Sectoral approach/Information item/ (biomass, fossil fuels), 1.B.2.c.1.ii Gas, 1.B.2.c.1.iii Combined, 1.B.2.c.2.iii Combined, 1.AD Feedstocks, reductants and other non-energy use of fuels / Liquid fossil / Naphtha, 2.B.5.a Silicon carbide, 2.C.1.d Sinter, 2.C.1.e Pellet, 4.A Forest Land / 4(II) Emissions and removals from drainage and rewetting and other management of organic and mineral soils/Total Organic Soils/Drained Organic Soils, 4.B Cropland / 4(II) Emissions and removals from drainage and rewetting and other management of organic and mineral soils/Total Organic Soils/Drained Organic Soils, 4.B.2 Land Converted to Cropland/4(V) Biomass Burning/Wildfires, 4.C Grassland/4(II) Emissions and removals from drainage and rewetting and other management of organic and mineral soils/Total Organic Soils/Drained Organic Soils, 4.D Wetlands/4(II) Emissions and removals from drainage and rewetting and other management of organic and mineral soils/Peat Extraction Lands/Total Organic Soils/Drained, 4.D.2 Land Converted to Wetlands/4(V) Biomass Burning/Wildfires;

- when calculating emissions of methane (CH4) in the categories –1.A.3.b.ii Light duty trucks (gasoline, diesel oil, liquefied petroleum gases, other liquid fuels, biomass, kerosene, lubricants), 1.A.3.b.iii Heavy duty trucks and buses (biomass, gasoline, diesel oil, liquefied petroleum gases, other liquid fuels, kerosene, lubricants), 1.A.3.b.iv Motorcycles (gasoline, diesel oil, liquefied petroleum gases, other liquid fuels, biomass, kerosene), 1.A.4.c.ii Off-road vehicles and other machinery (gasoline, diesel oil, liquefied petroleum gases, gaseous fuels, biomass), 1.A.4.c.iii Fishing (residual fuel oil, diesel oil, gasoline, gaseous fuels, biomass), 1.A.4.c.iii Fishing (residual fuel oil, diesel oil, gasoline, gaseous fuels, biomass), 1.B.2.c.1.ii Gas, 1.B.2.c.1.iii Combined, 1.B.2.c.2.iii Combined, 4.B.2 Land Converted to Cropland/4(V) Biomass Burning/Wildfires, 4.C.2 Land Converted to Grassland/4(V) Biomass Burning/Wildfires, 4.D.2 Land Converted to Wetlands/4(V) Biomass Burning/Wildfires;
- when calculating emissions of nitrous oxide (N2O) in the categories 1.A.3.b.ii Light duty trucks (gasoline, diesel oil, liquefied petroleum gases, other liquid fuels, biomass, kerosene, lubricants), 1.A.3.b.iii Heavy duty trucks and buses (gasoline, diesel oil, liquefied petroleum gases, other liquid fuels, biomass, kerosene, lubricants), 1.A.3.b.iv Motorcycles (gasoline, diesel oil, liquefied petroleum gases, other liquid fuels, biomass, kerosene), 1.A.4.c.ii Off-road vehicles and other machinery (gasoline, diesel oil, liquefied petroleum gases, gaseous fuels, biomass), 1.A.4.c.iii Fishing (residual fuel oil, diesel oil, gasoline, gaseous fuels, biomass), 1.AA Fuel Combustion Sectoral approach/Information item/ (biomass, fossil fuels), 1.B.2.c.2.iii Combined, 3.B.2 N₂O and NMVOC Emissions (Pasture, Range, and Paddock), 3.D Agricultural Soils (N-fixed crops), 4.B.2 Land Converted to Cropland/4(V) Biomass Burning/Wildfires, 4.C.2 Land Converted to Grassland/4(V) Biomass Burning/Wildfires, 4.D.2 Land Converted to Wet-lands/4(V) Biomass Burn-ing/Wildfires.

More detailed information is given in table 1 of Annex 5.1.

According to the classification of notation keys given in the UNFCCC reporting guidelines on annual GHG inventories*:

- ➤ NO (*Not occurring*) for activities or processes, which within a country do not occur;
- ➤ NE (*Not estimated*) for possible GHG emissions by sources and removals by sinks, in respect of which the assessment was not carried out;
- ➤ NA (*Not applicable*) for activities in a particular category of source/sink, which does not lead to emissions or removals of a specific gas;
- ➤ IE (*Included elsewhere*) for activities or categories of GHG emissions included in the inventory but not presented separately for this category.

1.7.2 Completeness assessment for KP-LULUCF

Regarding applications in the CRF-table, the aforementioned notation keys and the reasons listed in paragraph 1.7.1 in sector KP-LULUCF should be taken into account that, according to article 3.4 of the Kyoto Protocol, no additional activities in addition to obligatory forest management has been selected.

IE were used in the following cases:

- the gains of below-ground biomass in Afforestation areas: GHG removals from below-ground biomass accounted for in the removals of above-ground biomass;
- the loss of below-ground biomass in Afforestation areas: GHG emissions from below-ground biomass accounted for in the emissions of above-ground biomass;
- the loss of below-ground biomass in the category forest management; GHG emissions from below-ground biomass accounted for in the emissions of above-ground biomass.

Detailed information on the categories of KP-LULUCF, not estimated by GHG inventory can be found in table 2 of Annex 5.

^{*} Guidelines for the preparation of national communications by parties included in Annex I to the Convention, part I: Guidelines of the UNFCCC for the submission of reports on annual inventories, FCCC/CP/2002/8

2 TRENDS IN GREENHOUSE GAS EMISSIONS

2.1 Trends in total greenhouse gas emissions

Dynamics of GHG emissions demonstrate the trend, which may be considered in five phases over the period of 1990-2018. During the first phase (1990-1999), a catastrophic decline in GDP and reduction in energy consumption were observed, which led to a decrease in GHG emissions. In the second phase (2000-2007), there was stabilization of the trend and a gradual increase in emissions, which is due to the economic growth (including GDP growth), but there is no direct correlation between the growth in emissions and in GDP. Primarily, this is due to structural changes in the economy, an increased role of trade, services, and the financial sector in comparison with industrial production. During the third phase (2008-2013), GHG emissions depended on the factor of the global financial crisis (2008-2009), which largely affected production volumes in key export-oriented sectors: metallurgy, chemical, machine building, which, in turn, affected other sectors - power generation and mining. In 2014 GHG emissions sharply declined - by about 11 % compared with 2013 with continued trend of decline in 2015 by 13 % compared with 2014. Among the key factors of the sharp drop should be mentioned an occupation and attempted annexation of Crimea and armed aggression by the Russian Federation, what led to a considerable reduction in industrial production, and, as a consequence, reduction in energy consumption³. That also led to interruption of supply and trade connections of industries on temporarily occupied by the Russian Federation territory of Ukraine with industries of other regions in the country.

Table 2.1 and Fig. 2.1 show a histogram of total emissions of carbon dioxide, methane, and nitrous oxide in Ukraine, including LULUCF sector. Emissions of NF_3 in Ukraine do not occur.

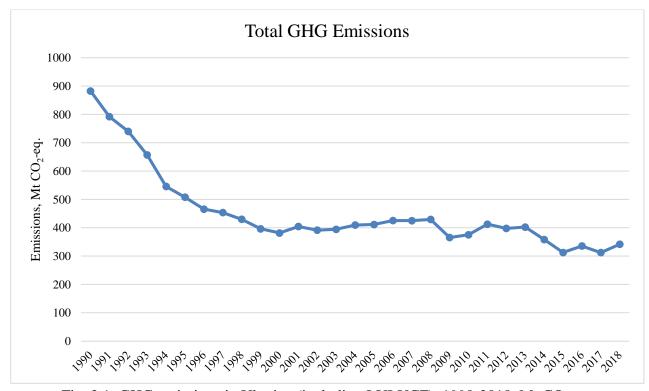


Fig. 2.1. GHG emissions in Ukraine (including LULUCF), 1990-2018, Mt CO₂-eq.

The largest share of GHG emissions in 2018 is carbon dioxide -68.5 % including LULUCF. Methane emissions in 2018 were 19.8 %, and those of nitrous oxide -11.4 %. In 1990, the proportion was 73.2 %, 20.7 %, and 6.1 % for carbon dioxide, methane, and nitrous oxide, respectively.

³ On 18 January 2018, the Parliament of Ukraine adopted the law "On the peculiarities of State policy on ensuring Ukraine's State sovereignty over temporarily occupied territories in Donetsk and Luhansk regions" which defines the

Ukraine's State sovereignty over temporarily occupied territories in Donetsk and Luhansk regions", which defines the legal status of certain areas of the Donetsk and Luhansk regions as temporarily occupied territories of Ukraine

Table 2.1. Dynamics of total greenhouse gas emissions in Ukraine (Mt CO₂-eq.)

	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002
CO ₂ emissions without net CO ₂ from LULUCF	705.8	632.5	589.1	510.2	419.3	389.9	351.4	340.2	328.6	298.2	285.3	303.6	295.7
CO ₂ emissions with net CO ₂ from LULUCF	646.4	568.9	528.3	456.4	360.4	335.9	302.2	294.6	277.9	245.3	239.6	262.6	256.5
CH ₄ emissions without CH ₄ from LULUCF	182.6	174.7	166.8	158.3	148.9	138.6	134.7	129.4	125.7	126.9	118.0	116.5	109.1
CH ₄ emissions with CH ₄ from LULUCF	182.6	174.7	166.8	158.4	149.0	138.7	134.7	129.4	125.7	127.0	118.0	116.5	109.1
N ₂ O emissions without N ₂ O from LULUCF	53.4	48.3	44.7	41.9	36.0	32.8	28.5	29.2	25.9	23.8	23.8	25.1	25.5
N ₂ O emissions with N ₂ O from LULUCF	53.6	48.5	44.9	42.1	36.2	33.1	28.7	29.5	26.2	24.1	24.1	25.4	25.8
HFCs*	NO	6.43	13.02	14.14	15.73	29.02	64.24						
PFCs*	235.82	188.20	142.35	143.57	161.22	178.06	143.24	146.99	120.64	101.81	115.74	112.08	98.66
SF ₆ *	0.01	0.02	0.03	0.06	0.06	0.07	0.07	0.13	0.19	0.31	0.42	0.46	1.07
NF ₃ *	NO	NO											
Total (without LULUCF)	942.1	855.7	800.7	710.6	604.3	561.5	514.7	499.0	480.3	449.0	427.2	445.3	430.4
Total (with LULUCF)	882.9	792.2	740.2	657.1	545.7	507.9	465.8	453.7	430.0	396.5	381.7	404.7	391.6
Total (without LULUCF, with indirect)	942.1	855.7	800.7	710.6	604.3	561.5	514.7	499.0	480.3	449.0	427.2	445.3	430.4
Total (with LULUCF, with indirect)	882.9	792.2	740.2	657.1	545.7	507.9	465.8	453.7	430.0	396.5	381.7	404.7	391.6
Net CO ₂ from LULUCF	-59.2	-63.4	-60.5	-53.5	-58.6	-53.7	-48.9	-45.3	-50.3	-52.6	-45.5	-40.6	-38.8

	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015
CO ₂ emissions without net CO ₂ from LULUCF	307.0	310.4	313.1	332.7	336.4	325.5	277.3	294.1	308.0	304.0	297.3	257.6	223.9
CO ₂ emissions with net CO ₂ from LULUCF	261.6	277.2	282.9	298.6	298.6	304.4	252.7	262.6	292.4	284.5	290.9	253.6	217.5
CH ₄ emissions without CH ₄ from LULUCF	109.7	106.5	102.4	100.1	99.9	93.2	85.2	84.6	86.0	80.5	75.2	68.8	61.2
CH ₄ emissions with CH ₄ from LULUCF	109.7	106.5	102.5	100.1	100.0	93.3	85.2	84.6	86.0	80.5	75.2	68.8	61.3
N ₂ O emissions without N ₂ O from LULUCF	22.8	25.3	25.6	26.0	25.6	30.8	26.8	27.4	33.3	31.9	35.4	35.3	33.0
N ₂ O emissions with N ₂ O from LULUCF	23.1	25.6	25.9	26.3	26.0	31.1	27.1	27.6	33.5	32.1	35.6	35.5	33.1
HFCs*	105.18	187.23	285.06	402.25	561.10	647.21	663.74	743.83	819.97	840.73	881.22	847.82	775.29
PFCs*	77.15	93.34	142.33	111.16	154.71	174.24	53.95	26.67	NO	NO	NO	NO	NO
SF ₆ *	1.99	3.08	4.47	4.27	5.20	9.34	9.37	9.71	8.41	10.99	12.54	16.73	19.64
NF ₃ *	NO												
Total (without LULUCF)	439.7	442.5	441.6	459.3	462.6	450.4	390.0	406.8	428.1	417.2	408.8	362.5	318.9
Total (with LULUCF)	394.6	409.6	411.8	425.5	425.3	429.6	365.7	375.6	412.8	398.0	402.6	358.7	312.8
Total (without LULUCF, with indirect)	439.7	442.5	441.6	459.3	462.6	450.4	390.0	406.8	428.1	417.2	408.8	362.5	318.9
Total (with LULUCF, with indirect)	394.6	409.6	411.8	425.5	425.3	429.6	365.7	375.6	412.8	398.0	402.6	358.7	312.8
Net CO ₂ from LULUCF	-45.1	-32.9	-29.9	-33.8	-37.3	-20.8	-24.3	-31.2	-15.3	-19.2	-6.2	-3.8	-6.2

	2016	2017	2018
CO ₂ emissions without net CO ₂ from LULUCF	234.2	223.2	231.7
CO ₂ emissions with net CO ₂ from LULUCF	232.3	212.8	234.2
CH ₄ emissions without CH ₄ from LULUCF	66.0	63.7	67.5
CH ₄ emissions with CH ₄ from LULUCF	66.0	63.7	67.5
N ₂ O emissions without N ₂ O from LULUCF	36.3	34.9	38.6
N ₂ O emissions with N ₂ O from LULUCF	36.4	35.0	38.8
HFCs*	887.30	1009.48	1349.26
PFCs*	NO	NO	NO
SF ₆ *	24.31	28.46	33.29
NF ₃ *	NO	NO	NO
Total (without LULUCF)	337.4	322.8	339.2
Total (with LULUCF)	335.7	312.5	341.9
Total (without LULUCF, with indirect)	337.4	322.8	339.2
Total (with LULUCF, with indirect)	335.7	312.5	341.9
Net CO ₂ from LULUCF	-1.7	-10.2	2.6

^{*}emissions presented in kt CO₂-eq.

2.1.1 Emissions of carbon dioxide

Fig. 2.2 shows a histogram of CO₂ emissions for the time series 1990-2018 in Ukraine. CO₂ emissions with LULUCF in 2018 amounted to 234.15 Mt, what is more than 2.5 times lower compared with 1990 (646.41 Mt).

CO₂ emissions in the Energy sector in 2018 amounted to 180.77 Mt, what is 69.5 % lower than the value in the base year. In 1990, CO₂ emissions were 592.25 million tons and by 67.8 % consisted of emissions from fuel combustion compared to total emissions in the country. Such structure of CO₂ emissions is due to the high energy intensity of the economy. The economic decline that followed the collapse of the Soviet Union led to a significant reduction in energy consumption and CO₂ emission reduction in the energy sector in the period from 1990 to 2018.

Carbon dioxide emissions in IPPU sector in 2018 amounted to 50.55 Mt, what is 54.3 % lower than the value in the base year, but 6.1 % higher than the value in 2017. The largest source of CO₂ emissions in the IPPU sector is the Iron and steel production that amounts to 75 % of total CO₂ emissions in sector. CO₂ emissions in sector in the period from 1990 to 2018 have decreased significantly due to a reduction in production output caused by the collapse of the USSR.

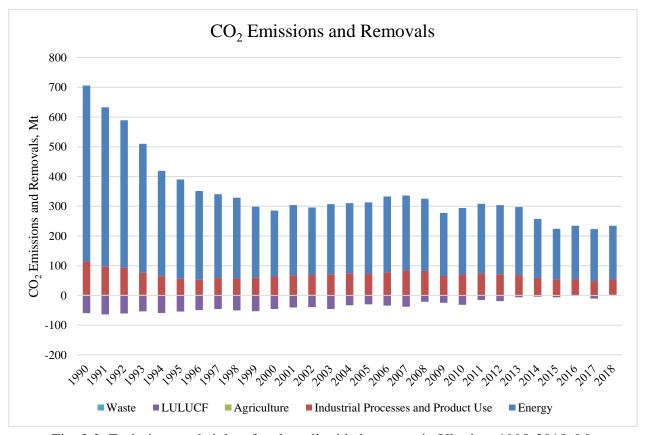


Fig. 2.2. Emissions and sinks of carbon dioxide by sector in Ukraine, 1990-2018, Mt

2.1.2 Methane emissions

Emissions of CH₄ are second largest after CO₂ if considering their share in total GHG emissions. In 2018, CH₄ emissions in Ukraine amounted to 67.54 Mt CO₂-eq. Compared to 1990, when the emissions were 182.61 Mt CO₂-eq., the emissions decreased by 63.0 %. In the last reporting year, the most significant source of methane emissions was the Energy sector -65.1 %, and significant emissions were observed in Agriculture (13.9 %) and Waste (16.4 %) as well. In the base year, the Energy and Agriculture sector larger contribution to the emissions (70.1 % and 23.6 % respectively), while Waste had lower value -5.6 %.

The largest CH₄ emissions in the Energy sector come from coal mines, as well as from production, transportation, storage, distribution, and consumption of oil and natural gas. Since 1990,

emissions in category 1.B Fugitive emissions from fuels decreased by almost 3 times – from 127.47 to 45.71 Mt CO_2 -eq.

In agriculture, the main source of CH₄ emissions is cattle enteric fermentation. The economic decline led to reduction in agricultural production, and consequently to reduced methane emissions in the Agriculture sector in 2018 to 375.68 kt, what is more than four times lower than the same total in 1990.

In the Waste sector, the greatest emissions of CH₄ occur during anaerobic decomposition of solid municipal waste, as well as from waste water. Compared to 1990, emissions from solid waste disposal sites increased by 24.5 %, and emissions from waste water decreased by 24.6 %.

Methane emissions in IPPU take place during the production of pig iron, silicon carbide, methanol, carbon black, ethylene, coke, and some other products. The volumes of CH_4 emissions in the sector over the period of 1990-2018 increased from 55.73 to 123.79 kt (by 122.1 %) due to increase of production volumes. Emissions of CH_4 from LULUCF on average for the period of 1990-2018 accounted for less than 0.1% of the total methane emissions (see Fig. 2.3).

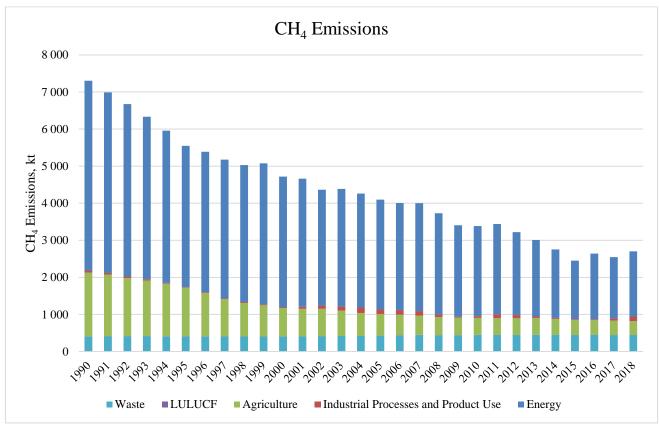


Fig. 2.3. Methane emissions in Ukraine by sector, 1990-2018, kt

2.1.3 Emissions of nitrous oxide

Nitrous oxide emissions in Ukraine in 2018 amounted to 38.82 Mt CO_2 -eq., which is lower than in 1990 by 27.6 % (53.63 Mt CO_2 -eq.). Compared with 2017, emissions of nitrous oxide increased by 10.9 %. The largest source of nitrous oxide emissions in Ukraine, as in the previous submissions, is the Agriculture sector – 88.8 % of total nitrous oxide emissions in 2018. Emissions from this sector occur from agricultural soils and the activities of manure management.

The second largest sector by nitrogen oxide emissions is Energy sector -4.0 % of the totals in 2018. In the IPPU sector emissions of N_2O had a 3.9 % of share in total emissions of the gas. The key sources of emissions in this sector are production of nitric and adipic acid, as well as use of nitrous oxide for medical purposes.

Moreover, N_2O emissions occur in the Waste sector (2.9 %), as well as small quantities in LULUCF (0.4 %).

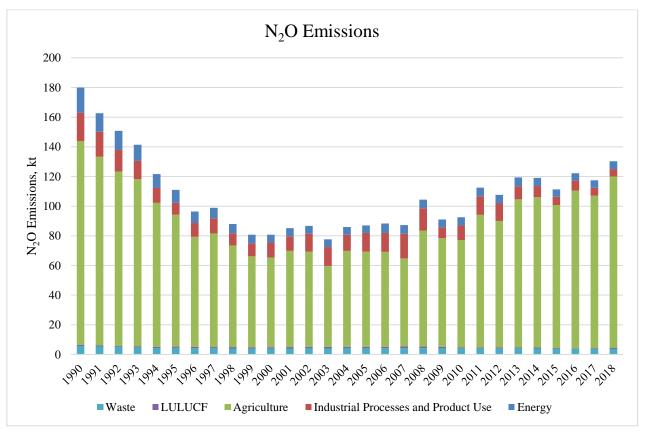


Fig. 2.4. Nitrous oxide emissions in Ukraine by sector, 1990-2018, kt

2.1.4 Emissions of hydrofluorocarbons, perfluorocarbons, sulfur hexafluoride, and nitrogen trifluoride

Emissions of HFCs, PFCs, SF₆, and NF₃ in Ukraine are not much significant in terms of volumes in comparison with total GHG emissions (0.4 % of the total emissions in 2018). HFCs emissions are associated with production and maintenance of refrigerators, air conditioners, use of fire extinguishing systems, foams and aerosols. PFCs emissions are associated with aluminum production, and emissions of sulfur hexafluoride – with use of gas-insulated high-voltage switches. Fig. 2.6 presents the diagram of HFCs, PFCs, and SF6 emissions in IPPU sector. From 1990 to 1996 inclusive, there were no HFCs emissions in the country, until 1996 HFCs were not used under these categories. Emissions of PFCs and SF₆ in 1990 amounted to 235.82 and 0.01 kt CO₂-eq. respectively. The sharp increase in HFCs emissions since 2000 is due to the beginning of intensive use of these gases in fire extinguishing and foam materials, and in SF₆ emissions – to an increased number of gas-insulated high-voltage circuit breakers in operation in electric networks of Ukraine. The sharp increase in HFCs emissions in 2017-2018 after the decreasing trend in 2015-2016 explains by recovery of economy of Ukraine from previous declines that resulted in growth of import of HFCs-contained equipment.

In 2018, there were no PFCs imports to Ukraine since there was no production need for it. Thus, PFCs emissions in 2018 are zero.

There are no emissions of NF_3 due to absence of activities related to production of photovoltaic elements in Ukraine, according to data obtained from the companies that use photovoltaic elements in their production processes.

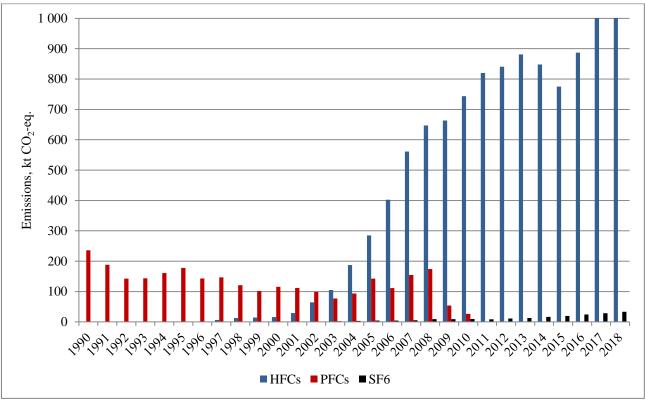


Fig. 2.5. Emissions of PFCs, HFCs and SF6 in Ukraine, 1990-2018, kt CO2-eq.

2.1.5 Trends in emissions of precursor gases and SO₂

Fig. 2.6 presents trends for all precursor emissions (nitrogen oxides, carbon monoxide, non-methane volatile organic compounds) and sulfur dioxide in 1990-2018. In 1990, more than 90 % of NOx, CO and SO_2 emissions occurred the Energy sector, almost all the rest – In the sector IPPU, since in the LULUCF sector emissions of these gases occur in very small amounts (about 4 % of the total), and in the Agriculture sector they do not occur at all. The leading pace of SO_2 emission reduction compared with GHG emissions in the period of 1990-2018 are mainly related with substitution of fuel oil (with a significant content of sulfur) by natural gas (sulfur content of which is small) in the fuel balance of Ukraine.

CO emission trends are explained by two key factors. The leading trend of CO emission reduction compared with GHG emissions associated primarily with coal substitution by natural gas in private households. At the same time, the influence of this factor is recently offset by an increase in the volume of fuel consumption by road transport, which is the main source of CO emissions in the Energy sector.

NMVOC emissions are observed in the sectors Energy, IPPU and Agriculture, as well as in the LULUCF sector in small amounts during biomass burning.

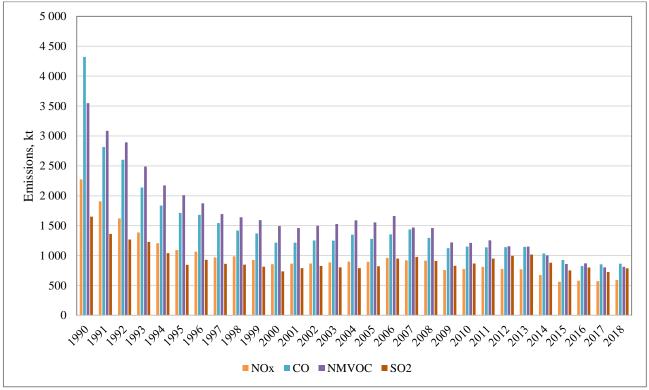


Fig. 2.6. Precursor and SO₂ emissions in Ukraine, 1990-2018, kt

2.2 Emission trends by sector

Figure 2.7 and Table 2.2 present GHG emissions and removals in Ukraine by sector for the time series from 1990 to 2018.

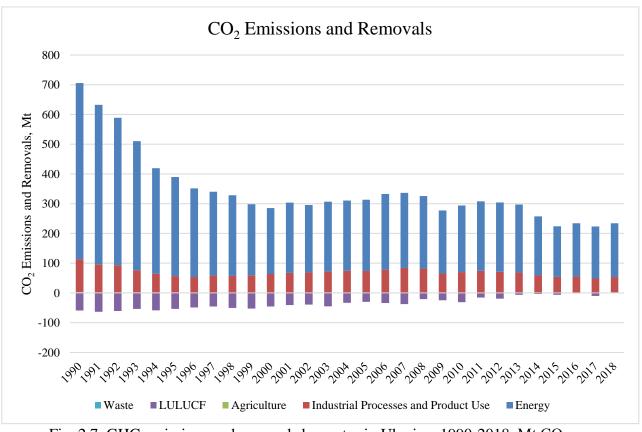


Fig. 2.7. GHG emissions and removals by sector in Ukraine, 1990-2018, Mt CO₂-eq.

Table 2.2. Greenhouse gas emissions in Ukraine by sector for the period of 1990-2018 (Mt CO₂-eq.)

	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002
Energy	725.3	661.6	615.8	547.0	460.0	431.4	395.4	377.7	366.0	335.8	311.3	324.2	306.6
Industrial Processes and Product Use	118.0	101.1	97.2	79.2	67.0	58.0	56.2	61.9	59.9	62.5	67.1	71.6	74.5
Agriculture	86.8	81.1	75.8	72.6	65.8	60.6	51.6	48.0	43.1	39.4	37.3	38.0	37.8
LULUCF	-59.2	-63.4	-60.5	-53.5	-58.6	-53.7	-48.9	-45.3	-50.3	-52.6	-45.5	-40.6	-38.8
Waste	11.9	11.9	11.9	11.8	11.6	11.5	11.4	11.4	11.4	11.3	11.4	11.5	11.6
Total (without LULUCF)	942.1	855.7	800.7	710.6	604.3	561.5	514.7	499.0	480.3	449.0	427.2	445.3	430.4
Total (with LULUCF)	882.9	792.2	740.2	657.1	545.7	507.9	465.8	453.7	430.0	396.5	381.7	404.7	391.6
Total (without LULUCF, with indirect)	942.1	855.7	800.7	710.6	604.3	561.5	514.7	499.0	480.3	449.0	427.2	445.3	430.4
Total (with LULUCF, with indirect)	882.9	792.2	740.2	657.1	545.7	507.9	465.8	453.7	430.0	396.5	381.7	404.7	391.6

	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015
Energy	316.4	314.6	315.1	328.9	327.0	313.3	275.4	286.4	296.5	290.3	282.2	246.7	210.8
Industrial Processes and Product Use	78.1	81.3	80.6	85.0	92.2	88.8	68.4	74.5	80.8	77.3	72.4	61.9	56.5
Agriculture	33.5	34.8	33.9	33.3	31.1	36.0	33.9	33.5	38.4	37.2	41.7	41.5	39.5
LULUCF	-45.1	-32.9	-29.9	-33.8	-37.3	-20.8	-24.3	-31.2	-15.3	-19.2	-6.2	-3.8	-6.2
Waste	11.7	11.9	12.0	12.1	12.4	12.3	12.3	12.4	12.5	12.4	12.5	12.4	12.2
Total (without LULUCF)	439.7	442.5	441.6	459.3	462.6	450.4	390.0	406.8	428.1	417.2	408.8	362.5	318.9
Total (with LULUCF)	394.6	409.6	411.8	425.5	425.3	429.6	365.7	375.6	412.8	398.0	402.6	358.7	312.8
Total (without LULUCF, with indirect)	439.7	442.5	441.6	459.3	462.6	450.4	390.0	406.8	428.1	417.2	408.8	362.5	318.9
Total (with LULUCF, with indirect)	394.6	409.6	411.8	425.5	425.3	429.6	365.7	375.6	412.8	398.0	402.6	358.7	312.8

	2016	2017	2018
Energy	224.8	217.8	226.3
Industrial Processes and Product Use	58.1	51.8	56.5
Agriculture	42.2	41.1	44.2
LULUCF	-1.7	-10.2	2.6
Waste	12.3	12.2	12.2
Total (without LULUCF)	337.4	322.8	339.2
Total (with LULUCF)	335.7	312.5	341.9
Total (without LULUCF, with indirect)	337.4	322.8	339.2
Total (with LULUCF, with indirect)	335.7	312.5	341.9

The largest contribution to GHG emissions has the Energy sector. Its share in the total emissions for the period of 1990-2018 fluctuated within the range of 66.2-84.9 % with the LULUCF sector, and of 66.1-77.3 % without the LULUCF sector. Decline of emissions in the sector in 2018 compared to 1990 is 68.8 % – from 725.32 to 226.30 Mt CO₂-eq. Compared to 2017 GHG emissions has increased by 3.9 %.

The largest source of GHG emissions in the Energy sector is thermal power plants (TPPs), which accounted for 37.2-45.2 % of total GHG emissions in the sector. Particularly, along with the tendency of emission reduction in industrial categories, the share of emissions from coal burning at TPPs increased annually. GHG emissions from transport activity (category 1.A.3) amounted from 10.3 % to 16.0 % from Energy sector during the whole time series and started to decrease rapidly starting from 2013. The share of GHG emissions in the category 1.A.4 Other Sectors in 1990-2018 was 12.1-15.4 %. Reduction of emissions in the category in the recent years is related to reduction of fuel consumption in the commercial as well as residential sectors. It should be noted that in the category 1.A.5 Other, which corresponds to emissions from use of fuels for military purposes, in the period of 1990-2013 emissions were insignificant and amounted to around 0.01 %. In 2014-2018, the share of emissions from this category was 0.2 % of the total emissions in the Energy sector.

Emissions in category 1.B Fugitive emissions were 17.6-28.7 % of total sector's emissions, and in recent years, the share of emissions in the category has been reducing.

The share of emissions in IPPU sector in the period of 1990-2018 ranged from 11.4% to 21.7% of the total national GHG emissions, including LULUCF (or 10.3-19.9% excluding LULUCF). Total GHG emissions in the sector decreased from 117.99 Mt CO₂-eq. in 1990 to 56.63 Mt CO₂-eq. in 2018, i.e. by 52.1%.

The largest source of carbon dioxide emissions in this sector is iron, steel, ammonia and ferroalloys production. During the period of 1990-2004, there was steel production and export growth with a simultaneous decrease of volumes of open-hearth steel production. The growth of steel production led to the growth of emissions associated with the technological process, and decrease in open-hearth steel production – to reduction of emissions related to energy consumption. The main factor that caused the increase in CO₂ emissions in 2005-2007 was the increase in production volumes. The period of 2008-2009 is characterized by a sharp decline in production volumes due to the global economic crisis. As a result of the crisis, Ukrainian producers reduced production volumes and started to close down open-hearth furnaces, which led to further decrease of emissions associated with energy consumption, because the liquid oxygen gasification technology gained popularity. At the same time, reducing iron production led to transfer of blast furnaces into the idle mode that caused to the increase of significance of the technological process in the total emissions in 2009-2018. The increase in total emissions in 2018 compared to 2017 is associated with a growth in industrial production by Ukrainian enterprises, as well as a increase in imports of industrial products.

The share of Agriculture sector in the total volume of emissions during 1990-2018 varied in the range from 7.3% to 13.1% (or 6.7-13.0% excluding LULUCF). The emissions fluctuation in the sector is related to a change in the number of livestock animals and their herd structure; redistribution of manure shares by MMS; varying amounts of fertilizer and liming materials applied; areas under certain crops and their productivity.

In the LULUCF sector, in 2018 CO₂ emissions exceeded GHG removals. The value of reductions related to the total emissions in the sector reaches 11.7 % in 1999. In 2018 GHG emissions are equal to 0.8 % of total emissions in Ukraine.

In 2018 net GHG emissions is 2.64 Mt CO₂-eq., in the contrast with the removals in 1990 (59.19 Mt CO₂-eq.). Such dynamic is related to first of all GHG emissions dynamic from mineral soils in Cropland category (in 2018 in the category 48.24 Mt CO₂-eq. emissions took place, what is 52.80 Mt CO₂-eq. more, than the level of 1990, when 4.6 Mt CO₂-eq. GHG removals occurred), what is connected with larger volumes of agricultural crop production, change in structure of crops and lower level of fertilizers applied, especially organic, in recent years.

Moreover, forest fires, drainage of organic soils in forests and in Cropland and to a lesser extent in Grassland land-use categories have its influence. It should also be noted that in 1990 a large share of GHG emissions in this category had emissions from non-energy peat extraction, resulting in

12.03 Mt CO₂-eq., but by 2018 the decline in peat production and peat areas reduced the emissions down to the level of 0.27 Mt CO₂-eq.

The share of Waste sector is small, but it has a stable trend. From 1990 to 2018, emissions in this sector has slightly raised. Compared to the base year, they increased by 2.2 %, from 11.92 to 12.18 Mt CO₂-eq. that is caused by the sharp increase of activity on MSW disposal during 1998-2013 along with a slow pace of its biodegradable part decomposition.

3 ENERGY (CRF SECTOR 1)

3.1 Sector Overview

The Energy sector includes emissions from combustion of carbonaceous fuels (category 1.A Fuel Combustion Activities), as well as greenhouse gases produced as a result of leaks in extraction, processing, storage, transportation, and consumption of fuels (category 1.B Fugitive Emissions from Fuels).

In the reporting year, GHG emissions in the Energy sector amounted to 226.30 mln tons of CO₂-eq. or approximately 67.0 % of all GHG emissions in Ukraine (excluding sinks in the LULUCF sector), and decreased by 68.8 % vs the baseline 1990. Compared with 2017, emissions in the sector increased by 3.9 %.

Fig. 3.1 shows changes in GHG emissions in the Energy sector. In 1990, the proportion of carbon dioxide, methane, and nitrous oxide in the total emissions in the sector accounted for 81.7%, 17.6% and 0.7%, while in 2018-79.9%, 19.4%, and 0.7%, respectively.

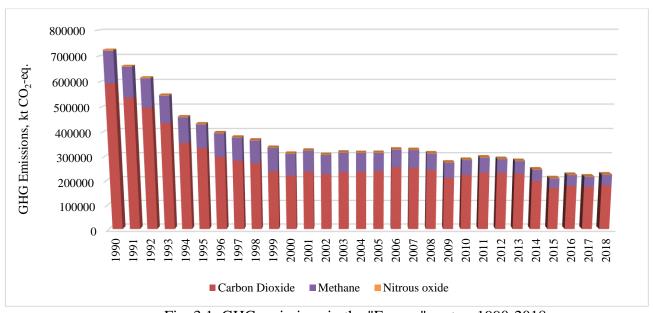


Fig. 3.1. GHG emissions in the "Energy" sector, 1990-2018

In 2018, approximately 79.8 % of emissions in the sector accounted for emissions in category 1.A Fuel Combustion Activities, and emissions in category 1.B Fugitive Emissions from Fuels -20.2 % (Table 3.1).

Table 3.1. GHG emissions in the "Energy" sector, mln tons of CO₂-eq.

Category	1990	1995	2000	2005	2010	2012	2013	2014	2015	2016	2017	2018
1 Energy total, in-	725.32	431.38	311.34	315.11	286.38	290.29	282.15	246.74	210.82	224.76	217.75	226.30
cluding:												
1.A Fuel Combus- tion Activi- ties	597.85	335.35	222.13	239.41	223.70	232.60	228.74	198.76	169.69	178.81	174.75	180.59
1.B Fugi- tive Emis- sions from Fuels	127.47	96.02	89.21	75.70	62.68	57.69	53.41	47.98	41.14	45.96	43.00	45.71

The dynamics of GHG emissions in the Energy sector in the period of 1990-2018 were diverse on certain parts of the time series.

In 1990-1993 GHG emissions were gradually and rapidly reducing, which is due to the inertia of the collapse of the Ukrainian SSR economy and of the Soviet Union as a whole.

In 1994, there was the greatest reduction of GHG emissions – by 15.9 % compared to the previous year 1993, followed by a slowdown of annual reductions till 2000, inclusive. This period is characterized by a sharp reduction in production capacity and idle periods for enterprises, as well as gradual "aging" of the industrial capital and the national infrastructure.

In the period of 2000-2007, there was a slight increase of GHG emissions along with a faster rate of capacity buildup in the production sector. Over the reporting period, GHG emissions increased by 7.1 %, due to a number of macro-economic, political, administrative, and social factors. Among the key reasons, the following should be noted: opening of new international markets with tough competition, political and economic measures to improve energy efficiency in the energy sector in Ukraine, international economic and personnel cooperation on energy efficiency and energy saving, energy price trends, transition to private property management.

Since 2007, the key influence on the trend of annual GHG emissions was exerted by the global economic crisis of 2008, which affected the non-production sector mostly, as well as the situation in the global markets of energy-intensive products (e.g. metallurgy), and the policy of natural gas substitution with coal by introducing the pulverized coal injection technology.

Recent years are characterized by general decline in industrial production and corresponding reduce of production and GHG emissions in the energy sector.

3.2 Fuel Combustion Activities (CRF category 1.A)

Category 1.A Fuel Combustion Activities includes emissions from combustion of carbonaceous fuels.

The estimation of CO₂ emissions in accordance with [1] was performed by two methods – sectoral and baseline. Estimation of other GHG emissions was held with the sectoral approach.

In 2018, emissions from fuel combustion amounted to 180.59 mln tons of CO₂-eq. and decreased as compared to 1990 by 69.8 %, while in comparison with 2017 increased by 3.3 %. More detailed information is presented in Fig. 3.2.

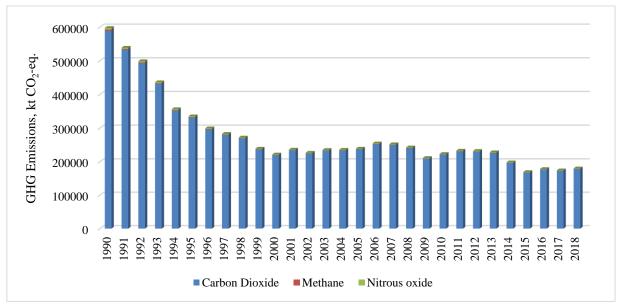


Fig. 3.2. GHG emissions in category 1.A Fuel Combustion Activities (sectoral approach), 1990-2018

The key source of greenhouse gases is category 1.A.1 Energy Industries, which in 1990 accounted for 45.6 % of all emissions in the category and in 2018 – 51.8 %; the share of 1.A.2 Manufacturing Industries and Construction was 18.6 % in 1990 and 10.3 % in 2018; 1.A.3 Transport – 18.7 % and 20.0 %, respectively; 1.A.4 Other sectors – 17.1 % and 17.6 %, respectively, the contribution of 1.A.5 Other is negligible until 2013, in 2018 it amounted to 0.3 % (according to Table 3.2).

	Table 3.	2. 0110	CIIIISSIO	iis iii cat	egory 1.	TTT UCT	Comous	11011 7 101	i vitics, i	IIII tolis	OI COZ	cq.
Category	1990	1995	2000	2005	2010	2012	2013	2014	2015	2016	2017	2018
1.A Fuel Combustion Activities to- tal, including:	597.85	335.35	222.13	239.41	223.70	232.60	228.74	198.76	169.69	178.81	174.75	180.59
1.A.1 Energy Industries	272.68	194.73	115.78	120.79	121.41	131.21	127.12	109.35	90.16	98.86	90.45	98.75
1.A.2 Manufacturing Industries and Construction	111.26	24.99	31.23	36.79	22.60	22.92	23.71	20.39	19.03	18.40	18.05	18.42
1.A.3 Transport	111.79	49.22	34.55	39.19	40.20	39.36	39.51	35.89	31.10	32.89	34.94	34.96
1.A.4 Other sectors	102.01	66.35	40.50	42.55	39.46	38.99	38.32	32.73	28.98	28.12	30.78	27.99
1.A.5 Other	0.11	0.06	0.06	0.08	0.03	0.12	0.08	0.40	0.41	0.53	0.53	0.48

Table 3.2. GHG emissions in category 1.A Fuel Combustion Activities, mln tons of CO₂-eq.

Changes in the structure of emissions from fuel combustion in the period of 1990-2018 by IPCC categories are presented in the diagram (Fig. 3.3).

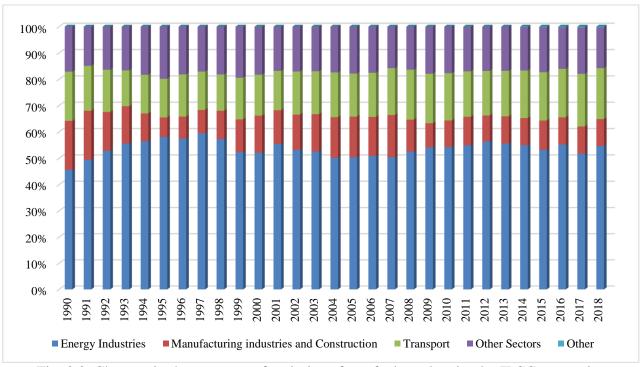


Fig. 3.3. Changes in the structure of emissions from fuel combustion by IPCC categories

3.2.1 Reference CO₂ emission calculation approach. Comparison of sectoral and reference approaches

As a cross-check of the total amount of CO_2 emissions from fuel combustion, comparison of the results of the reference and sectoral approach application was performed (see Table 3.3).

The emission estimation for the reference approach was held in accordance with equation 6.1 [1].

The emission factors for estimation of GHG emissions under the reference approach were NCV and the carbon content same as the values applied in the sectoral approach (see Annex A2.5). Exceptions are emission factors for coals, which were determined as the average for Ukraine as a weighted average value for the coal used in TPPs and for other needs in the country as a whole.

Carbon withdrawal was held in several stages. In the first stage under the reference approach carbon related to non-energy use of fuels according to form 4-MTP was withdrawn. Besides, when

estimating non-energy consumption of fuels, consumption of hard coal processing products for the purpose of production of carbon black in the country was taken into account.

Due to the fact that emissions from use of coke in ferrous metal production and of natural gas in ammonia production are estimated in accordance with [1] in categories 2.C.1 and 2.B.1 respectively, at the second stage for an adequate comparison of the approaches the carbon contained in coke and natural gas used for the processes above was defined as withdrawn (stored) carbon.

Table 3.3. Comparison of CO₂ emissions from fuel combustion determined using the refer-

ence and sectoral approaches

Year	CO ₂ emissions determined using the reference approach, mln t	CO ₂ emissions determined using the sectoral approach, mln t	Discrepancy between reference and sec- toral approaches, %
1990	608.89	588.77	3.42
1991	607.27	533.14	13.91
1992	525.63	493.09	6.60
1993	418.70	431.68	-3.01
1994	349.85	352.27	-0.69
1995	342.88	331.26	3.51
1996	283.00	296.01	-4.39
1997	267.35	279.77	-4.44
1998	258.89	269.52	-3.94
1999	239.97	236.75	1.36
2000	229.81	219.70	4.60
2001	232.06	234.10	-0.87
2002	243.29	224.75	8.25
2003	232.21	233.15	-0.40
2004	242.71	233.57	3.91
2005	249.79	237.07	5.36
2006	259.67	252.26	2.94
2007	260.54	249.92	4.25
2008	245.66	240.51	2.14
2009	209.75	209.51	0.12
2010	219.17	221.30	-0.96
2011	232.55	231.00	0.67
2012	225.91	230.10	-1.82
2013	217.05	226.23	-4.06
2014	196.82	196.49	0.17
2015	176.60	167.61	5.37
2016	174.44	176.67	-1.26
2017	166.17	172.61	-3.73
2018	175.56	178.37	-1.58

3.2.2 International Bunker Fuels (CRF category 1.D.1)

3.2.2.1 International Aviation (CRF category 1.D.1.a)

The approach applied to distribution of GHG emissions between domestic and international aviation is consistent with the approach described in [1]. Emissions from international aviation include emissions from aircraft operations where the departure or destination airports are located outside Ukraine. For more details on the technique of estimating GHG emissions from air transport, as well as the input data, see Annex A2.7.

GHG emissions from international aviation in 2018 amounted to 1551.06 kt of CO₂-eq., which is 25.2 % higher than the same indicator in 2017 and 37.1 % lower than in 1990. For trends on GHG emissions from domestic and international aviation see Fig. 3.8.

3.2.2.2 International Waterway Navigation (CRF category 1.D.1.b)

National statistics do not include data on international bunker waterway transportations. In this connection, the indirect estimation method was used, which is based on use of data on total consumption of fuels by water transport (form No. 4-MTP) and the sea transport cargo turnover (coastal/international transportation) plus the river one (domestic/foreign traffic) [31].

The distribution of fuels for international transportation was performed based on the formula:

$$FC_{1,d,1,b} = FC_{H50} \cdot k_{1,d,1,b};$$
 (3.1)

where $FC_{1.d.1.b}$ is consumption of fuels by international waterway transport (gasoil, fuel oil), tons;

 FC_{H50} - consumption of fuels by TEA H50 "Water Transport" for transportation needs (gasoil, fuel oil), tons;

 $K_{1.d.1.b}$ - the factor of fuel distribution into international/coastal transportation, in relative terms, which is defined by the following expression:

$$k_{1.d.1.b} = \frac{PR_{int} + PS_{int}}{PR + PS};$$
 (3.2)

where

 PR_{int} is the volume of cargo transportation by international river transport, thd tons;

 PS_{int} is the volume of cargo transportation by international sea transport, thd tons;

PR - total volume of cargo transportation by river transport, thd tons;

PS - total volume of cargo transportation by sea transport, thd tons.

The volumes of cargo transportation were taken from statistical yearbooks [3-10], [29-32].

The trends in cargo for national and international navigation may be observed in ANNEX 2 fig. A.2.1, fig. A.2.2.

The method used for estimating the emissions corresponds to Tier 2 for CO₂ emissions from diesel combustion and Tier 1 – for fuel oil and non-CO₂ gases in accordance with [1].

GHG emissions from international water transport in 2018 amounted to 52.58 kt of CO_2 -eq., which is 18.5% lower than the same indicator in 2017 and 30.4 times lower than in 1990. GHG emissions from domestic and international navigation for 1990-2018 are presented in the Fig.3.10.

3.2.2.3 Category-specific recalculations

No recalculation were performed in the category

3.2.3 Use of fuels as a raw material and non-energy use of fuels

Emissions in category 1.A Fuel Combustion Activities include emissions from fuel combustion for heat and electricity production in industrial processes, transportation, etc. However, fuel is also used for non-energy needs (for example, as solvents, lubricants, etc.; as feedstock for ammonia, rubber, plastic production, etc.; as a reducing agent – coke in the blast furnaces). Emissions from non-energy fuel use are presented in the IPPU sector in the following sub-categories:

- 2.B.1 Ammonia Production natural gas as a raw material in production of ammonia;
- 2.C.1 Iron and Steel Production non-energy use of coke in production of pig iron in the blast furnace process;
- 2.C.2 Ferroalloys Production coke in production of ferroalloys;
- 2.B.8 Petrochemical and Carbon Black Production coal raw material for carbon black production;
- 2.D.1 Lubricants Use non-energy use of oils;
- 2.D.2 Paraffin Wax Use non-energy use of paraffin in manufacture of industrial products.

To improve transparency of accounting for emissions from coke use, the balance of coking coal, coke, and coke gas was built, which is presented in Annex A4.4.

The amount of fuel that was used for non-energy needs was determined on the basis of statistical reporting form No. 4-MTP, where enterprises enter information on fuel quantities used as raw materials for chemical, petrochemical, and other non-fuel production. The exception is natural gas and coke, where the volumes of their use as raw materials were determined according to data of companies producing ammonia, cast iron, steel and carbon black, respectively.

Thus, fuel used for non-energy purposes were not considered in calculation of GHG emissions in category 1.A Fuel Combustion Activities.

3.2.4 CO₂ sequestration

Ukraine does not conduct sequestration of CO₂ released during combustion of carbon-containing fuels for long-term storage purposes, for example, in geological formations. For this reason, no estimation of the volume of sequestered CO₂ in the Energy sector was performed.

3.2.5 CO₂ emissions from biomass

In accordance with [1], CO_2 emissions from combustion of biomass for energy purposes were not included into the total emissions in the "Energy" sector but are presented separately, as reference data. Emissions of CH_4 and N_2O from biomass for energy purposes are accounted for in category 1.A Energy Industries.

In the emission calculations, biomass includes charcoal, firewood, briquettes and pellets from wood, sawdust briquettes, and biodiesel from oils, sugar and starch crops, and other types of primary fuels (sawdust, bark, corn cobs, etc.).

The method of estimating emissions from biomass, activity data and emission factors are presented in Annex A2.

3.2.6 National features

National characteristics of energy statistics of Ukraine, as well as changes in its structure during the period of 1990-2018, are described in Annexes A2.1-A2.2 and form the basis for processing of input data within the current GHG inventory.

3.2.7 Energy Industries (CRF category 1.A.1)

3.2.7.1 Category description

In 2018, emissions in category 1.A.1 Energy Industries amounted to 98.76 mln tons of CO_2 -eq., or about 54.7 % of the total emissions in category 1.A Fuel Combustion Activities, and decreased by 63.8 % compared with the baseline 1990 (see Table 3.4), they increased by 9.2 % compared to 2017.

Table 3.4. GHG emissions in the category 1.A.1 Energy Industries, mln tons of CO₂-eq.

Emission category	1990	1995	2000	2005	2010	2011	2012	2013	2014	2015	2016	2017	2018
1.A.1 Energy Industries, total	272.68	194.73	115.78	120.79	121.41	128.29	131.21	127.12	109.35	90.16	98.86	90.45	98.76
1.A.1.a Electricity and Heat Production	255.52	187.77	108.07	111.58	111.75	118.45	123.07	119.19	103.31	85.91	94.50	86.83	93.57
1.A.1.b Petroleum Refining	6.36	1.88	1.40	1.23	0.87	0.90	0.57	0.65	0.35	0.30	0.29	0.34	0.37
1.A.1.c Manufacture of Solid Fuel and Other Energy Industries	10.80	5.08	6.31	7.98	8.79	8.92	7.57	7.28	5.69	3.96	4.07	3.28	4.81

3.2.7.1.1 Electricity and Heat Production (CRF category 1.A.1.a)

This category includes emissions from stationary fuel combustion in production of electricity and heat by TPPs, CHPs, HPs, heat power plants of enterprises, waste incinerators.

In view of the fact that in the constantly changing structure of the Ukrainian economy lots of power generation facilities of industrial enterprises have been repeatedly transferred to the balance sheet of other companies, thus without changing the actual technological components they were accounted for in other types of economic activities, so with the view of harmonizing the time series category 1.A.1.a Electricity and Heat Production also includes activities of enterprises.

In the category Electricity and Heat Production, GHG emissions in 2018 amounted to 93.57 mln tons of CO₂-eq., having increased with respect to 2017 by 7.8 %, and decreased by 63.4 % compared with the baseline 1990. Since acceleration of electricity production volumes occurred mainly due to the higher load on capacity of large TPPs, which are the key consumers of coal in the country, the share of this type of fuel in the balance increased. Another factor influencing the structure of fuels consumed in the category is reduction of natural gas consumption and its corresponding replacement with coal after 2006.

GHG emissions in category 1.A.1.a by fuels groups are presented in Fig. 3.4.

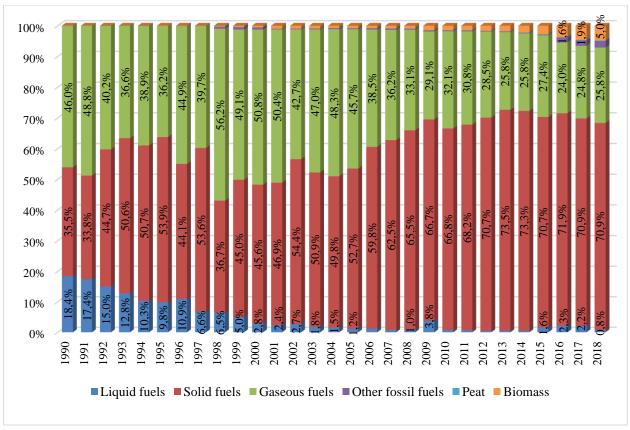


Fig. 3.4. GHG emissions in category 1.A.1.a by fuel groups, % of the category

The structure of GHG emissions in the category 1.A.1.a Electricity and Heat Production by energy facilities for 1998-2018 is presented in Fig. 3.5.

For the whole period 1998-2018, the largest share of GHG emissions in the category corresponds to TPPs – from 42.8 % to 62.9 %, for the rest: CHPs – from 11.9 % to 16.9 %, HPs – from 45.3 % to 20.2 %.

In 2018 GHG emissions from TPPs were equal to 58.88 mln tons of CO₂-eq., having increased with respect to 2017 by 9.1 % and 9.1 % lower than in 1998.

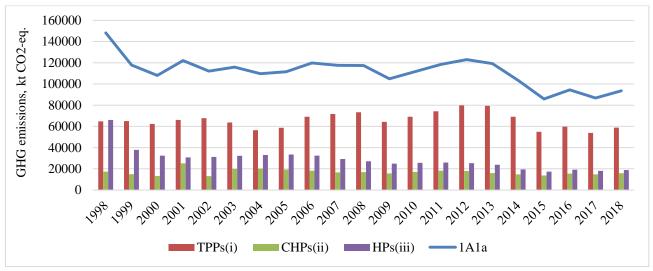


Fig.3.5. The structure of GHG emissions in the category 1.A.1.a Electricity and Heat Production by energy facilities, 1998-2018

It should be noted that during resent years the specific fuel consumption (GHG emissions per MWh electricity produced) has the value of 1.0 t CO₂-eq./MWh and even higher because all TPPs blocks are older than 40–50 years and, in order to extend the lifetime, operating steam temperatures are lower, which leads to a higher fuel consumption.

3.2.7.1.2 Petroleum Refining (CRF category 1.A.1.b)

Enterprises in this category include petroleum refineries and gas processing plants. This category accounts for burning fuels directly for technological processes. The key types of fuels in this category are natural gas, refinery feedstock and fuel oils.

In this category, GHG emissions increased by 8.6% in 2018 compared to 2017 and amounted to 0.37 mln tons of CO_2 -eq., which is due to increasing of production of refined petroleum products in 2018. Compared to 1990, GHG emissions reduced by 17.1 times.

3.2.7.1.3 Manufacture of Solid Fuels and Other Energy Industries (CRF category 1.A.1.c)

This category includes emissions from fuel combustion at the enterprises that are engaged in production of energy materials and other energy industries.

The current inventory in the category takes into account emissions from coal bed methane recovery (with generation of heat and power).

Emissions in this category in 2018 amounted to 4.81 mln tons of CO_2 -eq, which is 46.5 % higher than the same indicator in 2017 and 55.4 % lower than the baseline 1990.

3.2.7.2 Methodological issues

GHG emissions from fossil fuel combustion in all categories were calculated using the methodology described in Annex 2. The key principles for definition of activity data are presented in section A2.2, analysis of the statistical base in Ukraine – in section A2.1, emission factors – in section A2.5, summary data on use of fuels in Ukraine in 2018 – in section A2.9 . National circumstances for 2014 - 2018 are provided in Annex A2.10.

3.2.7.2.1 Electricity and Heat Production (CRF category 1.A.1.a)

GHG emissions from coal combustion at the TPPs were estimated based on the methodology, developed by Coal Energy Technology Institute of NASU [21] according to which the country

specific NCV, oxidation factor and carbon content as well as mass combusted were determined for the period 1990-2018 (Annex A2.6.2).

Other fuels consumed in subcategories "Electricity Generation" (i), "Combined Heat and Power Generation" (ii), and "Heat Plants" (iii) were identified based on national statistical forms, see Annex A2.2.

Due to the fact that the national statistics for 1990-1997 does not make it possible to disaggregate data on fuel consumption into the sub-categories "Electricity Generation" (i), "Combined Heat and Power Generation" (ii), and "Heat Plants" (iii), emissions in the category "Electricity and Heat Production" were not disaggregated by the sub-categories above for this period.

Estimation of CO_2 emissions for coal combusted at the TPPs was performed in the manner corresponding to Tier 3 [1], for natural gas, coal coke, gasoline, diesel and LPG – to Tier 2, for other fuels – to Tier 1.

Calculation of emissions of non-CO₂ gases for all fuels was held under Tier 1 [1].

This category also includes GHG emissions from waste incineration to produce heat energy. In the total CO₂ emissions from combustion of waste of non-biogenic origin at waste incineration plants were implicitly taken into account. CO₂ emissions from combustion of biogenic waste at incineration plants are separately presented as burning of biomass in accordance with [1].

3.2.7.2.2 Petroleum Refining (CRF category 1.A.1.b)

This category includes emissions from combustion of fuels, the energy of which is directly used for oil refining technological processes. The key fuels in the category are: natural gas, refinery feedstock and fuel oils.

The data on energy use of fuel in this sub-category are based on the total fuel consumption for oil refining by fuels under form 11-MTP (fuel).

Estimation of CO₂ emissions was held under the method corresponding to Tier 1 in accordance with [1].

3.2.7.2.3 Manufacture of Solid Fuels and Other Energy Industries (CRF category 1.A.1.c)

This category includes all GHG emissions from use of solid fuel production and other activities in the fuel and energy sector.

Estimation of CO_2 emissions from combustion of natural gas, gasoline, diesel and LPG was held under the method corresponding to Tier 2 in accordance with [1], for other fuels, as well as for non- CO_2 gases – to Tier 1.

GHG emissions from coal bed methane recovery were estimated according to equation 1.4.5. [1]. The input data on coal bed methane recovery detailed shown in chapter 3.3.1.2.1 "Underground mines" below.

3.2.7.3 Uncertainties and time series-consistency

Uncertainties of activity data and emission factors are present in Table 3.5.

Table 3.5. Uncertainties of activity data and emission factors in category 1.A.1 Energy Industries

Temp of fuel	I montainty of activity data 0/	Uncertainties of emissions factors, %							
Type of fuel	Uncertainty of activity data, %	CO_2	CH ₄	N ₂ O					
Liquid fuel	4.12	2	150	500					
Solid fuel	1.52	5	150	500					
Gaseous fuel	4.90	5	150	500					
Other types of fuels	32.11	5	150	500					
Biomass	30.25	5	150	500					

Quantification of the uncertainty was performed on the basis of the above uncertainty values of activity data and emission factors according to the methodology [1].

Estimated total GHG emission uncertainty in this category is 4.53 %.

The most significant impact on the overall uncertainty of GHG emission estimation in this category is produced by CO_2 emission estimation uncertainty in the category Electricity and Heat Production – the uncertainty of emission factors and activity data for solid fuel.

3.2.7.4 Category-specific QA/QC procedures

As part of QA/QC procedures, in addition to the general QA/QC procedures, the following were performed:

- comparison of data on fuel consumption according to forms of statistical reporting No.
 4-MTP and No. 11-MTP for 2010-2015;
- comparison of data on coal consumption for the period of 2003-2018 obtained from public power stations, with statistics. The average discrepancy for the specified period is about 1%. A more conservative value was used for calculation;
- in collaboration with SSSU's specialists, analysis of statistical reporting forms containing the source data for GHG emission calculation was conducted;
 - balance sheets for various types of fuel were developed (see Annex 4).

3.2.7.5 Category-specific recalculations

In this category, no recalculations were made.

3.2.7.6 Category-specific planned improvements

In this category, no improvements are planned.

3.2.8 Manufacturing Industries and Construction (CRF category 1.A.2)

3.2.8.1 Category description and methodological issues

This category includes GHG emissions from stationary combustion of fossil fuels used for industrial purposes in industry, construction, and extraction of non-energy materials.

In 2018, emissions in category 1.A.2 Manufacturing Industries and Construction amounted to 18.42 mln tons of CO₂-eq. or about 10.2 % of the total emissions in category 1.A Fuel Combustion, and decreased by 83.5 % compared with 1990 (see Table 3.7). Compared with 2017 emissions increased by 2.0 %.

Table 3.7. GHG emissions in category 1.A.2 Manufacturing Industries and Construction, mln tons of CO₂-eq.

Emission category	1990	1995	2000	2005	2010	2011	2012	2013	2014	2015	2016	2017	2018
1.A.2 Manufacturing Industries and Construction total, including:	111.26	24.99	31.23	36.79	22.60	25.27	22.92	23.71	20.39	19.03	18.40	18.05	18.42
1.A.2.a Iron and Steel	55.35	15.39	25.19	24.59	13.42	14.75	13.92	14.56	12.45	11.82	10.37	9.94	10.19
1.A.2.b Non-Ferrous Metals	0.65	0.61	0.47	0.67	0.63	0.61	0.36	0.73	0.85	0.84	0.76	0.80	0.90
1.A.2.c Chemicals	3.52	1.57	0.79	1.11	0.82	1.04	0.99	0.73	0.46	0.41	0.54	0.36	0.56
1.A.2.d Pulp, Paper and Print	0.14	0.20	0.01	0.05	0.04	0.04	0.05	0.02	0.01	0.04	0.05	0.04	0.05
1.A.2.e Food Processing, Beverages, and Tobacco	3.64	2.42	0.90	0.83	0.58	0.67	0.63	0.53	0.52	0.43	0.50	0.51	0.58
1.A.2.f Non-Metal Minerals	16.10	2.61	2.29	5.83	4.27	5.04	4.07	3.98	3.46	3.34	3.66	3.33	3.62
1.A.2.g Other Industries	31.85	2.20	1.56	3.72	2.84	3.13	2.90	3.17	2.63	2.14	2.52	3.07	2.51

Changes in the structure of emissions from fuel combustion in the period of 1990-2018 by category 1.A.2 are presented in the diagram (Fig. 3.6).

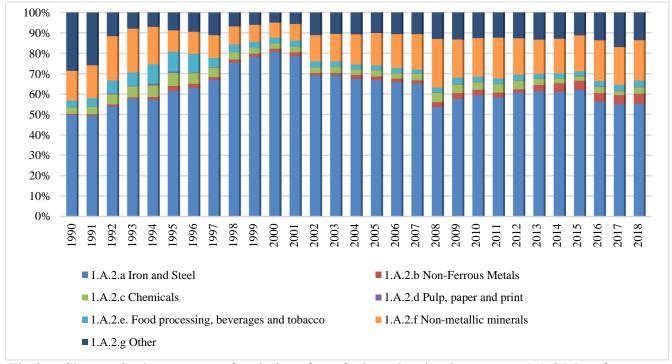


Fig.3.6. Changes in the structure of emissions from fuel combustion in category 1.A.2 Manufacturing Industries and Construction, %

Emissions that result from use of fossil fuels or their processing products as raw materials or chemical reagents are recorded in CRF sector 2 "IPPU". The same sector accounts for emissions from technological (energy and non-energy components) use of natural gas for the purpose of production of ammonia, as well as coke for recovery of iron ore, since iron, steel and ammonia production processes [12, 13] in Ukraine are characterized by use of fuel resource data directly in the production borders of enterprises of the types and therefore, in accordance, with [1].

3.2.8.1.1 Iron and Steel (CRF category 1.A.2.a)

In accordance to 2006 IPCC Guidelines [1], emissions from energy and non-energy use of coke in the blast furnace process for iron production were accounted in the IPPU sector.

In 2018, GHG emissions in this category amounted to 10.2 mln tons of CO₂-eq, which is 2.5 % higher than the same indicator in 2017 and 81.6 % lower than in 1990.

3.2.8.1.2 Non-Ferrous Metals (CRF category 1.A.2.b)

Non-ferrous metallurgy in Ukraine, in contrast to the ferrous one, accounts for a small share of both emissions and fuel resource consumption. However, the sector is characterized by higher energy intensity.

The major share in production of non-ferrous metals belongs to zinc and lead.

Production of primary aluminum in Ukraine stopped in May 2010. However, GHG emission trends in the category of "Non-Ferrous Metals" were not impacted by that, as the key source of electric power at enterprises producing aluminum was power plants.

In 2018, GHG emissions in this category amounted to 0.90 mln t of CO₂-eq., which is 13.1 % higher than in 2017 and 37.5 % higher than in 1990.

3.2.8.1.3 Chemicals (CRF category **1.A.2.c**)

The key products of the chemical industry in Ukraine are ammonia, mineral fertilizers (carbamide, ammonium nitrate, and others), acids (sulfuric, nitric, and others), soda, as well as plastics and rubber products. The chemical industry is one of the largest industrial consumers of natural gas in Ukraine after the thermal power industry and the ferrous industry. Natural gas used for production of ammonia is accounted for in IPPU according to [1].

In 2018, GHG emissions in this category amounted to 0.56 mln tons of CO₂-eq., which is 55.7 % higher than the same indicator in 2017 and 6.2 times lower than in 1990.

3.2.8.1.4 Pulp, Paper, and Print (CRF category 1.A.2.d)

This category includes emissions resulting from energy use of fuels by enterprises producing paper and paperboard, products from them, as well as use for publishing and printing for production needs.

Due to the fact that pulp, paper, and printing industries in Ukraine tend to use centralized energy supply systems, waste paper is virtually not used at these plants for energy purposes but consumed as raw materials for reproduction, handed over as waste paper, as well as transferred to other enterprises.

In 2018, GHG emissions in this category amounted to 48.07 thd tons of CO₂-eq., which is 9.5 % higher than the same indicator in 2017 and 66.05 % lower than in 1990.

3.2.8.1.5 Food Industry, Beverages, and Tobacco (CRF category 1.A.2.e)

In category 1.A.2.e Food Processing, Beverages, and Tobacco GHG emissions from use of fuels for production of industrial products were accounted. The key source of emissions in this category are companies engaged in the sugar, baking, and dairy industries, as well as the beverage industry.

In 2018, GHG emissions in this category amounted to 0.58 mln tons of CO₂-eq., which is 15.2 % higher than the same indicator in 2017 and 6.2 times lower than in 1990.

3.2.8.1.6 Non-Metal Minerals (CRF category 1.A.2.f)

This category includes GHG emissions from use of fuels for production of of glass products, materials for construction and other non-metal materials.

In 2018, GHG emissions in this category amounted to 3.62 mln tons of CO₂-eq., which is 8.6 % higher than the same indicator in 2017 and 4.4 times lower than in 1990.

3.2.8.1.7 Other Industries (CRF category 1.A.2.g)

These industries include emissions from use of fuels for production of industrial products by the Ukrainian enterprises not covered in categories 1.A2.a-1.A.2.f. namely: construction, machinery, wood products, furniture, electronics, textiles, and so on.

In 2018, GHG emissions in this category amounted to 2.5 mln tons of CO₂-eq., which is 18.0 % lower than the same indicator in 2017 and 12.7 times lower than in 1990.

3.2.8.2 Methodological issues

GHG emissions from fuel combustion in all the categories were calculated using the methodology described in Annex 2, and are based on statistical data on consumption of fuels presented in the statistical reporting form No. 4-MTP. National circumstances for 2014-2018 are provided in Annex A2.10.

3.2.8.3 Uncertainties and time series-consistency

Uncertainties of activity data and emission factors are present in Table 3.8.

Table 3.8. Uncertainties of activity data and emission factors in category 1.A.2 Manufacturing Idustries and Construction

Tyme of final	Importainty of activity data 9/	Uncertainties of emissions factors, %							
Type of fuel	Uncertainty of activity data, %	CO_2	CH ₄	N ₂ O					
Liquid fuel	6.49	1	150	500					
Solid fuel	11.30	5	150	500					
Gaseous fuel	9.30	5	150	500					
Other types of fuels	20.28	5	150	500					
Biomass	20.07	5	150	500					

Quantification of the uncertainty was performed on the basis of the above uncertainty values of activity data and emission factors according to the methodology [1].

Estimated total GHG emission uncertainty in this category is 8.83 %.

3.2.8.4 Category-specific QA/QC procedures

In addition to general QA/QC procedures, in this category an analysis of statistical reporting forms containing the original data for the calculation of GHG emissions was held together with specialists from the SSSU.

3.2.8.5 Category-specific recalculations

In this category, no recalculations were made

3.2.8.6 Category-specific planned improvements

No improvements are planned.

3.2.9 Transport (CRF category 1.A.3)

3.2.9.1 Category description

Category 1.A.3 Transport includes emissions from fuel combustion in all modes of transport in Ukraine.

In 2018, emissions in category 1.A.3 Transport amounted to 34.96 mln tons of CO₂-eq. Compared to 1990, emissions decreased by 68.7 %, to the previous 2017 – increased by 0.1 %.

The largest contribution into GHG emissions in category 1.A.3 Transport in 2018 was made by emissions in categories 1.A.3.b Road Transport and 1.A.3.e Other Types of Transportation – 70.7 % and 26.9 %, respectively (see Table 3.10).

Table 3.10. GHG emissions in category 1.A.3 Transport, mln tons of CO₂-eq.

Emission category	1990	1995	2000	2005	2010	2011	2012	2013	2014	2015	2016	2017	2018
1.A.3 Transport total, including:	111.79	49.22	34.55	39.19	40.20	40.29	39.36	39.51	35.89	31.10	32.89	34.94	34.96
1.A.3.a Civil Aviation	0.68	0.11	0.07	0.20	0.17	0.18	0.20	0.17	0.09	0.08	0.13	0.17	0.17
1.A.3.b Road Transport	61.37	20.73	15.78	22.16	28.89	28.38	29.10	28.86	26.73	22.81	23.96	24.68	24.72
1.A.3.c Railways	3.83	1.32	1.39	0.88	0.55	0.53	0.38	0.44	0.45	0.45	0.47	0.56	0.57
1.A.3.d Waterway Transport	3.27	0.43	0.20	0.20	0.10	0.08	0.08	0.05	0.06	0.08	0.08	0.08	0.08
1.A.3.e Other types of transport	42.64	26.63	17.12	15.75	10.49	11.12	9.60	10.00	8.55	7.68	8.24	9.45	9.41

Changes in the structure of emissions from fuel combustion in the period of 1990-2018 by category 1.A.3 are presented in the diagram (Fig. 3.7).

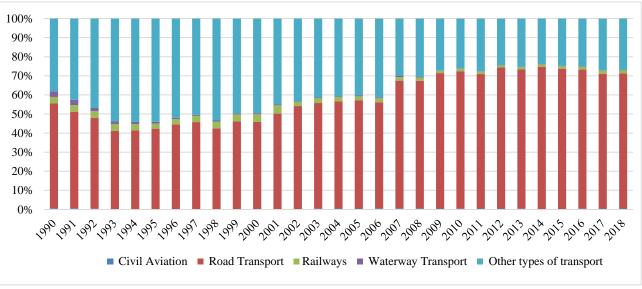


Fig.3.7. Changes in the structure of emissions from fuel combustion in category 1.A.3 Transport, %

3.2.9.2 Methodological issues

3.2.9.2.1 Civil Aviation (CRF category 1.A.3.a)

This category includes emissions from combustion of fuel used by civil aviation aircrafts and does not include emissions from fuel used by ground transport and stationary combustion plants at airports.

Emission estimation was conducted separately for aircraft equipped with jet and turboprop engines, which use jet fuel and those equipped with piston engines, in which aviation gasoline is used.

For more details on the technique of estimating GHG emissions from air transport, as well as the raw data, see Annex A2.7.

GHG emissions from domestic aviation in 2018 amounted to 173.5 thd tons of CO₂-eq, which is 0.9 % higher than the same indicator in 2017 and 74.6 % lower than in 1990. For trends on GHG emissions from domestic and international aviation see Fig. 3.8.

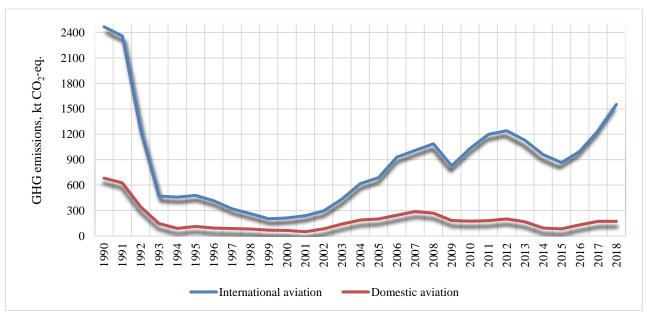


Fig. 3.8. GHG emissions from domestic and international aviation, 1990-2018

Estimation of CO_2 emissions from aviation kerosene was held under the method corresponding to Tier 3, for CH_4 and N_2O – Tier 2, in accordance with [1], for aviation gasoline– to Tier 1.

3.2.9.2.2 Road Transportation (CRF category 1.A.3.b)

This category includes emissions from combustion of fuel by road transport, including vehicles owned by individuals.

In category 1.A.3.b Road Transport, GHG emissions in 2018 amounted to 24.72 mln tons of CO₂-eq., having increased with respect to 2017 by 0.2 %, and decreased by 59.7 % compared with 1990. GHG emissions, as well as their structure by fuels used are presented in Fig. 3.9.a and 3.9.b.

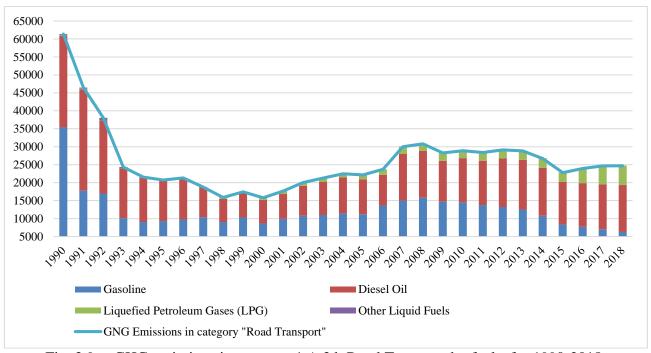


Fig. 3.9.a. GHG emissions in category 1.A.3.b Road Transport by fuels, for 1990-2018, kt of CO₂-eq.

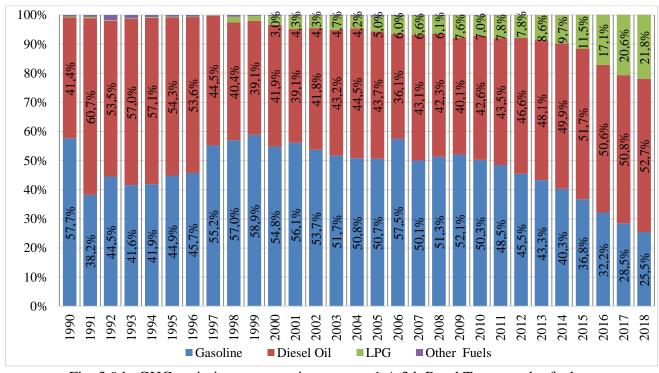


Fig. 3.9.b. GHG emission structure in category 1.A.3.b Road Transport by fuels, for 1990-2018, %

Emissions in the category for the entire time series of 1990-2018 were calculated based on data on energy use of fuels according to form No. 4-MTP, as well as on data on sale of gasoline and gas oil to population through the network of petrol stations [3-10, 29-31] taking into account the analytical study [26] using the balance sheet method and the national carbon content coefficients for gasoline, diesel and LPG which corresponds to Tier 2 for CO₂ emissions and Tier 1 for other gases according to [1]. More details on the methodological aspects used in the categories are described in Annex A2.4.2.

This approach to GHG inventory in this category is due to the fact that national energy statistics are the only reliable source of data, allowing properly allocate data on use of fuels in motor vehicles without distorting the balance of different types of fuels.

Due to the changes in the form No. 4-MTP in 2016 the fuel volumes for 2016, 2017, 2018 were calculated by surrogate method on the basis of 2015 with using of IEA data on fuel consumption as a driver.

National circumstances for 2014 - 2018 are provided in Annex A2.10.

3.2.9.2.3. Railways (CRF category 1.A.3.c)

This category includes emissions from combustion of fuel consumed for thermal traction of railway rolling stock. In Ukraine diesel fuel is used as the fuel for locomotives. This category does not include emissions associated with production of the electricity needed for electric train drives.

In 2018, emissions in the category amounted to 0.57 mln tons of CO_2 -eq., having increased with respect to 2017 by 3.1 %, and to the baseline 1990 – decreased by 6.7 times.

Emissions in this category were evaluated using the procedure described in Annex 2.4. The method for estimating emissions corresponds to Tier 2 for CO₂ emissions from diesel combustion and tier 1 – for non-CO₂ gases in accordance with [1].

It is worth noting that in 2009 there was a precipitous reduction of emissions in the category (during the year – by 40 %), due to the effects of the global economic crisis of 2008 - a decrease in industrial production and, accordingly, decline in demand for freight transportation.

National circumstances for 2014 - 2018 are provided in Annex A2.10.

3.2.9.2.4 Navigation (CRF category 1.A.3.d)

This category includes emissions from combustion of fuel consumed for propulsion drives of sea and river vessels. This category includes emissions from enterprises assigned with code designation H50 "Waterway Transport" in accordance with the TEA [15].

GHG emissions from bunker fuels used for sea transport are not included in the total emissions and are considered as reference data.

The distribution of fuels for domestic transportation was performed based on the formula:

$$FC_{1.A.3.d} = FC_{H50} \cdot k_{1.A.3.d}; \tag{3.3}$$

where $FC_{1.A.3.d}$ is consumption of fuels by domestic waterway transport (gasoil, fuel oil), tons; FC_{H50} - consumption of fuels by TEA H50 "Water Transport" for transportation needs (gasoil, fuel oil), tons;

 $k_{1.A.3.d}$ - the factor of fuel distribution into coastal transportation, in relative terms, which is defined by the following expression:

$$k_{1.A.3.d} = \frac{PR_h + PS_h}{PR + PS}; (3.4)$$

where PR_h is the volume of cargo transportation by domestic river transport, thd tons;

PSh is the volume of cargo transportation by domestic sea transport, thd tons;

PR - total volume of cargo transportation by river transport, thd tons;

PS - total volume of cargo transportation by sea transport, thd tons.

The volumes of cargo transportation were taken from statistical yearbooks [3-10], [29-32].

The trends in cargo for national and international navigation may be observed in ANNEX 2, fig. A.2.1., A.2.2.

In 2018, emissions in the category amounted to 75.5 thd tons of CO₂-eq., having decreased with respect to 2017 by 6.8 % and to the baseline 1990 – having decreased by 43.3 times. GHG emissions from domestic and international navigation for 1990-2018 are presented in the Fig.3.10.

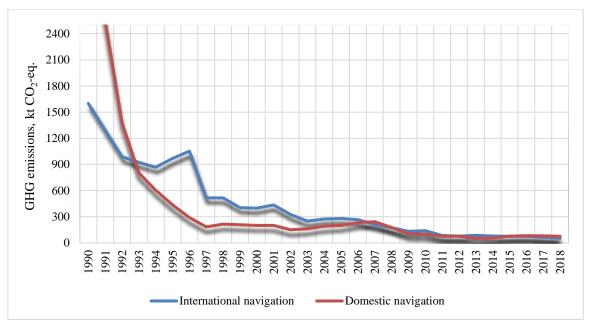


Fig. 3.10 GHG emissions from domestic and international navigation, 1990-2018

For the same reason as for the railroad transport in 2009 there was a substantial reduction in emissions in the category – by 41.1 % compared to the same indicator for 2008. The method used for estimating the emissions corresponds to Tier 2 for CO₂ emissions from diesel combustion and Tier 1 – for heavy oil and non-CO₂ gases in accordance with [1].

National circumstances for 2014 - 2018 are provided in Annex A2.10.

3.2.9.2.5 Other Types of Transportation (CRF category 1.A.3.e)

This category includes emissions from combustion of natural gas by drives of gas pumping units of compressor stations of main gas pipelines, as well as activities of off-road vehicles.

Pipeline Transportation (CRF category 1.A.3.e.i). This sub-category includes emissions from combustion of natural gas by drives of gas pumping units of gas mains. The volume of this gas was determined according to data of the SC "Ukrtransgaz" NJSC "Naftogaz", which is the national operator of the gas transportation system of Ukraine.

In 2018, emissions in the sub-category amounted to 3.48 mln tons of CO₂-eq., having decreased with respect to 2017 by 6.9% and to the baseline 1990 – decreased by 62.6%.

Estimation of CO_2 emissions in the sub-category was held under the method corresponding to Tier 2 in accordance with [1] and for non- CO_2 gases - to Tier 1.

Off-Road Transport (CRF category 1.A.3.e.ii). This category includes emissions from fuel combustion for the drive of the so-called in-house transport of all sectors of the economy. In-house transport, in particular, includes heavy vehicles of mining enterprises.

This category also includes emissions from fuel combustion in drives of combines, tractors, and other machinery used in field of agricultural work, regardless of the sectors of the economy in which they are used.

In 2018 emissions in the sub-category amounted to 5.94 mln tons of CO₂-eq., having increased with respect to 2017 by 3.8%, and to the baseline 1990 - decreased in 5.6 times.

Estimation of CO_2 emissions in the sub-category was held under the method corresponding to Tier 2 for CO_2 emissions from gasoline, diesel and LPG combustion and Tier 1 – for non- CO_2 emissions in accordance with [1] for all greenhouse gases.

Due to the changes in the form No.4-MTP in 2016 the Off-Road Transport fuel volumes were calculated by surrogate method on the basis of 2015. National circumstances for 2014 - 2018 are provided in Annex A2.10.

3.2.9.3. Uncertainties and time series-consistency

Uncertainties of activity data and emission factors are present in Table 3.11.

Table 3.11. Uncertainties of activity data and emission factors in category 1.A.3 Transport

Uncertainty of activity data 9/	Uncertai	Uncertainties of emissions factors. %							
Uncertainty of activity data. %	CO ₂	CH ₄	N ₂ O						
9.77	4.49	15.39	10.94						

Estimated total GHG emission uncertainty in this category is 10.36 %.

The most significant impact on the overall uncertainty of GHG emission estimation in this category is produced by CO₂ emission estimation uncertainty in the category 1.A.3.b Road Transport.

3.2.9.4 Category-specific QA/QC procedures

The general quality control procedures under [1] were applied. plus cooperation with the SSSU was established, and analysis of forms of statistical reporting containing the original data for GHG emission calculation was conducted together with the Service's specialists.

Methodology issues in category 1.A.3.b Road Transport were analyzed by specialized experts from SE "DerzhavtotransNDIproject".

3.2.9.5 Category-specific recalculations

In this category, no recalculations were made.

3.2.9.6 Category-specific planned improvements

The expecting recovery of road transport data base will give the opportunity to carry out appropriate calculations according to COPERT program.

3.2.10 Other sectors (CRF category 1.A.4)

3.2.10.1 Category description

In 2018, GHG emissions in category 1.A.4 Other Sectors amounted to 27.99 mln tons of CO_2 -eq., and decreased as compared to 2017 by 9.1 %, while in comparison with the baseline 1990 decreased by 72.6 %.

The key source of emissions in 2018 is sub-category 1.A.4.b Residential Sector, which accounted for approximately 89.6 % of the total emissions (see Table 3.13).

Table 3.13. GHG emissions in category 1.A.4 Other Sectors, mln tons of CO₂-eq.

Emission category	1990	1995	2000	2005	2010	2011	2012	2013	2014	2015	2016	2017	2018
1.A.4 Other Sectors total, including:	102.01	66.35	40.50	42.55	39.46	39.55	38.99	38.32	32.73	28.98	28.12	30.78	27.99
1.A.4.a Commercial/Institutional Sector	38.73	23.83	6.54	4.65	2.73	2.82	2.60	2.03	1.66	1.57	1.90	2.88	2.51
1.A.4.b Residential Sector	59.46	41.53	33.80	37.72	36.52	36.37	36.02	35.76	30.77	27.12	25.80	27.48	25.09
1.A.4.c Agriculture/Forestry/Fish- ery/Fishing	3.82	0.99	0.16	0.18	0.21	0.35	0.37	0.53	0.30	0.29	0.42	0.42	0.38

The significant decreasing of emissions in the Commercial/Institutional and Residential sectors during 1990-2000 is due to the collapse of the USSR, need to save energy and decrease of population. Then the fluctuations are connected with economic crisis and migration and decline of population. In the recent years some stabilization is observed, against the background of a constant decrease in the population.

Changes in the structure of emissions from fuel combustion in the period of 1990-2018 by category 1.A.4 are presented in the diagram (Fig. 3.11).

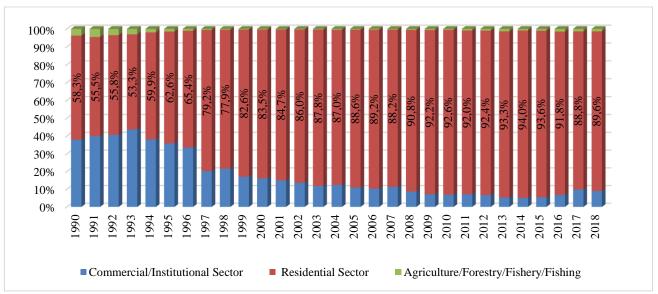


Fig. 3.11. Changes in the structure of emissions from fuel combustion in category 1.A.4 Other Sectors, %

Changes in the structure of fuel consumption in category 1.A.4.b Residential Sector are presented in the diagram (Fig. 3.12).

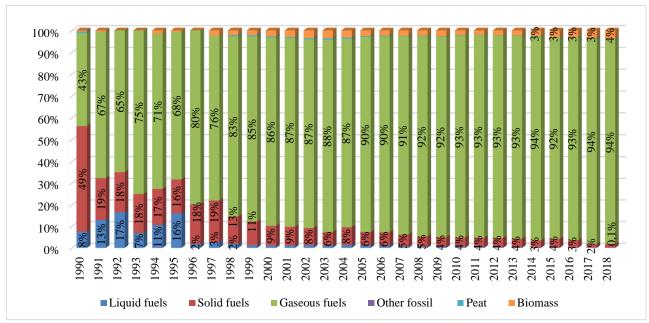


Fig. 3.12. Changes in the structure of fuel consumption in category 1.A.4.b Residential Sector, 1990-2018

3.2.10.2 Methodological issues

Emissions related to fuel combustion were evaluated using the procedure described in Annex 2. National circumstances for 2014 - 2018 are provided in Annex A2.10.

tors

3.2.10.2.1 Commercial/Institutional Sector (category 1.A.4.a)

The GHG emissions were estimated on the basis of data on the amount of fuel burned used for own needs by the business sector and public administration bodies, which includes activities of hotels and restaurants, financial institutions, governmental bodies, education facilities, etc. A detailed algorithm of source data determination is presented in Annex A2.

3.2.10.2.2 Residential Sector (category 1.A.4.b)

The GHG emissions were estimated on the basis of data on the amount of fuel used for domestic needs of population. GHG emissions from individuals' vehicles are included in category 1.A.3.b Road Transport. A detailed algorithm of source data determination is presented in Annex A2.

3.2.10.2.3 Agriculture/Forestry/Fishery/Fishing (category 1.A.4.c)

This category includes emissions from stationary fuel combustion in industrial production in agriculture, forestry, and fisheries. A detailed algorithm of source data determination is presented in Annex A2.

3.2.10.3 Uncertainties and time series-consistency

Uncertainties of activity data and emission factors are present in Table 3.14.

Table 3.14. Uncertainties of activity data and emission factors in category 1.A.4 Other Sec-

		Uncertainties of emissions factors, %							
Type of fuel	Uncertainty of activity data, %	CO_2	CH ₄	N ₂ O					
Liquid fuel	5.77	2	150	500					
Solid fuel	7.98	5	150	500					
Gaseous fuel	7.85	5	150	500					
Other types of fuels	20.00	5	150	500					
Biomass	21.48	5	150	500					

Quantification of the uncertainty was performed on the basis of the above uncertainty values of activity data and emission factors according the methodology of [1].

Estimated total GHG emission uncertainty in this category is 10.47 %.

The most significant impact on the overall uncertainty of emissions in this category is produced by CO₂ emission uncertainty in category 1.A.4.b Residential Sector, mainly the uncertainty in consumption of gaseous fuel. This is due, primarily, to absence of individual meters at lots of private households.

3.2.10.4 Category-specific QA/QC procedures

The general quality control procedures [1] were applied, plus cooperation with the SSSU was established, and analysis of forms of statistical reporting containing the original data for GHG emission calculation was conducted together with the SSSU 's specialists.

3.2.10.5 Category-specific recalculations

In this category, no recalculations were made.

3.2.10.6 Category-specific planned improvements

In this category, no improvements are planned.

3.2.11 Unspecified Categories (CRF category 1.A.5)

3.2.11.1 Category description

This category includes GHG emissions from sources not included in the other categories. In 2018, GHG emissions in category 1.A.5 "Unspecified Categories" amounted to 0.48 mln tons of CO₂-eq., which is 10.9% lower than in 2017 and to the baseline 1990 – increased by 4.5 times (see Table 3.16).

Table 3.16. Greenhouse gas emissions in the category Unspecified Categories, thd tons of CO₂-eq.

thu tons		2-cq.											
Category	1990	1995	2000	2005	2010	2011	2012	2013	2014	2015	2016	2017	2018
1 A 5	105 93	57 27	59.00	84 44	31.60	66 21	119 24	78.01	397 74	405 88	529.75	533 77	475 64

3.2.11.2 Methodological issues

Emissions related to fuel combustion were evaluated using the procedure described in Annex 2. Category 1.A.5 Unspecified Categories includes emissions from use of motor fuels by the Armed Forces of Ukraine.

3.2.11.3 Uncertainties and time series-consistency

Uncertainties of activity data and emission factors are present in Table 3.17.

Table 3.17. Uncertainties of activity data and emission factors in category 1.A.5 Unspecifield Categories

Type of fuel	Uncertainty of activity	Uncertai	inties of emissions fact	tors, %
Type of fuel	data, %	CO_2	CH ₄	N ₂ O
Liquid fuel	5	2	150	500

Estimated total GHG emission uncertainty in this category is 5.51 %.

3.2.11.4 Category-specific QA/QC procedures

The general quality control procedures stipulated in [1] were applied.

3.2.11.5 Category-specific recalculations

No recalculation were performed in the category.

3.3 Fugitive Emissions from Fuels (CRF category 1.B)

Fugitive emissions from fuels are the result of GHG leakages during extraction, treatment, transportation, storage, and consumption of fossil fuels. This category also includes emissions from flaring of hydrocarbons. In 2018 emissions in category 1.B Fugitive Emissions from Fuels accounted for 45.7 mln tons of CO₂-eq. or about 20.2 % of the total emissions in the Energy sector, and decreased by 64.1 % compared to 1990. From 2017, emissions in this category have increased by 6.3 %. More detailed information is presented in Fig. 3.13.

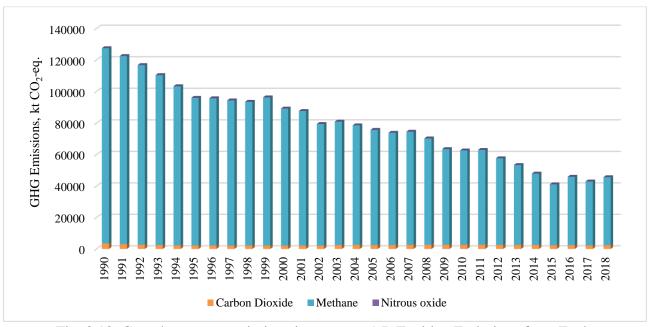


Fig. 3.13. Greenhouse gas emissions in category 1.B Fugitive Emissions from Fuels (sectoral approach), 1990-2018

In 2018, 28.7 % of emissions in the category 1.B Fugitive Emissions from Fuels were in the category "Solid Fuels", and 71.3 % – in the category "Oil and Natural Gas" (see Table 3.18).

Table 3.18. Emissions in category 1.B "Fugitive Emissions from Fuels", mln tons CO₂-eq.

			\mathcal{C}	۲	,			,			L	
Emission category	1990	1995	2000	2005	2011	2012	2013	2014	2015	2016	2017	2018
1.B Fugitive Emis-												
sions from Fuels	127.47	96.02	89.22	75.70	62.99	57.69	53.41	47.98	41.14	45.96	43.00	45.71
(total), including:												
1.B.1 Solid Fuels	62.38	38.26	32.96	25.94	23.74	24.05	23.46	18.69	14.41	16.62	13.00	13.13
1.B.2 Oil and Natu-	65.09	57.77	56.26	49.76	39.25	33.64	29.95	29.29	26.73	29.34	30.00	32.58
ral Gas	03.09	31.11	30.20	49.70	39.23	33.04	29.93	29.29	20.73	29.34	30.00	32.38

3.3.1 Solid Fuels (CRF category 1.B.1)

3.3.1.1 Category description

The key source of emissions in category 1.B.1 Solid Fuels is methane emissions that occur during extraction of coal at mines.

3.3.1.2 Coal Mining and Handling (CRF category 1.B.1.a)

3.3.1.2.1 Underground Mines

In order to improve accuracy of GHG emission estimation in this category, until 2014 Makiivka State Scientific and Research Institute for Safety in Mines (MakNDI) was involved and performed research work for the purpose of inventory of GHG emissions in the coal industry. Inventory of methane emissions at Ukrainian mines was carried out based on results of measuring the actual flow rate of methane in outgoing air flows of gas mines and the production rate of methane captured by vacuum pump plants (VPP) on the surface, which corresponds to Tier 3 [1].

In 2018, the amount of methane emissions from underground coal mines amounted to 515.7 kt with a capacity of 47.37 mln tons of untreated coal. Since 1990 methane and raw coal production from coal mines decreased by 79.1 % and 69.5 %, respectively.

<u>1.b.1.a.1.i Mining Activities.</u> The volume of coal bed methane (including recovery and flaring) from 1990 to 2000 are taken from [17]. For 2003 - 2012 information is taken from scientific

research work [11] and shown in Table 3.19, for 2001 and 2002 - interpolation based on 2000 and 2003 and data on coal production. For calculation of emissions from 2013 to 2018 the surrogate data method was used based on 2012 and data on coal production for 2013 – 2018 taken from the statistical form 1-P.

In 2018, methane emissions from underground mining activities amounted to 455.27 kt and compared to 1990 they decreased by 79.8 %, and increased by 0.9 % – to 2017.

The leading pace of GHG emission reduction in this category in comparison with raw coal production is explained by a decrease in the proportion of active methane containing mines, as well as due to execution of Joint Implementation projects (JIP).

Table 3.19 provides detailed information on utilization of mine methane in Ukraine during 2003-2012.

<u>1.b.1.a.1.ii Post-Mining Activities.</u> In the process of coal production and transportation, methane is produced. The major part of it is released from the exposed surface of the mined bed (40-60 %) and chipped coal into the workspace of stope and conveyor (runway) drift (20-30 %).

The amount of released methane is registered by stationary monitoring devices in outgoing streams of the stope and production area. The amount of methane released from chipped coal during its transportation from the production areas to the shafts is registered by control devices in outgoing air flows of mines.

Coal transportation onto the earth's surface at highly productive mines usually does not exceed 8 hours. Thus, methane emissions from coal taking place during its transportation to the surface are accounted for in the category "Mining Activities" (CRF category 1.B.1.a.1.i).

On the surface, methane continues releasing from coal, but measuring its production rate is not possible. According to [16], the coefficient accounting for the degree of degassing of chipped coal during the transportation time is determined by the formula:

$$k = aT^{e}, (3.5)$$

where T is the time of transportation (degassing) of coal chipped from the coal array, min.; a, e - coefficients characterizing the gas release rate from chipped coal, a = 0.118, e = 0.25.

The curve of the dependence of the degree of degassing of chipped coal and the transportation time shows that after 5156 min., i.e. 3.6 days, chipped coal is almost completely degassed. The key part (73%) of methane from the exposed surface of the coal bed developed is released during the first days after chipping of the array. Thus, the degree of coal grinding does not significantly influence the amount of methane released.

Anthracite coal with the release of volatile substances from 3.0 to 9.0% (coal brand A, PA) has a low, compared to other coals (coal brands T, OS, D, Zh, G) degree of gas release, so its degassing takes longer. Dependence of the degree of degassing of anthracite with the release of volatile substances from 3.0 to 9.0% on the transportation time has not been established to date [11].

The amount of methane emissions from coal after it is raised from the mine depends primarily on the following factors:

- the coal mass raised to the surface, tons;
- the natural and final methane richness of the coal, m3/ton of dry ash-free mass;
- the speed of the longwall's progress, m/day;
- the length of stay of chipped coal in the mine, hours;
- the duration of stay of chipped coal on the surface from the moment of raising to the surface till it is used, hours;
- humidity of coal raised from the mine, %;
- ash-content of coal raised from the mine, %.

The amount of methane emissions from coal in the period after its production wasn't controlled and calculated. According to [1], to calculate methane emissions in the period after coal production the amount of coal production should be multiplied by the corresponding emission factor. In 2001, Donetsk Expert and Technical Center (DETC) of the State Mine Surveillance Committee con-

ducted a special study of the methane emission factor for the period after coal mining [17]. The general methane emission factor obtained as a result for all Ukrainian mines was 2.4 m3/t. Therefore, for estimation of methane emissions after coal mining at gas mines the emission factor of 2.4 m3/t is used in the inventory.

The amount of the post-mining methane emission factor set is close to the average value from the range recommended in [1].

Coal production is determined by multiplying the average daily production at gas mines of Ukraine by the number of working days per year in production, which is on average 354 days [11].

In 2018, post-mining methane emissions amounted to 56.84 kt and compared to 1990 they decreased by 73.32 %, and increased by 0.95 % – to 2017.

<u>1.b.1.a.1.iii</u> Abandoned Underground Mines. After completion of coal mining, methane release from the rock array under mining operations phases out, but it may remain at a relatively high level for a long time. Therefore, after cessation of mines' ventilation and filling (flooding) of shafts, gas may accumulate in worked-out spaces under certain geological conditions, creating excessive pressure in them. Methane gradually fills in all the worked-out space, up to the top horizon, and then starts penetrating through fissured rocks and abandoned mines to the surface, into buildings and constructions.

Inventory of methane emissions in mines of Ukraine was conducted by "State Makeevka Research Institute for Labor Safety in Mining" based on actual measurements of methane flows in outgoing air streams of gas mines and the rate of methane production captured by VPPs on the surface. For each gas mine, the data were taken from the orders establishing methane-based mine categories. The orders contains information about the actual average absolute mine methane content in view of captured methane in m3/min., the average annual consumption of methane captured by VPPs in m3/min., the average daily coal production in tons throughout the year. Calculation of CH₄ emissions from abandoned mines is calculated as the maximum total flow rate of methane measured in the course of the year (in m3/min) restated as annual emissions based on 365 days/year.

For calculation of methane emission in this category for 2013-2018 the surrogate data method based on 2012 information was used. The amount of GHG emissions was evaluated being inversely to coal mined in 2013 - 2018 respectively.

Methane emissions from abandoned undergrounds mines in 2018 amounted to 3.57 kt, which is 40.5 % lower than in 1990 and 0.9 % lower than in 2017.

3.3.1.2.2 Surface Coal Mining

In determining methane emissions from coal mines conducting surface coal mining, data of the companies were used, while emission factors were used by default in accordance with [1], namely:

- 1.2 m³/t for open-pit coal mining;
- 0.1 m³/t for coal processing and transportation (in open-pit mining).

3.3.1.3 Solid Fuel Transformation (CRF category 1.B.1.b)

This category includes CO₂ emissions associated with the loss of coke oven gas in the process of coke production.

Until 2013 the amount of coke oven gas losses was taken from column 6 "Losses caused by the lack of accounting, non-use, and due to other factors", section 5 "Losses of energy materials and products of oil refining in extraction, production, transformation, processing, transportation, and distribution" in form No. 4-MTP. For calculation emission in this category from 2014 to 2018 the surrogate data method was used based on 2013 and data on coke production for 2015 - 2018.

The carbon content is taken by default in accordance with [1], and the NCV - in accordance with statistical form No. 11-MTP.

Carbon dioxide emissions associated with loss of coke oven gas in production of coke in 2018 amounted to 191.88 thd tons, which is 53.8% lower than in 1990 and 4.5 % higher than in 2017.

3.3.1.4 Other (CRF category 1.B.1.c)

This category includes CO₂ emissions associated with coal bed methane flaring. Table 3.19 provides detailed information on methane flaring in Ukraine during 2003-2012. The surrogate data method was used based on 2012. GHG emissions were estimated according to equation 1.4.5 [1], on the basis of activity data indicated in the Table 3.19. In 2018 emissions in the sub-category amounted to 47.3 thd tons of CO₂-eq. and having increased with respect to 2017 by 0.95 %.

3.3.1.5 Uncertainties and time-series consistency

Continuous automatic monitoring of methane content in outgoing flows, periodic quality control of mine air and of correctness of its distribution in mine workings are performed at gas mines of Ukraine. At high-category and hazardous mines due to sudden outbursts, daily monitoring of gas release is conducted.

All VPPs, continuous automatic monitoring of methane content is conducted. Lots of mines are equipped with stationary captured gas mixture flow measurement devices.

The uncertainty of the results of methane emission from mines estimates is not more than 12.1%. Uncertainty of carbon dioxide emissions is estimated as 7.8 %.

The key contribution into the uncertainty is made by the uncertainty of estimates of methane emission at mining and handling, above all – the uncertainty of methane emission factors for underground coal mining.

3.3.1.6 Category-specific QA/QC procedures

Common quality control procedures stipulated in [1] were applied, plus the advice and recommendations from line experts of the laboratory for degassing of coal mines at State Makeevka Research Institute for Labor Safety in Mining provided in 2014.

As part of the standard QA/QC procedures were refined data.

3.3.1.7 Category-specific recalculations

In this category, no recalculations were made.

3.3.1.8 Category-specific planned improvements

In this category, no improvements are planned.

Table 3.19. The amount of coal mine methane utilization in Ukraine, 2003-2012.

	Table 3.19. The amount of coal mine methane utilization in Ukraine, 2003-2012. Amount of utilized methane, thousand m³/year											
#	Mine	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	Note
1	named after O.Zasyadko		2220	2195	26.212	59.663	40.308	39.850	52571	36995	20317.77	Gasifier, gas station
2	named after V.Bazhanov SE "Makeevugol"	5890	6920	7605	6963	5676	6920	9061	10358	6649.34	3035.36	Boiler room
3	"Holodna Balka" SE "Makeevugol"	5210	5350	5730	6120	5030	5640	6600	4380	7094.74	7766.09	Boiler room
4	"Chaikino" SE "Makeevugol"	1920	2113	2420	2230	2970	2170	1790	410	1892.16	2295.69	Boiler room
5	named after S.Kirov SE "Makeevugol"	975	880	790	740	1120	1020	840	1800	944.19	205.83	Boiler room
6	"Kalynovska East" SE "Makeevugol"	-	-	-	710	-	-	-	-	-	-	Boiler room
7	named after M.Kalinin SE "DVEK"	1130	1130	1132	1132	1132	1132	1132	1132	1132	-	Boiler room
8	"Hrustalska" SE "Donbassantratsit"	2670	2670	2670	2670	2670	2670	2670	2670	2670	2670	Boiler room
	"Scheglovska Hlyboka"							12324	8704	8893	4481.76	Boiler room, shaft heating
9	m/a "Donbass"	2256	4177	4590	5530	7957	9131	1400	1096	1259	3634	Flaring
											3278	Gasifier
	No.22 "Komunarska"							4630	6500	13100	13600	Flaring
10	m/a "Donbass"							2189	3400	2600	4800	Gasifier
							300	683	1400	1500	3100	Boiler room
			8919	18084	17013	20025	14805	14658	19473	11971	6207.2	Boiler room
11	m/a "Pokrevske"									-	16153.4	Cogeneration
										5468	1287.3	Flaring
12	"Komsomolets Donbassa"						1522	5859	7569	8257	9194.16	Flaring
12	Komsomorets Donoassa								2295	2613	2297.5	Boiler room
13	"Krasnolimanska"		602	2200	6058	6547	5279	8605	8910	10236	20068.31	Boiler room
14	"Sukhodolska Vostochnaya" PJSC "Krasnodonugol"				1564	2184	3194	2006	2705	12273	6587.17	Boiler, flaring
15	named after N. P. Barakov PJSC "Krasnodonugol"	5282	5282	6685	5945	5240	5134	3772	4916	4263	4755.14	Boiler room
16	"Molodogvardiiska" PJSC "Krasnodonugol"								580	2738	2879.1	Flaring
17	"Samsonovska Zapadnaya" PJSC "Krasnodonugol"							1140	2175	6470	6711.46	Flaring
18	"Stopovaya", PJSC "DTEK"							_			500	Boiler room
	Total, thousand m ³	25333	40263	54101	82887	120214	99225	119209	143044	149018.43	145825.24	

3.3.2 Oil and Natural Gas (CRF category 1.B.2)

Emissions in this category are related to leaks from exploration, extraction, transportation, processing, storage, and consumption of oil and natural gas.

3.3.2.1 Oil (CRF category 1.B.2.a)

3.3.2.1.1 Category description

In 2018, oil production in Ukraine was 1.6 Mt, which is 7.8 % higher compared to the same indication for 2017.

There are 6 refinery enterprises in Ukraine. Up to 2009 they all worked. But during 2009-2012 five of them were stopped. Now only one refinery is working. The information on crude oil refined by this enterprise is confidential. So in view of inventory developers the default EFs are justified. In 2018 the volume of oil pumping amounted to 15436 thousand tons. The volume of oil transit through the country amounted to 13335 thousand tons and for the needs of the country -2101 thousand tons. The oil pipeline system includes 19 pipelines up to 1220 mm in diameter with a total length of 3507 km, 28 oil pumping stations (176 stations units), 79 in-service tanks and offshore oil terminal "Yuzhny". Input system capacity is 114 million tons/year, output -56,3 million tons/year.

In 2018, GHG emissions in the category amounted to 1.68 Mt of CO₂-eq. the decrease with respect to 1990 is 60.8 % and increased by 7.8 % – to 2017.

3.3.2.1.2 Methodological issues

The data used for emission estimation in this category are presented in Table 3.20.

To estimate emissions in this category were used average Tier 1 default emission factors that presented in Table 3.21.

For recalculation of the amount of oil extracted from the mass units into volumetric ones, the density of 0.825 t/m³ was used. This value was determined based on data on oil density in API degrees for Ukraine (the value is 40.1).

Oil transportation in Ukraine is carried out mainly by pipelines. So, the default emissions factors for transportation of oil by the pipeline were used according to [1]. Since the volumes of oil transportation through the territory of Ukraine considerably exceed its own production volumes, the transformation of the amount of transported oil from mass units used by oil transportation enterprises into volumetric units was conducted based on the average density of the Russian Urals export blend -0.865 t/m^3 .

CH₄ emissions from oil handling were taken by default according to [1]. To determine the carbon dioxide of oil handling, no factors are indicated in IPCC methodologies, so emissions in this category were not estimated.

The products of oil refining contain only negligible amounts of methane, therefore CH_4 emissions during transportation and distribution of petroleum products were not estimated. In the absence of approved IPCC methodologies, CO_2 emissions for this types activity were not estimated either.

Year	Oil production, Mt	The volume of oil transporta- tion through main pipelines, Mt	The volume of oil processing at refineries, Mt
1990	4.1	114.0	59.0
1991	3.9	94.9	54.6
1992	3.6	78.0	38.3
1993	3.3	66.9	23.5
1994	3.2	68.5	19.6
1995	3.0	65.3	16.9
1996	3.0	64.6	13.5
1997	2.9	64.1	12.8

Table 3.20. Activity data for emission estimation in the category "Oil" (1.B.2.a)

Year	Oil production, Mt	The volume of oil transportation through main pipelines, Mt	The volume of oil processing at refineries, Mt
1998	2.7	65.4	13.4
1999	2.7	65.2	11.0
2000	2.6	64.0	9.1
2001	2.6	63.6	16.1
2002	2.6	48.0	20.2
2003	2.8	56.7	21.9
2004	3.0	55.3	22.0
2005	3.1	46.7	18.4
2006	3.3	44.9	14.4
2007	3.3	50.9	14.1
2008	3.2	41.0	10.8
2009	2.9	38.5	11.2
2010	2.6	29.8	11.3
2011	2.4	25.2	8.9
2012	2.3	17.3	4.7
2013	2.2	17.6	3.7
2014	2.1	16.9	3.0
2015	1.9	16.8	2.7
2016	1.6	14.6	2.8
2017	1.5	16.0	3.6
2018	1.6	15.3	3.9

Table 3.21. Emission factors for fugitive emissions from oil operation

CRF	Category or sub-	CO ₂			CH ₄		N_2O			NMVOC			Units of meas-	
category	category	min	max	average	min	max	average	min	max	average	min	max	average	ure
1.B.2.a.1	Well Drilling	1.0E-04	1.7E-03	9.0E-04	3.3E-05	5.6E-04	3.0E-04		ND		8.7E-07	1.5E-05	7.9E-06	Gg per 10 ³ m ³ total oil production
Exploration	Well Testing	9.0E-03	1.5E-01	8.0E-02	5.1E-05	8.5E-04	4.5E-04	6.8E-08	1.1E-06	5.8E-07	1.2E-05	2.0E-04	1.1E-04	Gg per 10 ³ m ³ total oil production
1.B.2.a.2 Production	Conventional Oil	1.1E-07	4.3E-03	2.2E-03	1.5E-06	6.0E-02	3.0E-02		NA		1.8E-06	7.5E-02	3.8E-02	Gg per 10 ³ m ³ conventional oil production
1.B.2.a.3 Transport	Pipelines		4.9E-07		5.4E-06			NA			5.4E-05			Gg per 10 ³ m ³ oil transported by pipeline
*1.B.2.a.4	Refining				90	1400	745							kg/PJ
Refining / Storage	Storage Tanks	-			20	250	135	-			-			kg/PJ
1.B.2.c.1.i Oil	Conventional Oil / Venting	9.5E-05	1.3E-04	1.1E-04	7.2E-04	9.9E-04	8.6E-04		NA		4.3E-04	5.9E-04	5.1E-04	Gg per 10 ³ m ³ conventional oil production
1.B.2.c.2.i Oil	Conventional Oil / Flaring	4.1E-02	5.6E-02	4.9E-02	2.5E-05	3.4E-05	3.0E-05	6.4E-07	8.8E-07	7.6E-07	2.1E-05	2.9E-05	2.5E-05	Gg per 10 ³ m ³ conventional oil production

NA – Not Applicable. ND – Not Determined – in accordance with 2006 IPCC Guidelines * - 1.B.2.a.4 – emission factors were taken by default according to 1996 IPCC Guidelines

3.3.2.2 Natural gas (CRF category 1.B.2.b)

3.3.2.2.1 Category description

The gas transportation system (GTS) of Ukraine consists of 37.93 thousand km of gas pipelines, including 22.2 thd km main pipeline and 13.34 thd km gas pipeline branches, 12 underground gas storages (UGS), 702 gas pumping units (including electric ones -158) with the total capacity of 5.443 MW, a developed system of gas distribution (GDS) and gas metering (GMS) stations. The capacity of the gas transportation system at the inlet is 287.7 billion m^3 per year, at the outlet -178.5 billion m^3 per year, including 140 billion m^3 per year to the European countries. The transit volume in 2018 amounted to 86.8 billion m^3 .

Natural gas production in 2018 amounted to 22.56 billion m³ (out of which 8.4 % produced offshore), which is 3.7 % higher than the level of 2017. For 2018, the activity data about natural gas production was taken from the SSSU and taking into account the analytical study [26].

In 2018, GHG emissions in the category amounted to 30.67 Mt of CO₂-eq., the decrease with respect to 1990 is 49.2 %, and 8.7 % higher than in 2017.

3.3.2.2.2 Methodological issues

The activity data used for emission estimation in this category are presented in Table 3.22.

To estimate emissions in this category average Tier 1 default emission factors were used that presented in Table 3.23.

Emissions from consumer leakages were calculated using the default factors according to 1996 IPCC Guidelines.

The methods of estimation of GHG emissions from transportation and distribution of natural gas are presented in section A2.8.

The observed redistribution in individual years is due to the structural changes in gas transmission companies, which submit reports to the statistical service, namely a change of economic activities. Nevertheless, the total volume of leakage from the transportation and distribution are regular trend.

Table 3.22. Activity data for emission estimation in the category Natural Gas (1.B.2.)							
Year	Natural gas production,	Household consumption of	Natural gas consumption by other				
1 cai	mln m ³	natural gas, bln m ³	consumers, bln m ³				
2010	20528	17.8	38.2				
2011	20651	17.7	39.3				
2012	20492	17.3	35.3				
2013	21313	20.0	25.9				
2014	220481	17.0^{1}	24.7^{1}				
2015	21673¹	12.31	20.0^{1}				
2016	21741 ¹	12.1 ¹	19.8 ¹				
2017	21761 ¹	12.31	18.5 ¹				
2018	22558 ¹	11.7^{1}	20.1^{1}				

Table 3.22. Activity data for emission estimation in the category "Natural Gas" (1.B.2.b)

To calculate greenhouse gas emissions at transportation, distribution and consumption of natural gas, data on the composition of natural gas in the GTS of Ukraine received from PJSC "Ukrtransgaz" and PJSC "Ukrgazvydobuvannya" (see A2.6.1, A2.8) were used.

^{1 –} in view of analytical study [26]

Table 3.23. Emission factors for fugitive emissions from gas operation

CRF category	Category or		CO_2			CH ₄			N ₂ O			NMVOC		Units of
CKF category	sub-category	min	max	average	min	max	average	min	max	average	min	max	average	measure
1 P 2 b 1 Evaloration	Well Drilling	1.0E-04	1.7E-03	9.0E-04	3.3E-05	5.6E-04	3.0E-04		ND		8.7E-07	1.5E-05	7.9E-06	Gg per 10 ³ m ³ total oil produc- tion
1.B.2.b.1 Exploration	Well Testing	9.0E-03	1.5E-01	8.0E-02	5.1E-05	8.5E-04	4.5E-04		-		1.2E-05	2.0E-04	1.1E-04	Gg per 10 ³ m ³ total oil produc- tion
1.B.2.b.2 Production	Gas Production / Fugitives	1.4E-05	1.8E-04	9.7E-05	3.8E-04	2.4E-02	1.2E-02		NA		9.1E-05	1.2E-03	6.5E-04	Gg per 10 ⁶ m ³ gas pro- duction
1.B.2.b.3 Processing	Gas Processing / Fugitives	1.5E-04	3.5E-04	2.5E-04	4.8E-04	1.1E-03	7.9E-04		NA		2.2E-04	5.1E-04	3.7E-04	Gg per 10 ⁶ m ³ raw gas feed
*1.B.2.b.6 Other	Non-residen- tial Gas Con- sumed		-		175000	384000	279500		-			-		kg/PJ
1.B.2.0.0 Oulei	Residential Gas Con- sumed		-		87000	192000	139500		-			-		kg/PJ
1 D 2 2 " C	Gas Production / Flaring	1.2E-03	1.6E-03	1.4E-03	7.6E-07	1.0E-06	8.8E-07	2.1E-08	2.9E-09	1.2E-08	6.2E-07	8.5E-07	7.4E-07	Gg per 10 ⁶ m ³ gas pro- duction
1.B.2.c.2.ii Gas	Gas Processing / Flaring	1.8E-03	2.5E-03	2.2E-03	1.2E-06	1.6E-06	1.4E-06	2.5E-08	3.4E-08	3.0E-08	9.6E-07	1.3E-06	1.1E-06	Gg per 10 ⁶ m ³ raw gas feed

NA – Not Applicable. ND – Not Determined – in accordance with 2006 IPCC Guidelines * - 1.B.2.b.6 – emission factors were taken by default according to 1996 IPCC Guidelines

3.3.2.3 Venting and Flaring (CRF category 1.B.2.c)

The activity data used for emission estimation of venting at oil facilities and venting and flaring at gas facilities are the same as the activity data of 1.B.2.a and 1.B.2.b categories, i.e. oil produced (1968.48 mln m³) and NG produced (22558.44 mln m³).

The default IEFs are taken from the Table 4.2.5. chapter 4 [1].

Emissions from venting at gas facilities are included in 1.B.2.b.4 Transmission and storage and 1.B.2.b.5 Distribution.

3.3.2.4 Uncertainties and time-series consistency

The uncertainty of carbon dioxide emissions in the category is 10.3 % and is associated with the uncertainty of factors of carbon dioxide emission from flaring at oil and natural gas production.

The uncertainty of methane emissions is 25.1 % and is caused, above all, by the uncertainty of methane emission factors for consumption of natural gas by industrial consumers and power plants.

The uncertainty of nitrous oxide emissions is 9.7 %.

When estimating the uncertainty, data on the uncertainty of the emission factors presented in [1], were used, as well as data on the recommended ranges of emission factors [1].

3.3.2.5 Category-specific QA/QC procedures

The general quality control procedures stipulated in [1], were applied. In determining the national emission factors, comparison of data from various literary sources was held, consultations with independent experts in the gas industry, as well as with specialists of the leading companies operating in the oil and gas industry were conducted.

3.3.2.6 Category-specific recalculations

In this category, no recalculations were made.

3.3.2.7 Category-specific planned improvements

In this category, no improvements are planned.

3.4 Multilateral operations

The statistical reporting forms do not include data on activities of ex-territorial organizations. In this regard, in CRF category 1.D.2 Multilateral Operations, it is indicated that this activity does not take place.

4 INDUSTRIAL PROCESSES AND PRODUCT USE (CRF SECTOR 2)

4.1 Sector Overview

GHG emissions in this sector include emissions from manufacture of industrial products, as well as from use of limestone, dolomite and soda in various technological processes. Emissions from fuel combustion for heat and electricity production in manufacture of industrial products are included into the Energy sector, except for emissions from the energy and non-energy components of use of coke for pig iron production (2.C.1) and the energy and non-energy components of use of natural gas in ammonia production (2.B.1), according to 2006 IPCC guidelines [1] (Block 1.1, Chapter 1, Volume 3). And indirect N_2O emissions calculated in accordance with 2006 IPCC guidelines [1] (Chapter 7.3, Volume 1)

GHG emissions was carried out for:

- Mineral Production and Use:
- Chemical Industry;
- Metal Production;
- Solvent and Non-Energy Product from Fuels Use;
- Electronic Equipment Production;
- Consumption of Substitutes for Ozone-Depleting Substances;
- Other Production and Use;
- Pulp Production and Food Industry.

GHG emission data for Ukraine are presented in Table 4.1

Table 4.1. GHG emissions in the sector Industrial Processes and Product Use

C	1000	2015	2010	Change, % compared			
Gas	1990	2017	2018	to 1990	to 2017		
CO ₂ , kt	110687.58	47635.24	50550.84	-54.33	6.12		
CH ₄ , kt CO ₂ -eq.	1 393.13	1510.79	3094.75	122.14	104.84		
N ₂ O, kt CO ₂ -eq.	5 671.54	1578.05	1497.52	-73.60	-5.10		
HFC, kt CO ₂ -eq.	-	1009.48	1349.26	-	33.66		
PFC, kt CO ₂ -eq.	235.819	-	-	-	-		
SF ₆ , kt CO ₂ -eq.	0.007631	28.46	33.29	219057.6	16.97		
Total direct action greenhouse gases, kt CO ₂ -eq.	117 988.08	51762.02	56525.65	-52.09	9.20		
Total direct action greenhouse gases, % of total emissions (without LULUCF)	12.52	16.04	16.66	-	-		
NO _x , kt	40.89	15.64	15.34	-62.49	-1.90		
CO, kt	69.36	32.45	34.92	-49.66	7.59		
NMVOC, kt	470.66	124.04	121.19	-74.25	-2.29		
SO ₂ , kt	149.09	51.40	54.13	-63.59	5.30		
Indirect N ₂ O, kt CO ₂ -eq.	4.89	1.87	1.83	-57.40	-1.90		

Fig. 4.1 presents diagrams for emissions of CO_2 , CH_4 , and N_2O , and Fig. 4.2 – in the major categories of the sector, respectively, in production and use of mineral products, production of chemical products, and manufacture of metals (including emissions of perfluorocarbons from aluminum production) and non-energy product from fuels, other nitrous oxide a hidrofluorocarbonates and sulphur hexafluoride use.

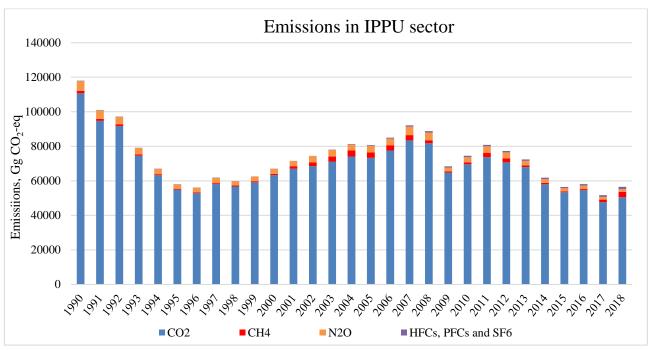


Fig. 4.1. Emissions of CO₂, CH₄, and N₂O in the sector Industrial Processes and Product Use, kt CO₂-eq.

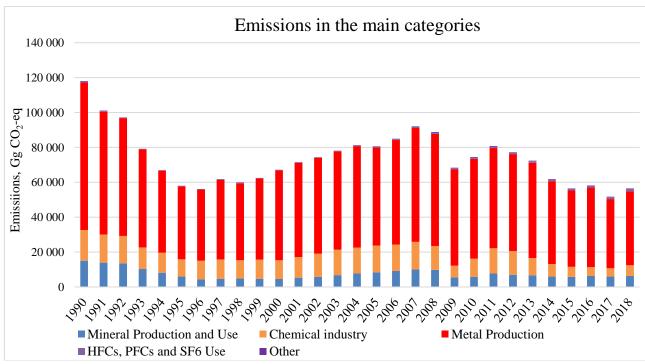


Fig. 4.2. Direct action greenhouse gas emissions in the major categories of the sector Industrial Processes and Product Use, kt CO₂-eq.

The increase of GHG emissions in 2018 compared to the previous year is due to the growth of industrial production by 3 % according to the data of SSSU. The production in the metal industry increased by 0.6 %, chemical industry increased by 17.4 %, which are the main sources of emissions in this sector. Emissions in the sector compared to the baseline year have decreased significantly due to a reduction in production output caused by the collapse of the USSR. Data on GHG emissions in the sector Industrial Processes and Product Use for the entire reporting period are shown in Table A3.1.1.1, Annex 3. Among all the categories, the greatest amount of CO_2 emissions is observed in production of pig iron and steel, ferroalloys, ammonia, cement, and lime. CH_4 emissions in the industrial sector are mainly associated with chemical products and pig iron production, and N_2O emissions – with nitric acid production and use of nitrous oxide for medical purposes.

Fig. 4.3 shows the precursor and SO_2 emission diagrams in the sector Industrial Processes and Product Use.

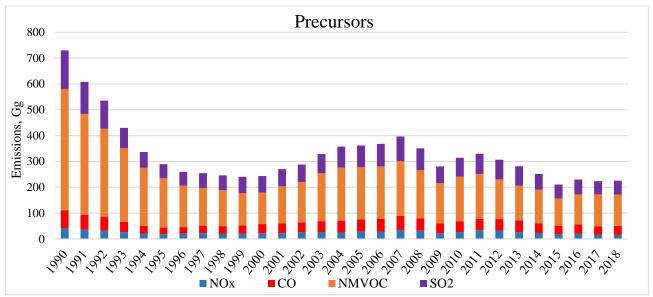


Fig. 4.3. Indirect action greenhouse gases and SO₂ emissions in the sector Industrial Processes and Product Use, kt

4.2 Cement Production (CRF category 2.A.1)

4.2.1 Category description

Cement production is the main production of mineral products. Cement is a hydraulic binding substance that solidifies upon addition of water and is used in concrete for adhesion of sand and gravel. The raw material for cement production is the mixture of minerals consisting of calcium oxide, silicon oxide, aluminum oxide, and iron oxide. The basic composition of the raw material – limestone, chalk, marl, clay shale, or clay.

The main chemical processes in cement production start with dissolution of calcium carbonate at the temperature of 900°C, resulting in formation of calcium oxide (CaO), and released carbon dioxide (CO₂). This is followed by the clinker production process: at high temperatures (typically 1400-1500°C), calcium oxide reacts with silicon dioxide, aluminum oxide, and iron oxide forming silicates, aluminates, and calcium ferrites, which constitute the clinker. After that, clinker is rapidly cooled.

Carbon dioxide (CO₂) is released as a byproduct of the carbonate calcination reaction. In production of cement, SO₂ emissions also occurs.

Cement in Ukraine is produced by 12 enterprises-producers. Most of the enterprises-producers work basing on imported clinker. Projects that promote emission reduction have been implemented at a number of the enterprises-producers. These projects introduce use of alternative raw materials (ARM) that do not contain carbonates (use of blast furnace slag, peat, waste tires etc.) and transition to the dry production process, which entails a reduction of fuel consumption and of emissions from decarbonization.

The changing in the emissions and factors in 2012 - 2018 was due to decrease in use of non-carbonate raw material components in the production and the fact that some of the enterprises use imported clinker.

Table 4.2 shows the basic data on the results of GHG inventory in cement production.

Table 4.2. The basic data on the results of GHG inventory in cement production in 2018

Category code	2.A.1
Cement production, kt	9464.6
Clinker production, kt	6850.37

Category code	2.A.	2.A.1		
Gases	CO_2	SO_2		
Emissions, kt		3718.58	2.84	
Change in emissions compared to the previous year	r,%	4.94	0.16	
Change in emissions compared to the baseline year	-,%	-60.44	-58.36	
Emissions, % of the total emissions in the sector		7.36	5.25	
Emissions, % of the total direct action GHG emissi	6.58			
Key category ("l" - level, "t" - trend)	L			
Detail level (Tier)		2	1	
Correction factor for cement kiln dust, p.u.		1.02		
Emission factor, t/t		0.532	0.0003	
Conditioned emission factor, t/t		0.543		
Method for determination of the emission factor				
Uncertainty of activity data, %				
Uncertainty of the emission factor, %				
Uncertainty of the emission estimation, %	5.734			

Activity data, emission factors, and GHG emissions throughout the time series in this category are shown in Table A3.1.1.2, Annex 3.1.1.

4.2.2 Methodological issues

For estimation of CO₂ emissions, the emission estimation method using data of the amount of produced clinker (Tier 2 method) [1] was used on the basis of data obtained from enterprises-producers and Ukrainian Association of Enterprises and Organizations of Cement Industry "Ukrcement". Data about cement production were obtained from SSSU [2]. For 2014 - 2018, the analytical study, which includes different approaches, particularly extrapolation, expert judgement and other math and statistical methods [20] was taken into account in adjustment of amounts of cement and clinker production. Emission factor was calculated by using Tier 2 method and cement kiln dust correction factors (CKD) were determined by default according to 2006 IPCC Guidelines [1]. Receiving of baseline technological parameters made it possible to perform calculations of CO₂ emissions in accordance with the technological parameters at the cement enterprises of Ukraine.

Decrease in use of volumes of non-carbonate raw material components in production of clinker at the enterprises-producers resulted in an increase of CO₂ emission factors in 2013 - 2018.

 SO_2 emissions from cement production were determined using the method of the Revised Guidelines IPCC [5] based on cement production data, using the default emission factor of 0.3 kg of SO_2 per ton of cement.

4.2.3 Uncertainties and time series-consistency

The key factors that determine the uncertainty in cement production are:

- accuracy of results of the chemical analysis of clinker composition, which influences the uncertainty of the emission factor;
- accuracy of analysis of the CKD amount returned to the kiln.
- accuracy of determining the volume of clinker production.

Each of these factors, in accordance with data of the 2006 IPCC Guidelines [1], adds its uncertainty at the level of 2-5 %. Uncertainty of the CO_2 emission factor at clinker production is taken to be 5.408 % based on analysis of the content of CaO and MgO in clinker, as well as the CKD correction factor uncertainty of 0.859 %.

The uncertainty of activity data in accordance with [1] was taken at the level of 1.7 %, the overall uncertainty of CO_2 emission estimation at cement production in Ukraine can be set at the level of 5.734 %.

4.2.4 Category-specific QA/QC procedures

General and detailed QA/QC procedures were applied to calculation of GHG emissions from cement production. Among the detailed quality control procedures, the following were performed:

- comparison of data of cement and clinker production provided by SSSU with data of the enterprises-producers and Ukrainian Association of Enterprises and Organizations of Cement Industry "Ukrcement";
- comparison of the national CO₂ emissions factors with the default emission factors.

4.2.5 Category-specific recalculations

In this category, no recalculations were made.

4.2.6 Category-specific planned improvements

In this category, no improvements are planned.

4.3 Lime Production (CRF category 2.A.2)

4.3.1 Category description

Lime is used in construction, agriculture, and industry for steel, magnesium, copper, soda ash, and sugar production.

According to data of the Ukrainian Association of Lime Industry, the overall structure of use of lime produced in 2018 is distributed as follows:

- metallurgy -70 %;
- sugar industry 9 %;
- construction 5 %;
- other 16 %.

The largest consumer of lime is the metallurgical industry. The free lime market capacity in 2018 remained - approximately 401 kt of lime (slaked and quicklime), while its share of the total lime market decreased to 16 %.

The reduction of slaked lime production in the period from 2011 to 2018 occurred as a result of changes in the market conditions - the reduced volume of slaked lime consumption as a final product in the construction industry, agriculture, and a reduction in the amount of slaked lime used for water softening in all industries.

The key process in lime production is calcination of limestone (CaCO₃) and dolomite (CaCO₃*MgCO₃) made in kilns. There is slaked lime and quicklime, construction and technology (different in the chemical and mechanical composition), calcite (CaO) and dolomite (CaO*MgO) ones. Quicklime (CaO) is the product of burning and processing of natural calcium carbonates, mainly limestone. Slaked lime Ca(OH)₂ is the product of quicklime hydration.

 CO_2 is the only GHG emitted in lime production, and the emission volume is directly dependent on the amount and type of produced lime. Table 4.3 shows the basic data on the results of GHG inventory in lime production.

Table 4.3. The basic data on the results of GHG inventory in lime production in 2018

Category code	2.A.2
Lime production, kt	3113.19

Category code	2.A.2
Emissions of CO ₂ , kt	2317.02
Change in CO ₂ emissions compared to the previous year,%	8.14
Change in CO ₂ emissions compared to the baseline year,%	-54.76
Emissions, % of the total emissions in the sector	4.58
Emissions, % of the total direct action GHG emissions in the sector	4.1
Key category ("l" - level, "t" - trend)	L
Detail level (Tier)	2
Emission factor, t/t	0.768
Method for determination of the emission factor	T2
Uncertainty of activity data, %	12
Uncertainty of the emission factor, %	16.06
Uncertainty of the emission estimation, %	20.07

Activity data, emission factors, and GHG emissions throughout the entire time series in this category are shown in Table A3.1.1.3, Annex 3.1.1.

4.3.2 Methodological issues

CO₂ emissions from lime production were determined in accordance with 2006 IPCC Guidelines [1] (Tier 2 method).

Data of total amounts of lime production in Ukraine were obtained from SSSU [2], with using analytical study, which includes different approaches, particularly extrapolation, expert judgement and other math and statistical methods [20] for adjustment of the amounts of lime production in 2014 - 2018. The ratio between volumes of production of lime with a high content of calcium and dolomitic lime (85/15) and the content of CaO and MgO in these types of lime was taken by default in accordance with [1]. Humidity of slaked lime calculated based on dry weight was taken as 28 %, in accordance with [1].

The total emission factors are not equal to the constant value, as quicklime and slacked lime activity is slightly different, and the ratio of quicklime and slacked lime changes from year to year.

4.3.3 Uncertainties and time series-consistency

The uncertainty of CO_2 emission factors in of quicklime and slacked production lime associated with determining of the content of CaO and MgO for all types of lime, as well as the correction for slaked lime according to [1] is taken at the level of 16.06 %.

Since data of the total volume of lime production in Ukraine were obtained from SSSU, the uncertainty of the activity data of quicklime and slaked lime production is taken to be at 12 %.

The uncertainty of the data of application of the correction factor for lime dust was taken at the level of $0.859\,\%$.

The total uncertainty of CO_2 emission from lime production estimation amounted to 20.07 %.

4.3.4 Category-specific QA/QC procedures

General QA/QC procedures were applied to calculation of GHG emissions from lime production:

- statistical reporting data analysis using alternative sources such as data of the Ukrainian Association of Lime Industry;
 - analysis of the time series of activity data and CO₂ emissions.

4.3.5 Category-specific recalculations

In this category, no recalculations were made.

4.3.6 Category-specific planned improvements

In this category, no improvements are planned.

4.4 Glass Production (CRF category 2.A.3)

4.4.1 Category description

Glass is an inorganic product produced by melting the raw material, forming it to the desired shape, and cooling without crystallization. Silicate glass is the main type of glass produced. The key raw materials for glass production, use of which results in greenhouse gas emissions, are soda ash (Na₂CO₃), limestone, (CaCO₃), and dolomite (CaCO₃*MgCO₃). When assessing GHG emissions from glass production, emissions from use of limestone and dolomite, as well as emissions from use of soda ash in glass production are accounted for.

In the process of glass production, take place CO₂ and NMVOC emissions. Table 4.4 shows the basic data on the results of GHG inventory in glass production.

Table 4.4. The basic data on the results of GHG inventory in glass production in 2018

Category code	2.A.3	
Glass production, kt	1315.86	
Gas	CO ₂	NMVOC
Emissions, kt	239.65	5.92
Change in emissions compared to the previous year, %	-2.35	1.20
Change in emissions compared to the baseline year, %	38.34	32.25
Emissions, % of the total emissions in the sector	0.47	4.88
Emissions, % of the total direct action GHG emissions in the sector	0.42	
The key category	No	
Detail level (Tier)	3	1
Emission factor, t/t	0.182	0.0045
Method for determination of the emission factor	CS	D
Uncertainty of activity data, %	6.636	
Uncertainty of the emission factor, %	2.31	
Uncertainty of the emission estimation, %	7.027	

Activity data, emission factors, and GHG emissions throughout the entire time series in this category are shown in Table A3.1.1.4, Annex 3.1.1.

4.4.2 Methodological issues

The amount of glass produced was taken in accordance with data obtained from SSSU [2] and data obtained from the enterprises-producers with using analytical study, which includes different approaches, particularly extrapolation, expert judgement and other math and statistical methods [20] for adjustment of the amounts of glass production in 2014 - 2018. The greatest amount of CO₂ emissions in glass production is due to production of flat glass, cans, and bottles. Statistics data about window glass production in Ukraine have been confidential since 2004. Therefore, NIR provides information on the total amount of glass produced and the total CO₂ emissions. Volumes of production of other types of glass do not exceed one percent of the total amount of glass.

To estimate emissions in this category, the scientific-research work "Development of methods for estimation and determination of carbon dioxide emissions from limestone and dolomite use" [8] was used, the findings of which were applied to improve accuracy of emission estimates for limestone and dolomite use. A research of activity data and national CO₂ emission factors for glass production was conducted, findings of which made it possible to specify the inventory data by specifying the content of CaCO₃ and MgCO₃ in limestone and dolomite, which are used in production of flat glass, cans, and bottles, as well as the amount of limestone and dolomite use in glass production for the different years.

Discrepancies in the national CO₂ emissions factors for production of various types of glass are minor. Emissions from soda ash use in glass production were calculated based on data of soda ash content in furnace charge provided by the manufacturing enterprises and the CO₂ emission factor used in the calculations in category 2.A.4.b. Other Process Uses of Carbonates. Use of Soda Ash.

NMVOC emissions were defined using the default emission factor of 4.5 kg per tonne of glass recommended by the Revised Guidelines [5].

4.4.3 Uncertainties and time series-consistency

The key factors of the uncertainty in glass production are:

- use of the average estimation of the weight of bottles and cans to determine their production in weight units;
 - CaCO₃ and MgCO₃ content in limestone and dolomite;
 - specific consumption of the furnace charge.

As a result of the scientific-research work [8], the uncertainty of activity data in glass production is set at 6.636 %, and the uncertainty of CO_2 emission factors – at the level of 2.31 %. Thus, the uncertainty of CO_2 emission from glass production amounts to 7.027 %.

4.4.4 Category-specific QA/QC procedures

General QA/QC procedures were applied for estimation of emissions from glass production.

4.4.5 Category-specific recalculations

In 2018 in this category recalculation of CO_2 emissions for 2017 was made due to adjustment of the data of $CaCO_3$ and $MgCO_3$ content in dolomite content in furnace charge according to the data obtained from enterprises.

Table 4.5 Recalculation of emissions from glass production in 2017

2.A.3 Glass Production	2017
CO_2	
EF (before recalculating)	0.18428
Emissions (before recalculating), kt	245.439
EF (after recalculating)	0.18429
Emissions (after recalculating), kt	245.429
Difference,%	-0.004

4.4.6 Category-specific planned improvements

In this category, no improvements are planned.

4.5 Other Process Uses of Carbonates (CRF category 2.A.4.)

4.5.1 Ceramics Production (CRF category 2.A.4.a)

4.5.1.1 Category description

In this category, CO₂ emissions from limestone (CaCO₃) and dolomite (CaCO₃*MgCO₃) use in manufacture of ceramics are estimated.

Table 4.6 shows the results of the GHG inventory for use of limestone and dolomite.

Table 4.6. Basic data on CO₂ emission inventory results for use of limestone and dolomite in 2018

Category code	2.A.4.a	
Type of product	Ceramics	
	Limestone	Dolomite
Use, kt	13.396	136.575
Production, kt	3808.71	
Emissions of CO ₂ , kt	66.79	
Change in CO ₂ emissions compared to the previous year,%	-0.91	
Change in CO ₂ emissions compared to the baseline year,%	-40.24	
Emissions, % of the total emissions in the sector	0.13	
Emissions, % of the total direct action GHG emissions in the sector	0.12	
The key category	No	
Detail level (Tier)	1	
Emission factor, t/t	0.0175	
Method for determination of the emission factor	D	
Uncertainty of activity data, %	2.4	
Uncertainty of the emission factor, %	5.0	
Uncertainty of the emission estimation, %	5.5	

Activity data, emission factors, and GHG emissions throughout the entire time series in this category are shown in Table A3.1.1.5, Annex 3.1.1.

4.5.1.2 Methodological issues

Data of ceramics production and limestone and dolomite use in manufacture of ceramics were taken based on data obtained from the producing companies and the SSSU [2], with using analytical study, which includes different approaches, particularly extrapolation, expert judgement and other math and statistical methods [20] for adjustment of the amounts of ceramics production in 2014 - 2018. Estimation of CO₂ emissions in production of ceramics was performed in accordance with 2006 IPCC Guidelines [1]. The activity data and estimation results are presented in Annex 3.2.3.

The values of emission factors from limestone and dolomite use in ceramics production were taken by default in accordance with 2006 IPCC Guidelines [1].

4.5.1.3 Uncertainties and time series-consistency

The uncertainty of data of limestone and dolomite use in ceramics production was set at 2.4%. The uncertainty of CO_2 emission factors was set at 5%. The uncertainty of emission estimation in limestone and dolomite use in ceramics production amounts to 5.5%.

4.5.1.4 Category-specific QA/QC procedures

General QA/QC procedures were applied for estimation of emissions from ceramic production.

4.5.1.5 Category-specific recalculations

In 2018 in this category recalculation of CO₂ emissions for 2017 was made due to adjustment of the data of ceramics production according to the data obtained from enterprises.

Table 4.7 Recalculation of emissions from ceramics production in 2017

2.A.4.a Ceramics Production	2017
CO_2	
Emissions (before recalculating), kt	67.39
Emissions (after recalculating), kt	67.41
Emission difference,%	0.009

4.5.1.6 Category-specific planned improvements

In this category, no improvements are planned.

4.5.2 Other Uses of Soda Ash (CRF category 2.A.4.b)

4.5.2.1 Category description

Soda ash (sodium carbonate Na₂CO₃) produces in Ukraine at one plant with using Solvay process (the synthesis process). Soda ash is widely used as a raw material in many industries, mainly in glass production, as well as in chemical industry and detergents production. Emissions from soda ash use in glass production were estimated in category 2.A.3 Glass production.

Table 4.8 shows the results of the GHG inventory in other soda ash use.

Table 4.8. Basic data of CO₂ emission inventory results for other soda ash use in 2018

Category code	2.A.4.b
Soda ash use, kt	45.71
Emissions of CO ₂ , kt	18.97
Change in CO ₂ emissions compared to the previous year,%	-40.80
Change in CO ₂ emissions compared to the baseline year,%	-93.65
Emissions, % of the total emissions in the sector	0.038
Emissions, % of the total direct action GHG emissions in the sector	0.034
The key category	No
Detail level (Tier)	1
Emission factor, t/t	0.415
Method for determination of the emission factor	D
Uncertainty of activity data, %	6
Uncertainty of the emission factor, %	7.0
Uncertainty of the emission estimation, %	9.2

Activity data, emission factors, and GHG emissions throughout the entire time series in this category are shown in Table A3.1.1.6, Annex 3.1.1.

4.5.2.2 Methodological issues

 CO_2 emissions from soda ash use were estimated in accordance with Revised Guidelines IPCC [5] (Tier 1) with default emission factor of CO_2 emissions equal to 0.415 t CO_2 / t soda ash use.

Data of soda ash use was determined on the basis of balance equation with the use of data of soda production, export and import with using analytical study, which includes different approaches, particularly extrapolation, expert judgement and other math and statistical methods [20] for adjustment of the amounts of soda ash production in 2014 - 2018. Data of soda export and import was

obtained from SSSU [23]. Data of soda production was taken from annual report of enterprise-producer. Emission from soda ash use in glass production was excluded from emissions in this category and incuded in 2.A.3 Glass production.

4.5.2.3 Uncertainties and time series-consistency

The uncertainty of data of soda production, exports and imports obtained from statistic data was set at 6 %. Taking into account the possibility of volatilization of a certain – amount of CO₂ during soda production with the Solvay process (according to [5], up to 8.4 %), uncertainty of the default emission factor of CO₂ emissions was taken at 7 %. In this case the uncertainty of CO₂ emission in soda ash use was taken 9.2 %.

4.5.2.4 Category-specific QA/QC procedures

General QA/QC procedures were applied for estimation of emissions from soda ash use.

4.5.2.5 Category-specific recalculations

In this category, no recalculations were made.

4.5.2.6 Category-specific planned improvements

In this category, no improvements are planned.

4.6 Ammonia Production (CRF category 2.B.1)

4.6.1 Category description

The feedstock for ammonia production in Ukraine is natural gas. The process for ammonia production is based on ammonia synthesis from nitrogen and hydrogen at the temperatures of 380-450°C and the pressure of 250 atm. using an iron catalyst:

$$N2 (g.) + 3H2 (g.) = 2NH3 (g.)$$

Nitrogen is obtained from air. Hydrogen is produced by reduction of water (steam) using methane from natural gas.

Ammonia is used in industry as a raw material for production of nitric acid, nitrogen and complex fertilizers, explosives, dyes, polymers, soda (based on the ammonia method), and other chemical products, as well as a refrigerant.

CO₂ emissions from ammonia production are related to the key categories. To improve accuracy of CO₂ emission estimation, consumption of natural gas as a raw material was taken according to data from six enterprises-producers of ammonia.

SO₂ emissions and precursors: CO, NO_x, NMVOC also occurs in ammonia production. Table 4.9. shows the basic data on the results of GHG inventory in ammonia production.

Table 4.9. The basic data on the results of GHG inventory in ammonia production in 2018

Category code			2.B.1		
Ammonia production, kt	976.475				
Consumption of natural gas, M m ³	1008.99				
Gases	CO_2	CO	NO_x	NMVOC	SO_2
Emissions from production, kt	1275.9	0.006	0.976	0.088	0.029
Change in emissions compared to the previous year,%	-20.71	-18.01			
Change in emissions compared to the baseline year,%	-86.43	-79.92			
Emissions, % of the total emissions in the sector	2.52	0.0147	6.36	0.073	0.053
Emissions, % of the total direct action GHG emissions	2.26				
in the sector	2.20				
Key category ("l" - level, "t" - trend)	T				

Method for determination of the emission factor	Т3	D	D	D	D
Detail level (Tier)	3	1	1	1	1
Emission factor at production, t/t	1.31	0.000006	0.001	0.00009	0.00003
Uncertainty of activity data, %	2				
Uncertainty of the emission factor, %	7				
Uncertainty of data on use of urea,%	5				
Uncertainty of the emission estimation, %	8.832				

Activity data, emission factors, and GHG emissions throughout the entire time series in this category are shown in Table A3.1.1.7, Annex 3.1.1.

4.6.2 Methodological issues

Carbon dioxide emissions from ammonia production are calculated in accordance with 2006 IPCC Guidelines (Tier 3 method), according to which consumption of natural gas in calculations is accounted for not only as a raw material component, but also as an energy one to create high-temperature environment. Since ammonia production processes in Ukraine are characterized by use of fuel resource (natural gas) data directly within the production boundaries of the single enterprise, emissions from energy and non-energy use of natural gas in ammonia production – in the subdivision into raw material and energy use of natural gas were accounted in this category and in order to avoid double accounting excluded from category 1.A.2.c (Energy sector).

To account the amount of the excluded CO_2 , used for urea (carbamide) production, data of urea production from SSSU [2] and the stoichiometric CO_2 to urea ratio (44/60) were used, in accordance with 2006 IPCC Guidelines [1].

The net calorific value of natural gas was taken in accordance to passports-certificates of physical and chemical properties of natural gas in gas production and gas transportation companies of Ukraine. The determination method and the national value of carbon content in natural gas are presented in Annex P2.5. The value of carbon content in natural gas for 1990-2003 year was taken equal to the value of 2004 in accordance with reccomendations of ARR 2014, para 30 and ARR 2015 para E.10 due to the fact that the passport certificates data for the 1990-2003 year is absent the corresponding information and justification for the assumption is included in Annex A.2.11.1.

Estimation of NMVOC, CO, NO_x , and SO_2 emissions from ammonia production was carried out in accordance with 2013 EMEP/EEA Emission Inventory Guidebook [6] using the default emission factors.

4.6.3 Uncertainties and time-series consistency

The key factors that determine the uncertainty in ammonia production are:

- The source of obtained activity data of natural gas consumption for ammonia production;
- The total fuel requirement (NCV/ton ammonia);
- The uncertainty of data of CO₂ extracted for further use (urea production);

The uncertainty of data of natural gas consumption for ammonia production obtained from enterprises and used as activity data for estimating CO_2 emissions is taken at the level of 2 %. The uncertainty of the emission factor defined as the total fuel requirement (NCV/ton of ammonia) is 7 %, as for the average value of specific energy consumption (for modern and older plants). The uncertainty of data on CO_2 extracted for further use (urea production) is taken at the level of 5 %. The total uncertainty of CO_2 emission from ammonia production estimation amounted to 8.832 %.

4.6.4 Category-specific QA/QC procedures

General QA/QC procedures were applied for estimation of GHG emissions in ammonia production. In the framework of quality control procedures, the following were performed:

- comparison of data of ammonia production and consumption of natural gas for ammonia production provided by enterprises-producers in accordance with data of national statistics;
- comparison of the national CO₂ emissions factors with the default IPCC factors.

Analysis of data on ammonia production provided by enterprises shows that they coincide with the data of SSSU [2] (the difference in 2018 is -0.27 %), which is not essential.

4.6.5 Category-specific recalculations

In this category, no recalculations were made.

4.6.6 Category-specific planned improvements

In this category, no improvements are planned.

4.7 Nitric Acid Production (CRF category 2.B.2)

4.7.1 Category description

Nitric acid (HNO₃) is used for production of fertilizers, explosives, in the paint and varnish industry, for etching non-ferrous metals, and so on.

Nitric acid production technology is based on catalytic oxidation of ammonia with the oxygen in the air composition. Thus, the key process steps are:

• contact oxidation of ammonia to obtain nitrogen oxide:

$$4NH_3 + 5O_2 = 4NO + 6H_2O;$$

• oxidation of nitrogen monoxide to dioxide and absorption of the mixture of "nitrous gases" by water:

$$2NO + O_2 = 2NO_2;$$

 $3NO_2 + H_2O = 2HNO_2 + NO$

The resulting concentration of nitric acid is 55-58%. As a result of the production, N_2O and NO_x are emitted as byproducts.

Currently, nitric acid in Ukraine produces by five companies based on the use of two techniques: on medium pressure units in a pressurized system (7.3 kg/cm²) and on low-pressure units (3.5 kg/cm²) under the combined method.

Nitrous oxide forms by catalytic oxidation of ammonia and is an undesirable byproduct of nitric acid production. Provided using an efficient catalyst, usually 92-96 % (maximum - 98 %) of the fed ammonia converts into nitrogen oxide. The rest of the amount of the ammonia comes into unwanted reactions that lead to formation of nitrous oxide and other substances. These byproducts (including nitrous oxide) are emitted into the atmosphere. Emission calculations were made in view of 100 % concentration nitric acid.

Table 4.10 shows the basic data on the results of GHG inventory in nitric acid production.

In the framework of JI projects in enterprises producing nitric acid in Ukraine were installed secondary catalysts (manufacturer Umicore) for catalytic destruction of nitrous oxide, with the purpose to decomposition of N_2O emissions. At the same time automated emissions monitoring systems (AMS) have been installed.

Table 4.10. The basic data on the results of GHG inventory in nitric acid production in 2018

Category code	2.B.2		
Nitric acid production, kt	1011.19		
Greenhouse gas	N ₂ O	NOx	

Emissions from production, kt	4.55	10.11
Change in emissions compared to the previous year,%	-	5.42
Change in emissions compared to the baseline year,%	-(52.55
Emissions, % of the total emissions in the sector	90.46	65.91
Emissions, % of the total direct action GHG emissions in the sector	2.4	
Key category ("l" - level, "t" - trend)	No	
Detail level (Tier)	3/2	1
Method for determination of the emission factor	CS/D	D
Emission factor, kg/t	4.5/7.0/5.0	10
Uncertainty of activity data, %	2	
Uncertainty of the emission factor, %	5	
Uncertainty of the emission estimation, %	5.4	

Activity data, emission factors, and GHG emissions throughout the entire time series in this category are shown in Table A3.1.1.8, Annex 3.1.1.

4.7.2 Methodological issues

Emissions from nitric acid production on medium-pressure units UKL-7 for 1990 - 2008 were calculated using nitrogen oxide emission factor (7 kg/t), as default, according to 2006 IPCC Guidelines [1]. As a result of the introduction on the part of enterprises in 2009, the secondary catalysts for catalytic destruction of nitrous oxide, with the purpose to decomposition of N_2O emissions and automated emissions monitoring systems, in calculations of N_2O emissions for 2009 - 2018 nitrogen oxide emission factor (4.5 kg/t) was used, based on the expert judgment prepared by the Union of Chemists of Ukraine, as well as the scientific-research work "Development of the method of calculation and determination of GHG emissions in the chemical industry with the construction of particular time-series" [12] as a weighted average of the emission factor at the enterprises producing nitric acid, for the medium-pressure units UKL-7. For one enterprise using low-pressure units, the default nitrous oxide emission factor (5 kg/t) was used in accordance with 2006 IPCC Guidelines [1]. The amount of nitric acid produced in 2018 was taken in accordance with data obtained from enterprises.

Estimation of emissions of nitrogen oxides was conducted in accordance with 2013 EMEP/EEA emission inventory guidebook [6] using default emission factors (section 2.9).

4.7.3 Uncertainties and time-series consistency

In accordance with the Guidelines [1], the values of the activity data uncertainty are taken at the level of 2 %. The values of the uncertainty of emission factors for this category were taken at the level of 5 %, in accordance with the recommendations of the 2006 IPCC Guidelines [4]. Thus, the total uncertainty of the estimates of nitrous oxide emissions from nitric acid production amounts to 5.4 %.

4.7.4 Category-specific QA/QC procedures

General QA/QC procedures were applied for estimation of GHG emissions in production of nitric acid. As part of the quality control procedures, the following were performed:

 comparison of nitric acid production data in accordance with the data of the SSSU and the enterprises-producers.

Analysis of data on nitric acid production provided by enterprises shows that they coincide with the data of SSSU [2] (the difference in 2018 is -0.95 %), which is not essential.

4.7.5 Category-specific recalculations

In this category, no recalculations were made.

4.7.6 Category-specific planned improvements

In this category, no improvements are planned.

4.8 Adipic Acid Production (CRF category 2.B.3)

4.8.1 Category description

Adipic acid (HOOC(CH₂)4COON) is a dicarboxylic acid, which is produced by oxidation of a mixture of cyclohexanone and cyclohexanol with nitric acid in the presence of a vanadium catalyst. The oxidation process with nitric acid releases nitrous oxide as an undesirable byproduct (N_2O) .

Adipic acid production is also accompanied by emissions of NMVOC, CO, and NO_{x.}

In Ukraine, the technique of thermal destruction of N_2O is used at adipic acid production. The unit for thermal destruction of N_2O was developed by Severodonetsk branch of the "Institute of Nitric Industry" together with BASF, which was the supplier of the technology and equipment for adipic acid production.

The reduction in the amount of production of adipic acid and, therefore, of emissions in 2009 was due to the economic crisis and the general decline in industrial production in that period.

According to the activity data provided by producing enterprises and by the State Enterprise "Cherkasky NIITEKHIM", adipic acid has not been produced since 2013, so the emissions in this category were not estimated. Data of adipic acid production in Ukraine for the whole time series are shown in the table A3.1.1.9 in Annex 3 and the CRF tables.

4.8.2 Methodological issues

Data of adipic acid production were provided by the enterprises-producers. For estimation of N_2O emissions from adipic acid production, 2006 IPCC Guidelines [1], using Tier 2 method with default emission factors were used. Estimation of emissions of NMVOC, CO, and NO_x was conducted in accordance with 2013 EMEP/EEA emission inventory guidebook [6] using default emission factors.

4.8.3 Uncertainties and time-series consistency

According to the activity data provided by producing enterprises and by the State Enterprise "Cherkasky NIITEKHIM", adipic acid has not been produced since 2013, so the uncertainties in this category were not calculated.

4.8.4 Category-specific QA/QC procedures

General QA/QC procedures were applied for estimation of GHG emissions in adipic acid production.

4.8.5 Category-specific recalculations

In this category, no recalculations were made.

4.8.6 Category-specific planned improvements

In this category, no improvements are planned.

4.9 Caprolactam, Glyoxal, and Glyoxylic Acid Production (CRF category 2.B.4)

4.9.1 Category description

This section is dedicated to production of three chemicals – caprolactam, glyoxal, and glyoxylic acid, which are potentially important sources of nitrous oxide (N_2O) emissions in the countries where they are produced.

In Ukraine, glyoxal and glyoxylic acid are not produced. Almost all of the annual production of caprolactam ($C_6H_{11}NO$) is consumed as the monomer for nylon-6 fibres and plastics (Kirk-Othmer, 1999; p.310), with a substantial proportion of the fibre used in carpet manufacturing.

Mostly, caprolactam is produced by the Raschig method, as a result of Beckmann rearrangement (conversion of a ketone oxime into an amide, usually using sulphuric acid as a catalyst) by the addition of hydroxylamine sulphate to cyclohexanone. Hydroxylamine sulphate is produced from ammonium nitrate and sulphur dioxide. Ammonia gas and air are fed to a converter where ammonia is converted to hydroxylamine disulphonate by contacting it with ammonium carbonate and sulphur dioxide in series. Ammonium carbonate is produced by dissolving ammonia and carbon dioxide in water, and sulphur dioxide by burning sulphur. The disulphonate is hydrolysed to hydroxylamine sulphate and ammonium sulphate. The addition of hydroxylamine sulphate to cyclohexanone produces cyclohexanone oxime which is converted to caprolactam by the Beckmann rearrangement. According to the activity data provided by enterprises-producers and by the State Enterprise "Cherkasky NIITEKHIM", caprolactam has not been produced since 2014, so the emissions in this category were not estimated.

4.9.2 Methodological issues

Data of caprolactam production was provided by the enterprises-producers. For estimation of N_2O emissions from caprolactam production, 2006 IPCC Guidelines [1], using Tier 1 method with default emission factor was used.

4.8.3 Uncertainties and time-series consistency

According to the activity data provided by producing enterprises and by the State Enterprise "Cherkasky NIITEKHIM", caprolactam has not been produced since 2014, so the uncertainties in this category were not calculated.

4.9.4 Category-specific QA/QC procedures

General QA/QC procedures were applied for estimation of GHG emissions in caprolactam production.

4.9.5 Category-specific recalculations

In this category, no recalculations were made.

4.9.6 Category-specific planned improvements

In this category, no improvements are planned.

4.10 Carbide Production and Use (CRF category 2.B.5)

4.10.1 Category description

Calcium carbide CaC_2 is obtained by calcination of a mixture of limestone with coal dust in electric furnaces and subsequent recovery of lime. Silicon carbide is produced in electric furnaces at $2000 - 2200^{\circ}$ C from the mixture of quartz sand (51-55 %), coke (35-40 %) with the addition of sodium chloride (1-5 %) and sawdust (5-10 %). In this category, CO_2 emissions occurs from limestone in production of CaC_2 and SiC, as well as in the lime recovery process and calcium carbide utilization. In production of silicon carbide, also occurs CH_4 emissions. The data about silicon and calcium carbide production in Ukraine is confidential.

Table 4.11 shows data on CO_2 emissions from production and use of calcium carbide and CH_4 emissions from silicon carbide production.

Table 4.11. The basic data on the results of GHG inventory in carbide production and use in 2018

Category code	2.B.4	
Carbide Production and Use, kt	С	
Greenhouse gas	CO_2	CH ₄
Emissions, kt	59.028	0.26
Change in emissions compared to the previous year,%	17.272	17.356
Change in emissions compared to the baseline year,%	-51.646	72.456
Emissions, % of the total emissions in the sector	0.12	0.21
Emissions, % of the total direct action GHG emissions in the	0.10	0.011
sector		
The key category	No	
Detail level (Tier)	1	1
Method for determination of the emission factor	D	D
Uncertainty of activity data, %	5	5
Uncertainty of the emission factor, %	10	10
Uncertainty of the emission estimation, %	11.180	

4.10.2 Methodological issues

The data of calcium and silicon carbide production were provided by the enterprises-producers and SSSU [2]. For calculation of emission factors of CO₂ and CH₄ for silicon carbide production, as well as in calcium carbide using, the default factors were used [1].

4.10.3 Uncertainties and time-series consistency

The uncertainty of the default CO_2 , CH_4 emission factors is taken at the level of 10 %. The uncertainty of the data of calcium and silicon carbide production provided by the enterprises-producers is taken at the level of 5 %.

Thus, the total uncertainty of CO_2 and CH_4 emissions in calcium carbide and silicon carbide production amounts to 11.180 %.

4.10.4 Category-specific QA/QC pro cedures

General QA/QC procedures were applied for estimation of GHG emissions in production and use of calcium carbide.

4.10.5 Category-specific recalculations

In 2018 in this category recalculation of CO_2 and CH_2 emissions for 2015 - 2017 was made due to adjustment of the data of carbide production according to the data obtained from enterprises.

Table 4.12 Recalculation of emissions from carbide production and use in 2015 - 2017

2.B.5 Carbide Production and Use	2015	2016	2017
CO ₂			
Emissions (before recalculating), kt	35.52	32.55	45.52
Emissions (after recalculating), kt	38.58	35.77	50.33
Emission difference,%	8.62	9.91	10.57
CH ₄			
Emissions (before recalculating), kt	0.155	0.143	0.201
Emissions (after recalculating), kt	0.169	0.157	0.222
Emission difference,%	8.72	9.99	10.62

4.10.6 Category-specific planned improvements

In this category, no improvements are planned.

4.11 Titanium Dioxide Production (CRF category 2.B.6)

4.11.1 Category description

Titanium dioxide (TiO₂) is one of the most commonly used white pigments. The main use is in paint manufacture followed by paper, plastics, rubber, ceramics, fabrics, floor covering, printing ink, and other miscellaneous uses.

There are three processes that are used in the production of TiO_2 that lead to process greenhouse gas emissions:titanium slag production in electric furnaces, synthetic rutile production using the Becher process, and rutile TiO_2 production via the chloride route. Titanium slag used for production of anatase TiO_2 is produced from electric furnace smelting of ilmenite. Where titanium slag is used the acid reduction step is not required as the electric furnace smelting reduces the ferric iron contained as an impurity in ilmenite. Rutile TiO_2 may be produced by further processing of the anatase TiO_2 .

Process emissions arise from the reductant used in the process. Production of synthetic rutile can give rise to CO₂ emissions where the Becher process is used. This process reduces the iron oxide in ilmenite to metallic iron and then reoxidises it to iron oxide, and in the process separates out the titanium dioxide as synthetic rutile of about 91 to 93 percent purity (Chemlink, 1997). Black coal is used as the reductant and the CO₂ emissions arising should be treated as industrial process emissions. The main route for the production of rutile TiO₂ is the chloride route. Rutile TiO₂ is produced through the carbothermal chlorination of rutile ore or synthetic rutile to produce titanium tetrachloride (TiCl₄) and oxidation of the TiCl₄ vapours to TiO₂.

Table 4.13 shows the basic data on the results of GHG inventory in titanium dioxide production.

Table 4.13. The basic data on the results of GHG inventory in dioxide titanium production in 2018.

Category code	2.B.6
Titanium Dioxide Production, kt	142.136
Emissions of CO ₂ , kt	190.462
Change in CO ₂ emissions compared to the previous year,%	-1.15
Change in CO ₂ emissions compared to the baseline year,%	-15.84
Emissions, % of the total emissions in the sector	0.38
Emissions, % of the total direct action GHG emissions in the sector	0.34
The key category	No
Detail level (Tier)	1
Method for determination of the emission factor	D
Uncertainty of activity data, %	6
Uncertainty of the emission factor, %	15
Uncertainty of the emission estimation, %	16.155

4.11.2 Methodological issues

Data of titanium dioxide production was obtained from the enterprises-producers with using analytical study, which includes different approaches, particularly extrapolation, expert judgement and other math and statistical methods [20] for adjustment of the amounts of titanium dioxide production in 2018. For estimation of CO₂ emissions from titanium dioxide production, 2006 IPCC Guidelines [1] with default emission factors were used.

4.11.3 Uncertainties and time-series consistency

The uncertainty of production data is estimated at 6 %. The uncertainty of the default CO₂ emission factors is set at 15 %. Thus, the uncertainty of CO₂ emission from titanium dioxide production in Ukraine amounts to 15.81 %.

4.11.4 Category-specific QA/QC procedures

General QA/QC procedures were applied for estimation of GHG emissions in production of titanium.

4.11.5 Category-specific recalculations

In this category, no recalculations were made.

4.11.6 Category-specific planned improvements

In this category, no improvements are planned.

4.12 Soda Ash Production and Use (CRF category 2.B.7)

4.12.1 Category description

In Ukraine, soda ash production takes place at one plant with Solvay process (the synthesis process) which involves capturing carbon dioxide released during the occurrence of side reactions(such as calcining limestone with metallurgical grade coke or anthracite) and return it to the process, assessment of CO₂ emissions from the production process does not performes, which does not disagree with the requirements of the IPCC, according to research work "Development of the method of calculation and determination of GHG emissions in the chemical industry with the construction of particular time-series" [12].

4.13 Petrochemical and Carbon Black Production (CRF category 2.B.8)

4.13.1 Category description

In this category, estimation of carbon dioxide and methane emissions in carbon black, ethylene and methanol production, as well as precursors (CO, NO_x, NMVOCs) and SO₂ in manufacture of chemical products: carbon black, ethylene, vinyl chloride monomer, methanol, polystyrene, propylene, polypropylene, polyethylene, sulfuric acid, and phthalic anhydride was made.

Carbon black is used as a reinforcing component in production of rubbers and other plastic masses. In production of carbon black occurs emissions of CO₂, CH₄, and all precursors GHGs - NO_x, CO, SO₂ and NMVOCs. Since 2007, statistics of carbon black production in Ukraine is confidential. Data of carbon black production in 2018 were provided by the enterprise-producers.

Ethylene (C_2H_4) is a product of oil and natural gas refining. It used as a raw material in production of polyethylene, ethyl alcohol, and polyvinyl chloride. In ethylene production occurs CO_2 , CH_4 , and NMVOC emissions. Since 2003, statistics of ethylene production in Ukraine is confidential. According to the data obtained from only one plant producer of ethylene in Ukraine there was no production in 2009 and since 2013 till 2016, in 2017 - 2018 production resumed. The lack of production in 2009 is explained by the global financial and economic crisis in 2008-2009 and the economic decrease as a result of the political crisis in Ukraine that began in 2013, which has had a significant impact on production in major industries.

Methanol (methyl alcohol) CH₃OH is obtained from carbon monoxide and hydrogen under pressure in the presence of catalysts, and also in dry distillation of wood. It is used for denaturing ethyl alcohol, formaldehyde production and as a solvent and reagent in organic synthesis. In production of methanol occurs CO₂ and CH₄ emissions. Since 2006, statistics of methanol production in Ukraine is confidential. Data of methanol production in 2018 was provided by the enterprise-producer.

Vinyl chloride monomer is an organic matter which is a simple chlorinated derivatives of ethylene, which is used for further production of polyvinyl chloride. In vinyl chloride monomer production occurs CO₂, CH₄, and NMVOC emissions. Data about vinyl chloride monomer production in Ukraine is confidential. Data of vinyl chloride monomer production in 2018 was provided by the enterprise-producer. According to the data obtained from only one plant producer of vinyl chloride monomer in Ukraine there was no production in 2009 and since 2014 till 2016, in 2017 - 2018 production resumed. The lack of production in 2009 is explained by the global financial and economic crisis in 2008-2009 and the economic decrease as a result of the political crisis in Ukraine that began in 2013, which has had a significant impact on production in major industries.

Polystyrene is obtained by catalytic dehydrogenation of ethylbenzene in the presence of catalysts and it is used in plastics and synthetic rubbers production. In production of polystyrene occurs only NMVOC emissions. Since 2008, statistics of polystyrene production in Ukraine is confidential. Data of polystyrene production in 2018 were provided by enterprises-producers.

Propylene (C_3H_6) is found in cracking, petroleum pyrolysis gases, in coke gases. It is obtained by extraction from oil refinery gases, as well as through catalytic dehydrogenation of propane, light gasolines. It is used as a raw material in the petrochemical industry, in plastics, rubber, motor fuel and solvents production. In propylene production only NMVOC emissions take place. Since 2003, statistics of propylene production in Ukraine is confidential. Since 2013 till 2016, propylene has not been produced in Ukraine, which was confirmed with data provided by the SE "Cherkasky NIITEKHIM" Data of propylene production in 2018 were provided by enterprise-producer and SSSU [2].

Polypropylene is obtained by polymerizing propylene in the presence of metal catalysts. It is used for films (especially packaging ones), containers, pipes, technical equipment parts, household items, electrical insulation and non-woven materials production. In production of polypropylene, only NMVOC emissions take place. Since 2005, statistics of polypropylene production in Ukraine is confidential. Since 2013, polypropylene has not been produced in Ukraine, which was confirmed with data provided by the SE "Cherkasky NIITEKHIM".

Polyethylene is produced by polymerization of ethylene at high temperature and pressure in the presence of catalysts. It is used primarily as a packaging material. In polyethylene production only NMVOC emissions take place. Since 2005, statistics of polyethylene production in Ukraine is confidential information. Data of polyethylene production in 2018 was received from the enterprise-producer.

Sulfuric acid (H₂SO₄) is produced by catalytic oxidation of SO₂. In Ukraine, sulfuric acid produces by chemical, coke enterprises and metallurgy ones. It is used in mineral fertilizers, various salts and acids production, in organic synthesis, in petroleum, metal, textile, and leather industries. In production of sulfuric acid only SO₂ emissions take place. To assess GHG emissions of sulfuric acid production, data provided by the SSSU [2] was used.

Phthalic anhydride is a raw material for a wide range of plasticizers, water-soluble polyester resins production, the raw material for which is orthoxylene or naphthalene. In 2010, phthalic anhy-

dride production from naphthalene use was stopped in Ukraine. In 2011, phthalic anhydride was produced only from orthoxylene. In production of phthalic anhydride only NMVOC emissions take place. Since 2006, statistics of phthalic anhydride production in Ukraine is confidential. Since 2013, phthalic anhydride has not been produced in Ukraine, which was confirmed with data provided by the SE "Cherkasky NIITEKHIM".

Table 4.14 shows the basic data on the results of GHG inventory in this category.

Table 4.14. The basic data on the results of GHG inventory in the category Petrochemical and Carbon Black Production in 2018

Category code	2.B.5					
Gases	CO_2	CH_4	NO_x	CO	NMVOC	SO_2
Emissions in production, kt	666.3	102.76	1.34	2.68	1.03	8.12
Change in emissions compared to the previous year,%	62.06	157.93	15.56	15.56	111.74	19.68
Change in emissions compared to the base year,%	-66.05	900.54	-65.61	-65.61	50.73	-84.11
Emissions, % of the total emissions in the sector	1.32	83.01	8.73	7.67	0.85	15.0
Emissions, % of the total direct action GHG emissions in the sector	1.18	4.54				
The key category	No	L/T				
Detail level (Tier)	1	1	1	1	1	1
Method for determination of the emission factor	D	D	D	D	D	D
The uncertainty of the CO ₂ emission estimation, %	3	.39				
The uncertainty of the CH ₄ emission estimation, %		10				
The total uncertainty for the category,%	10).56				

GHG emission data throughout the entire time series in this category are shown in Table A3.1.1.10, Annex 3.1.1.

4.13.2 Methodological issues

For calculation of CO₂ and CH₄ emissions from the petrochemical industry 2006 IPCC Guidelines [1] with the default emission factors was used. Indirect GHG emission estimation in the category was conducted in accordance with 2013 EMEP/EEA Emission Inventory Guidebook [6] (Tier 2 method) and the scientific-research work "Development of methods for calculation and determination of GHG emissions in the chemical industry with the construction of particular time series"[12] performed by State Enterprise "Ukrainian Research Institute of Transport Medicine" of the Ministry of Health of Ukraine, using the method of calculation of Cherkassy NIITEKHIM. The activity data were provided by the enterprises-producers, SE "Cherkassy NIITEKHIM", and SSSU [2], with using analytical study, which includes different approaches, particularly extrapolation, expert judgement and other math and statistical methods [20] for adjustment of the amounts of petrochemical products production in 2014 [20].

4.13.3 Uncertainties and time-series consistency

Out of GHGs, in this category carbon dioxide and methane emissions from carbon black, ethylene, and methanol production are accounted, The uncertainty of CO_2 emission estimation is 3.394 %, that of $CH_4 - 10$ %. The total uncertainty of the subcategory is 10.56 %.

4.13.4 Category-specific QA/QC procedures

General QA/QC procedures were applied for estimation of GHG emissions in chemical production.

4.13.5 Category-specific recalculations

In this category, no recalculations were made.

4.13.6 Planned improvements

In this category, no improvements are planned.

4.14 Iron and Steel Production (CRF category 2.C.1)

4.14.1 Category description

Category Iron and steel production is the key category and the largest source of GHG emissions in the sector.

The greatest emissions occurs from pig iron production, which is produced by reduction of iron ore in blast furnace process. Carbon contained in coke is used both as fuel, and as a reducing agent. In accordance with 2006 IPCC Guidelines [1], emissions from energy and non-energy use of coke in the blast furnace process for iron production were accounted in the sector "Industrial Processes". Table 4.15 shows the basic data on the results of GHG inventory in iron and steel production.

Table 4.15 Basic data on the results of GHG inventory in iron and steel production in 2018

Category code	2.C.1							
Iron production, kt		20531.200						
Steel production, kt				20994.49)			
Sinter production, kt				31680.0				
Pellet production, kt				21360.0				
Consumption of natural gas, M m3				1.35				
Limestone use, kt				7021.4				
Dolomite use, kt				141.7				
Gases	All GHGs	CO_2	CH ₄ (pig iron)	CH ₄ (sin- ter)	NO _x	СО	NMVOC	SO_2
Emissions, kt	40397.585	39880.193	18.478	2.22	1.91	26.74	6.89	41.16
Change in emissions compared to the previous year,%	7.03	7.09	2.06	2.19	1.63	2.06	2.22	2.05
Change in emissions compared to the baseline year,%	-50.01	-49.96	-54.30	-48.00	-53.42	-54.27	-50.81	-54.31
Emissions, % of the total emissions in the sector		78.89	14.93	1.79	12.45	76.58	5.69	76.04
Emissions, % of the total direct action GHG emissions in the sector	71.48	70.55	0.82	0.1				
Key category ("l" - level, "t" - trend)		L/T	No	No				
Detail level (Tier)		3	1	1	1	1	1	1
Emission factor for pig iron, t/t		1.66	0.0009	0.00007				
Emission factor for steel, t/t		0.130						
Emission factor for limestone, kg/t		0.4339						
Emission factor for dolomite, kg/t		0.4645						
Method for determination of the emission factor		CS	D	D	D	D	D	D
Uncertainty of activity data, %	2.04 5							
Uncertainty of the emission factor, %		2.56	2	20				
Uncertainty of the emission estimation, %		3.27	20).6				

The reduction in emissions from iron and steel production in 2018 compared to the baseline year was due to reduction in the volume of their production after the collapse of the USSR. The growth of emissions in 2018 compared to 2017 - to a increase in the total production of iron and steel, as well as in coke consumption for iron and steel production. As well as a result of application at metallurgical enterprises of pulverized coal after the 2008/2009 crisis. Activity data, emission factors, and GHG emissions for the entire time series in this category are listed in Tables A3.1.1.11, annex A3.1.1.12.

4.14.2 Methodological issues

4.14.2.1 Iron Production

In GHG inventory, Tier 3 method was used in this category in accordance with 2006 IPCC Guidelines [1]. The activity data of the amount of iron produced and of coke consumption, coal, and natural gas for estimation of emissions from iron production were obtained from SSSU [2, 21]. The carbon content in iron and coke was taken in accordance with the data obtained from the enterprisesproducers. In the calculations, the national value of carbon content in natural gas was used, the determination method and the value of which are presented in Annex 2.5. The net calorific value of natural gas was taken in accordance to passports, certificates of physical and chemical properties of natural gas in gas production and gas transportation companies of Ukraine. The carbon content of coal was taken on the basis of the values of net calorific value of coal and sulfur content in coal with the corresponding net calorific value in accordance with data obtained from the enterprises-producers. The ore used for iron production in Ukraine does not contains carbon. In the estimation assessment, the scientific-research works were used: "Development of methods of estimation and prediction of GHG emissions at the metallurgical enterprises of Ukraine" [10] and "Development of the method of estimation and determination of carbon dioxide emissions in iron and steel production" [14]. Use of these scientific-research works made it possible to specify all the details of production components at each Ukrainian enterprise. Since iron production processes in Ukraine are characterized by use of fuel resource (coke) directly within the production boundaries of the single enterprise, emissions from energy and non-energy use of coke in iron production – in subdivision into raw material and energy use of the coke were accounted in this category and in order to avoid double accounting excluded from category 1.A.2.a (Energy sector).

Annex 3.1.3 presents the method of determining the emission factor when using coal and coke, and Annex 3.1.4 – the carbon balance in the blast furnace process developed as a result of the research [10] conducted for 2018.

The methane emission factor in iron production, in accordance with [3], was assumed to be 0.9 kg per ton of pig iron. The emission factors for precursors in this category were taken as equal to the default values in 2013 EMEP/EEA Emission Inventory Guidebook [6].

4.14.2.2 Steel Production

Emissions from steel production were determined in accordance with the Guidelines [1] for each type of steel production (in basic oxygen furnaces (BOF), electric arc furnaces (EAF), and open hearth furnaces (OHF)), taking into account the specific consumption of iron and carbon content in each type of steel (Tier 3 method) in accordance with data obtained from enterprises-producers and Association "Metallurgprom". For 2017, the analytical study, which includes different approaches, particularly extrapolation, expert judgement and other math and statistical methods [20] was taken into account in adjustment of amounts of steel production and iron, scrap metal and carbon electrodes consumption. As a result of conducted scientific-research work [10], it was found out that in the steel production, it is also necessary to account the carbon that enters to steel making furnaces with scrap metal. Therefore, the calculation was extended with the component that takes into account the carbon entering the furnace with scrap metal.

As a result of conducted scientific-research work was identified the national emissions factors in steel production, which are within the ranges:

- (in 2018 136 kg/t) for steel produced in the OHF;
- (in 2018 141 kg/t) for steel produced in the BOF;
- (in 2018 8.9 kg/t) for steel produced in the EAF;
- (in 2018 130 kg/t) the average for all types of steel.

The emission factors for precursors in this category were taken as equal to the default values in 2013 EMEP/EEA Emission Inventory Guidebook [6].

4.14.2.3 Sinter and Pellet Production

In statistical reporting Form 4-MTP, coke consumption in sinter and pellet production is shown along with coke consumption for iron production. Therefore, emissions from sinter and pellet production are accounted together with the emissions from iron production.

Estimation of methane emissions from sinter production was carried out in accordance with the recommendations [1] using the default factor. According to 2013 EMEP/CORINAIR Emission Inventory Guidebook [6], assessment of NMVOC emissions from sinter and pellets production with the default factors was conducted, the emissions were combined with the total emissions of precursors in the category.

4.14.2.4 Limestone and Dolomite Use

This category accounts CO₂ emissions from limestone and dolomite use as fluxes in sinter, pellets, iron, and steel production, which were combined with the total in the category. The amount of limestone, dolomite limestone, and dolomite used in metallurgy was taken on the basis of data obtained from the iron, steel, sinter and pellets enterprises-producers.

In the estimations in the category, the scientific-research works were used: "Development of methods of estimation and prediction of greenhouse gas emissions at the metallurgical enterprises of Ukraine" [10] and "Development of the method of estimation and determination of carbon dioxide emissions in limestone and dolomite use" [8] developed by SE "State Ecology Academy of Postgraduate Education and Management" and SE "UkrRTC "Energostal". The obtained results of these scientific-research works made possible to specify the details of all components used as fluxes in metallurgical production at each Ukrainian enterprise, as well as data of the content of CaCO₃ and MgCO₃ in limestone, dolomite limestone, and dolomite, on the basis of which the emission factors and CO₂ emissions were identified. The activity data and estimation results are presented in Annex 3.1.2.

The value of the total CO_2 emission factor in limestone and dolomite use in 2018 reached 0.4345 t/t.

4.14.3 Uncertainties and time-series consistency

The key factors that impacted on the value of the uncertainty of the activity data for iron and steel production are:

- accuracy of measurements of the mass/volume of reducers and manufactured products;
- uncertainties caused by the recalculation of masses;
- uncertainties caused by generalization of activity data.

The key factors that impacted on the value of the uncertainty of emission factors for iron and steel production are:

- uncertainty of the data of carbon content in raw materials, reducing agents, and manufactured products;
 - accuracy of determining the net calorific value of the fuel used as a reducing agent;
 - uncertainty caused by the representative nature of the sample for measurement;
- uncertainties caused by generalization of data on physical and chemical properties of reducing agents and the products.

The findings of study [10] made possible to estimate the uncertainty of the activity data obtained for iron production at the level of 2.19 % and of steel – at the level of 0.79 %.

The uncertainty of emission factors for iron and steel production is estimated at the level of, respectively, 2.75 % and 1.67 %.

Taking into account emissions from iron and steel production, the total uncertainty of the activity data for production of iron and steel is 2.04%, the uncertainty of emission factors -2.56%, and the uncertainty of emission volumes -3.27%.

The uncertainty of the methane emission factor in iron production is taken to be $20\,\%$. Given the uncertainty of the activity data (5 %), the total uncertainty of the methane emission estimation in iron production amounted to $20.6\,\%$.

4.14.4 Category-specific QA/QC procedures

General QA/QC procedures were applied to estimation of carbon dioxide emissions from iron and steel production, including:

- analysis of the time-series of the activity data (iron and steel production volumes) and emission factors:
- comparison of data of iron and steel production obtained from SSSU [2] with those provided by Association "Metallurgprom";
- analysis of data of consumption of reducing agents (coke, coal, and natural gas) in iron
 production in statistical reporting form 4-MTP and those provided by enterprises-producers;
- carbon balance analysis in the blast furnace process (Annex 3.1.4);
- analysis of the coke balance in Ukraine (Annex 2.8).

4.14.5 Category-specific recalculations

In 2018, recalculation of CO_2 emissions for 2015 - 2017 was made due to correction of the data of carbon content in pig iron, coke and coal, as well as pig iron, metal scrap, limestone and dolomite consumption for steel production according to the data obtained from enterprises-producers.

Table 4.16 Recalculation of emissions from iron and steel production in 2015 – 2017

2.C.1 Iron and Steel Production	2015	2016	2017
Emissions (before recalculating), kt	41844.136	43560.804	37739.689
Emissions (after recalculating), kt	41844.944	43559.340	37745.273
Emission difference,%	0.00193	-0.0034	0.015

4.14.6 Category-specific planned improvements

In this category, no improvements are planned.

4.15 Ferroalloys Production (CRF category 2.C.2)

4.15.1 Category description

Ferroalloys are semi-finished metal production products – iron alloys with silicon, manganese, chromium, and other elements used in steel production (for deoxidation and alloying of steel, binding of harmful impurities, ensuring the desired metal structure and properties). Ferroalloys differ in content of the key elements, carbon, and impurities. Ferroalloys are obtained through pyrometal-lurgical methods of basic metal and iron oxides reduction. The most common method of producing ferroalloys is the electrothermal one. By the type of the reducing agent, it is subdivided into carbon-reduction one, producing carbon ferroalloys (8.5% C) and all silicon alloys, and metallo-thermal one (conventionally including the silicothermic one), which produces alloys with low carbon content (0.01-2.5% C). Ferroalloy smelting is carried out in three-phase electric ore reduction and refined furnaces of the open and closed types.

The alloys production technology provides for a continuous process with periodic releases of smelting products. Solid pure coke and coal carbon is used as a reducing agent in accordance with the direct reduction technology. Thus the reduction product is carbon mono-oxide and dioxide (CO and CO_{2).} There are only ferrosilicon, ferromanganese, ferrosilicomanganese (silicon manganese) and ferronickel production in Ukraine. Table 4.17 shows the basic data of GHG inventory for carbon dioxide and methane in production of ferroalloys in Ukraine for 2018.

Category code	2.C.2	
Ferroalloys Production, kt	1244.79	
Limestone use, kt	26.87	
Gas	CO_2	CH ₄
Emissions, kt	1958.67	0.076
Change in emissions compared to the previous year,%	1.05	-20.73
Change in emissions compared to the baseline year,%	-44.57	-87.38
Emissions, % of the total emissions in the sector	3.87	0.061
Emissions, % of the total direct action GHG emissions in the sector	3.47	0.0034
Key category ("l" - level, "t" - trend)	L	
The level of detail for ferroalloys (Tier)	3	1
Emission factor, t/t	1.57	0.001
Method for determination of the emission factor for ferroalloys	CS	D
Uncertainty of activity data, %	7.1	5.25
Uncertainty of the emission factor, %	5	31.25
Uncertainty of the emission estimation, %	8.7	31.68

Table 4.17. The basic data on the results of GHG inventory in ferroalloys production in 2018

Activity data, emission factors, and GHG emissions throughout the entire time series in this category are shown in Table 3.1.1.13, Annex 3.1.1.

4.15.2 Methodological issues

As the activity data in the inventory of emissions in this category, statistical data of ferroal-loys production provided by SSSU [2] and the five largest Ukrainian ferroalloy enterprises were used, with using analytical study, which includes different approaches, particularly extrapolation, expert judgement and other math and statistical methods [20] for adjustment of amounts of ferroalloys production for 2014.

The national emission factors are determined on the basis of the data of ferroalloys production, the weight of the used ore, concentrate, sinter, reducing agents, slag-forming materials and waste, as the carbon content in reducing agents, ore, concentrate, sinter, and production obtained from the five largest ferroalloys enterprises-producers. The methodology of calculating emissions in this category corresponds to Tier 3, described in [1]. In calculations, the scientific-research work "Development of methodological recommendations of greenhouse gas emission factors assessment by refining the data of the composition of reducing agents used in ferroalloys production and the carbon content in ore, slag-forming materials, and waste" [9] was used, applying the calculation methodology of the SE "UkrRTC "Energostal", which made possible to clarify the details of all components used as reducing agents, slag-forming materials, waste, and fluxes in production of various types of ferroalloys at all enterprises in Ukraine. In ferroalloys production, limestone is used as flux, emissions from the use of which are accounted in the total emissions from ferroalloys production in Table 4.17. Besides emissions from use of limestone in ferroalloys production are presented in A3.1.2 Determination of the amount of limestone and dolomite use.

For estimation of CH₄ emissions from ferroalloys production, 2006 IPCC Guidelines [1] with default emission factors were used.

4.15.3 Uncertainties and time-series consistency

The key factors that determine uncertainty of the inventory results in this category are the uncertainty of:

- activity data of the enterprises (production of ferroalloys by type);
- data on the weight of the reducing agent used, of slag materials and waste, as well as on the carbon content in them;
 - statistical activity data.

The uncertainty of activity data of the enterprises is estimated at 7.1 %. The uncertainty of the data to estimate the weighted average rate of carbon dioxide emissions in ferroalloys production at all enterprises of the sector is estimated at 5 %. The uncertainty of data to estimate the average

weighted methane emission factor in ferroalloys production is 31.25 %. The uncertainty of activity data for methane emission assessment is estimated at 5.25 %. The uncertainty of estimates of carbon dioxide emissions in production of ferroalloys for 2018 was 8.7 %. The uncertainty of estimates of methane emissions in production of ferroalloys for 2018 was 31.68 %.

4.15.4 Category-specific QA/QC procedures

General QA/QC procedures were applied for estimation of emissions in ferroalloys production:

- analysis of the time-series of activity data (ferroalloy production volumes) and emissions;
- comparison of ferroalloy production data provided by SSSU [2] and ferroalloys enterprises-producers.

Activity data meet the statistical and industry data about volumes of ferroalloy production.

4.15.5 Category-specific recalculations

In this category, no recalculations were made.

4.15.6 Category-specific planned improvements

In this category, no improvements are planned.

4.16 Aluminum Production (CRF category 2.C.3)

4.16.1 Category description

This section is dedicated to aluminium production which is a potentially important source of carbone dioxide (CO_2), and CF_4 and C_2F_6 emissions in the countries where they are produced. At the only aluminum plant in Ukraine from 2010 to 2018, aluminum production was stopped due to lack of cost-effectiveness and high cost of electricity. Estimation of GHG emissions from 2010 till 2018 was no performed in this category. The data about aluminium production in Ukraine is confidential.

4.16.2 Methodological issues

Data of aluminium production was provided by the enterprise-producer. According to 2006 IPCC Guidelines [1] Tier 1 method for estimation of CO_2 emissions and Tier 2 method for estimation of CF_4 and C_2F_6 emissions from aluminium production, were used.

4.16.3 Uncertainties and time-series consistency

According to the activity data provided by producing enterprise aluminium has not been produced since 2010, so the uncertainties in this category were not calculated.

4.16.4 Category-specific QA/QC procedures

General QA/QC procedures were applied for estimation of GHG emissions in aluminium production.

4.16.5 Category-specific recalculations

In this category, no recalculations were made.

4.16.6 Category-specific planned improvements

In this category, no improvements are planned.

4.17 Magnesium Production (CRF category 2.C.4)

There is no magnesium production in Ukraine, therefore emissions in this category are not estimated.

4.18 Lead Production (CRF category 2.C.5)

4.18.1 Category description

Lead is one of the softest and most ductile heavy metals. Lead uses in manufacture of protective sheaths of electric cables, sulfuric acid production equipment. Lead alloys are used for manufacture of bearings, batteries, they are used as a basis for manufacture of printing metal. The smelting process represents the reduction reaction of the lead oxide which produces CO₂. In this category, calculations of CO₂ emissions were performed for the entire time series since 1990.

Table 4.18 shows the basic data of GHG inventory for carbon dioxide in lead production in Ukraine for 2018.

Table 4.18. The basic data on the results of GHG inventory in lead production in 2018

Category code	2.C.5
Lead Production, kt	39.381
Gas	CO_2
Emissions, kt eq.	17.358
Change in emissions compared to the previous year,%	-16.19
Change in emissions compared to the baseline year,%	-21.46
Emissions, % of the total emissions in the sector	0.034
Emissions, % of the total direct action GHG emissions in the sector	0.031
The key category	No
The level of detail for lead (Tier)	1
Emission factor, t/t	0.52
Method for determination of the emission factor for lead	D
Uncertainty of activity data, %	10
Uncertainty of the emission factor, %	50
Uncertainty of the emission estimation, %	50.99

4.18.2 Methodological issues

Data of lead production were obtained from SSSU. For estimation of CO₂ emissions from lead production, 2006 IPCC Guidelines [1] with default emission factors were used.

4.18.3 Uncertainties and time-series consistency

The uncertainty of activity data of the enterprises is estimated at 10 %. The uncertainty of data of the default carbon dioxide emission factor in lead production is estimated at 50 %. The uncertainty of estimates of carbon dioxide emissions in lead production for 2018 was 50.99 %.

4.18.4 Category-specific QA/QC procedures

General QA/QC procedures were applied for estimation of emissions from lead production.

4.18.5 Category-specific recalculations

In this category, no recalculations were made.

4.18.6 Category-specific planned improvements

In this category, no improvements are planned.

4.19 Zinc Production (CRF category 2.C.6)

4.19.1 Category description

Zinc is brittle metal, it melts at 419°C, it does not naturally exist as a native metal. Zinc extracted from polymetal ores containing 1-4 % of Zn in the form of sulfide. Possessing anti-corrosion properties, zinc uses for galvanizing steel sheet, telegraph wires, pipes for various purposes, it is a component of some pharmaceuticals. CO₂ emissions from zinc production form during the smelting process. The data about zinc production in Ukraine is confidential. Between 1998 and 2005, there was no zinc production in Ukraine.

Table 4.19 shows the basic data of the inventory for carbon dioxide in zinc production in Ukraine for 2018.

Table 4.19. The basic data on the results of GHG inventory in zinc production in 2018

Category code	2.C.6
Zinc Production, kt	C
Gas	CO_2
Emissions, kt eq.	1.31
Change in emissions compared to the previous year,%	-0.60
Change in emissions compared to the baseline year,%	-94.6
Emissions, % of the total emissions in the sector	0.0026
Emissions, % of the total direct action GHG emissions in the sector	0.0023
The key category	No
The level of detail for zinc (Tier)	1
Emission factor, t/t	1.72
Method for determination of the emission factor for zinc	D
Uncertainty of activity data, %	10
Uncertainty of the emission factor, %	50
Uncertainty of the emission estimation, %	50.99

4.19.2 Methodological issues

Data of zinc production were taken from SSSU [2]. For estimation of CO₂ emissions from zinc production, 2006 IPCC Guidelines [1] with default emission factors were used.

4.19.3 Uncertainties and time-series consistency

The uncertainty of activity data of the enterprises is estimated at 10 %. The uncertainty of data of the default carbon dioxide emission factor in zinc production is estimated at 50 %. The uncertainty of estimates of carbon dioxide emissions in zinc production for 2018 is 50.99 %.

4.19.4 Category-specific QA/QC procedures

General QA/QC procedures were applied for estimation of emissions in zinc production.

4.19.5 Category-specific recalculations

In this category, no recalculations were made.

4.19.6 Category-specific planned improvements

In this category, no improvements are planned.

4.20 Lubricant Use (CRF category **2.D.1**)

4.20.1 Category description

Lubricants are mostly used in industrial and transportation applications. Lubricants are produced either at refineries through separation from crude oil or at petrochemical facilities. They can be subdivided into (a) motor oils and industrial oils, and (b) greases, which differ in terms of physical characteristics (e.g., viscosity), commercial applications, and environmental fate

Table 4.20 shows the basic data on the results of GHG inventory in lubricant use.

Table 4.20. The basic data on the results of GHG inventory in lubricant use in 2018

Category code	2.D.1
Lubricant Use, TJ	8889.41
Emissions of CO ₂ , kt	130.38
Change in CO ₂ emissions compared to the previous year,%	-2.04
Change in CO ₂ emissions compared to the baseline year,%	-57.23
Emissions, % of the total emissions in the sector	0.26
Emissions, % of the total direct action GHG emissions in the	0.23
sector	
The key category	No
Detail level (Tier)	1
Emission factor, t/t	0.59
Method for determination of the emission factor	D
Uncertainty of activity data, %	6
Uncertainty of the emission factor, %	50.09
Uncertainty of the emission estimation, %	50.45

Activity data, emission factors, and GHG emissions throughout the entire time-series in this category are shown in Table A3.1.1.15, Annex 3.1.1.

4.20.2 Methodological issues

Estimation of emissions from lubricants use was carried out in accordance with 2006 IPCC Guidelines (Tier 1) with application of ODU and the default carbon content factor [1]. To avoid double counting between the Energy and IPPU sectors, data of lubricants non-energy consumption from 1998 till 2017 were obtained from SSSU [21], and consumption data from 1990 till 1997 were taken according to the IEA [22], which are not accounted in emission estimations in the "Energy sector". For 2014 - 2018, the analytical study, which includes different approaches, particularly extrapolation, expert judgement and other math and statistical methods [20] was taken into account in adjustment of amounts of lubricants consumption.

4.20.3 Uncertainties and time-series consistency

The uncertainty of data of lubricants consumption obtained from statistical data is taken at 6%. The uncertainty of the default emission factors (ODU) is set at 50.09 %. The uncertainty of CO_2 emissions from lubricant use in Ukraine amounts to 50.448 %.

4.20.4 Category-specific QA/QC procedures

General QA/QC procedures were applied for estimation for GHG emissions in lubricant use.

4.20.5 Category-specific recalculations

In this category, no recalculations were made.

4.20.6 Category-specific planned improvements

In this category, no improvements are planned.

4.21 Paraffin Wax Use (CRF category 2.D.2)

4.21.1 Category description

This category includes such products as petroleum jelly, paraffin waxes and other waxes, including ozokerite (mixtures of saturated hydrocarbons, solid at ambient temperature). Paraffin waxes are separated from crude oil during the production of light (distillate) lubricating oils. Paraffin waxes are categorised by oil content and the amount of refinement. Solid paraffins are recovered from crude oil production in production of light (distillation) lubricating oils, and they are sub-classified based on oil content and purity. Waxes are used in a number of different applications, for example, in applications such as: candles, corrugated boxes, paper coating, board sizing, food production, wax polishes, surfactants (as used in detergents) and many others. Emissions from the use of waxes derive primarily when the waxes or derivatives of paraffins are combusted during use (e.g., candles). Table 4.21 shows the basic data on the results of GHG inventory in wax use.

Table 4.21. The basic data on the results of GHG inventory in solid paraffin wax use in 2018

Category code	2.D.2
Solid Paraffin use, TJ	697.28
Emissions of CO ₂ , kt	10.22
Change in CO ₂ emissions compared to the previous year,%	10.70
Change in CO ₂ emissions compared to the baseline year,%	- 91.68
Emissions, % of the total emissions in the sector	0.02
Emissions, % of the total direct action GHG emissions	0.018
in the sector	
The key category	No
Detail level (Tier)	1
Emission factor, t/t	0.590
Method for determination of the emission factor	D
Uncertainty of activity data, %	6.00
Uncertainty of the emission factor, %	100.12
Uncertainty of the emission estimation, %	100.305

Activity data, emission factors, and GHG emissions throughout the entire time-series in this category are shown in Table A3.1.1.16, Annex 3.1.1.

4.21.2 Methodological issues

Estimation of emissions from solid paraffins use was carried out in accordance with 2006 IPCC Guidelines (Tier 1) with application of ODU and the default carbon content factor [1]. Data of solid paraffins use were determined based on data of production, exports, and imports of paraffin waxes obtained from SSSU [2, 23].

To convert consumption data in mass units into the conventional energy units (TJ), default coefficients of calorific value according to the Guidelines in Section 1.4.1.2, Chapter 1, Volume 2 (Energy) were used.

4.21.3 Uncertainties and time-series consistency

The uncertainty of data of production, exports, and imports of lubricants obtained from statistical data is estimated at 6 %. The uncertainty of the default factors (ODU) and the carbon content is taken at the level of 100.12 % due to the fact that the factors are associated with highly limited information of national use of solid paraffins. Thus, the uncertainty of CO_2 emission from solid paraffins use in Ukraine amounts to 100.305 %.

4.21.4 Category-specific QA/QC procedures

General QA/QC procedures were applied for estimation of GHG emissions in paraffin wax use.

4.21.5 Category-specific recalculations

In this category, no recalculations were made.

4.21.6 Category-specific planned improvements

In this category, no improvements are planned.

4.22 Asphalt Production and Use (CRF category 2.D.3)

4.22.1 Asphalt roofing (CRF category 2.D.3.a.1)

4.22.1.1 Category description

Petroleum bitumen is produced by oxidation of residual products of direct distillation of crude oil and their mixtures with asphalts and extracts of oil production. Therefore, this bitumen is also called oxidized bitumen.

For roofing materials production, treating and coating oil bitumen are used. In the process of their production emissions of CO and NMVOCs occurs. No GHGs occurs in this category. Table 4.22 shows the basic data of the results of GHG inventory in construction and roofing bitumen production.

Table 4.22. The basic data on the results of GHG inventory in construction and roofing bitumen production in 2018

Category code	2.D.3.1	
Bitumen Production, kt	1.54	
Gases	CO	NMVOC
Emissions, kt	0.000015	0.0000077
Change in emissions compared to the previous year,%	-49.95	
Change in emissions compared to the baseline year,%	-99.57	
Emissions, % of the total emissions in the sector	0.000043	0.000063
Method for determination of the emission factor	D	D
Detail level (Tier)	1	1
Emission factor, n/t	0.00001	0.000005

4.22.1.2 Methodological issues

Data of production volumes of construction and roofing bitumen separately were obtained from enterprises-producers. Data of road petroleum bitumen and bitumen for special purposes production, as well as general information about petroleum bitumen production are presented in SSSU [2].

Estimation of CO and NMVOC emissions was conducted in accordance with 1996 IPCC Guidelines [5] (section 2.7.1.1), using the default emission factors for oxidized bitumen.

4.22.1.3 Uncertainties and time-series consistency

The uncertainty of CO and NMVOC emission estimation results was not determined in this category.

4.22.1.4 Category-specific QA/QC procedures

General QA/QC procedures were applied for estimation of GHG emissions from construction and roofing bitumen production.

4.22.1.5 Category-specific recalculations

In this category, no recalculations were made.

4.22.1.6 Category-specific planned improvements

In this category, no improvements are planned.

4.22.2 Road paving with asphalt (CRF category 2.D.3.a.2)

4.22.2.1 Category description

2018.

In the category Road paving, road bitumen is accounted for, which is produced by oxidation of products of direct oil distillation and selective separation of petroleum products (asphalts at deasphalting or selective purification extracts), as well as at compounding of these oxidized and non-oxidized products, or as a residue of direct oil distillation. GHG emissions take place in road bitumen production at enterprises and when paving asphalt. In road bitumen production, SO₂, NOx, CO, and NMVOC emissions take place, and while laying asphalt – only NMVOC. No GHGs occurs in this category. Table 4.23 shows the basic data on the results of GHG inventory in road paving with asphalt.

Table 4.23. The basic data on the results of GHG inventory in road paving with asphalt in

Category code		2.D.3.a	a.2	
Production of road bitumen, kt	169.7			
Gases	NOx	CO	NMVOC	SO_2
Emissions from production, kt	0.006	0.034	0.0039	0.003
Emissions from paving, kt			2.71	
Change in emissions compared to the previous year,%	364.93			
Change in emissions compared to the baseline year,%	-91.89			
Emissions at production, % of the total in the sector	0.039	0.097	0.00032	0.0055
Emissions at paving, % of the total in the sector			2.24	
Method for determination of the emission factor	D	D	D	D
Detail level (Tier)	1	1	1	1
Emission factor at production, t/t	0.0000356	0.0002	0.000023	0.0000177
Emission factor at paving, kg/t			0.016	

4.22.2.2 Methodological issues

Road bitumen production volumes was obtained from SSSU [2]. In accordance with 2013 EMEP/EEA recommendations [6] the default emission factors of GHG emissions for asphalt production were used.

4.22.2.3 Uncertainties and time-series consistency

The uncertainty of NO_x, CO, NMVOC and SO₂ emission estimation results was not determined in this category.

4.22.2.4 Category-specific QA/QC procedures

The general quality control and assurance procedures were applied to estimation of GHG emissions at road paving with asphalt.

4.22.2.5 Category-specific recalculations

In this category, no recalculations were made.

4.22.2.6 Category-specific planned improvements

In this category, no improvements are planned.

4.23 Solvents Use (CRF category 2.D.3.b)

4.23.1 Category description

The category Solvents Use, accounts emissions from paints and solvents use in industry and households. Solvents and paints contain substances, use of which results in emissions into the air of non-methane volatile organic compounds (NMVOC). Besides, this sector also includes NMVOC emissions from production and processing of certain chemical products.

In the current inventory, in GHG emission estimations for the period of 1990-2014 results obtained in the framework of the scientific-research work "Development of methods for estimation determination of greenhouse gas emissions from use of varnishes and paints" (the performer - Innovation Center "Ecosystem") were used.

NMVOC emissions in the Solvents Use category in 2018 amounted to 49.26 kt, having decreased compared to the baseline 1990 (274.44 kt) by -82.05 %. The significant reduction in emissions is due to the sharp decline in oil processing and consumption of paints and varnishes for industrial and household purposes.

4.23.2 Varnishes and Paints Use (CRF category 2.D.3.b.1)

4.23.2.1 Category description

The category Varnishes and Paints Use includes emissions occurring in manufacturing processes associated with paints, varnishes, enamels, fillers, and primers use. The key sectors, technologies that involve use of these processes in Ukraine are: machine engineering, wood processing, repair and construction, and textile industry. As a result of doing business in these sectors, NMVOCs emitted into the air as vapor of volatile organic solvents at painting – 20-30 %, while drying – the rest of the volatile component [4-6].

Use of paints and varnishes (coatings) in Ukraine is in general technologically homogeneous. NMVOC emissions from the use of coatings depend of the following factors: the coating method, productivity of the production equipment, and coatings composition. They are calculated separately for decorative and industrial coatings, due to significant technological differences [16].

In accordance to results of the current inventory, NMVOC emissions from paints use in Ukraine in 2018 amounted to 39.29 kt, having decreased compared to the baseline 1990 (154.16 kt) by 74.51 % due to the significant reduction in activities related to use of coatings of all types with the exception of those used for painting rolled metal.

4.23.2.2 Methodological issues

In this inventory, for the time series of 1990 - 2018 NMVOC emissions from use of paints was estimated in accordance with the Methodology for determination of greenhouse gas emissions from use of varnishes and paints, developed in 2013 within the scientific-research work [15], which was implemented by the Innovation Center "Ecosystem".

The basis of NMVOC emission calculations in this category, in accordance with [15], was the principles described in 2013 EMEP/EEA [6], and the emission equation, which meets the requirements and methodological approaches of Tier 2. NMVOC emissions are calculated according to the equation:

$$Q_t = \left(P \cdot \frac{K_{org}}{100} \cdot \frac{K_{porg}}{1000}\right) + \left(P \cdot \frac{K_w}{100} \cdot \frac{K_{p_w}}{1000}\right),$$
where: Q_t - volume of NMVOC emissions in the inventory year, t;

P - set amount of coating consumption;

 K_{org} - share of organically soluble coatings in the product consumption structure;

 K_w - share of water soluble coatings in the consumption structure;

 K_{Porg} - NMVOC emission factor for organically soluble coatings;

 K_{Pw} - NMVOC emission factor for water soluble coatings.

Due to the nature of coating use and characteristics of the industry structure in Ukraine, as well as in view of EMEP/EEA recommendations, in equation (1) the optimal format for disaggregation of activity data in the category of coating use into subcategories is used, namely:

- 1) by the key uses of coatings, which at the same time are the key air pollutants in this category: decorative coatings (construction and building, household use), as well as industrial coatings (protective coatings for metal surfaces, treatment and painting of timber, automotive, repair of motor vehicles, painted rolled metal, other industrial use);
- 2) by solvent type (organic-based coatings, water-based coatings);
- 3) by the coating use structure according to the type of use and the type of solvent;
- 4) by the inventory number in the time-series of 1990-2018.

The basis of the activity data is data of the amount of coating consumption in Ukraine in 1990 - 2018 taken based on production, exports, and imports data obtained from SSSU [2, 23].

NMVOC emission factors (K_{Porg} and K_{Pw}). Given that after work using coatings NMVOCs contained in the coatings get into the air in full, the NMVOC emission factor is their content in coatings. In Ukraine, there is no regulatory or technical documentation that would regulate the limit parameters of volatile organic compounds in coatings. The only exceptions are oil paints, for which the ceiling standards of the volatile matter are set in accordance with GOST 10503-71, GOST 8292-85. For thick-milled oil paints, the figure is between 6 and 11%, for ready to use oil paints - from 12 to 19%. For oil paints, the volatile substance is mostly an organic solvent. Accordingly, we assume that the limits of volatile substance content in oil paints meet the limits of volatile organic substances in the commercial product. At the same time, starting from 2007, according to the State Classifier of Industrial Products SCIP 016-1997, a number of adjustments were introduced into the statistical reporting on the commodity group "Paints and Varnishes Dissolved in a Different Medium", for statistical reporting of organically soluble coating producers.

Scientific-research work [15] analyzes and systematizes the state standards, as well as producers data of the content of volatile organic compounds in paints in Ukraine, the results of the research are summarized in Table 4.24.

Table 4.24. Content of volatile organic compounds in coatings in Ukraine

	The sector where	NMVOC emission	on factor, g/kg
Type of coating	the coating is applied	Organically soluble (K_{Porg})	Water soluble (K_{Pw})
Decorative coat-	I*	230	33
ing	II*	230	33
	III*	740	33
	IV*	800	33
Industrial agating	V*	500	33
Industrial coating	VI*	720	33
	VII*	480	33
	VIII*	740	33

^{**}I - for construction and building (professional coating); II - household use of coating (non-professional coating); III - protective covers for metal surfaces; IV - treatment and painting of timber; V - automotive; VI - repair of motor vehicles of all kinds; VII - painted rolled metal; VIII - other industrial coating.

4.23.2.3 Uncertainties and time-series consistency

For emissions in this category, uncertainties were not estimated.

4.23.2.4 Category-specific QA/QC procedures

For estimation of emissions in the category, the following quality control procedures were applied:

- comparison of activity data from different sources;
- comparison of emission along the time-series and analysis of activity data trends;

4.23.2.5 Category-specific recalculations

In this category, no recalculations were made.

4.23.2.6 Category-specific planned improvements

In this category, no improvements are planned.

4.23.3 Degreasing and Dry Cleaning (CRF category 2.D.3.b.2)

4.23.3.1 Category description

NMVOC emissions in this category are related to technical kerosene and white spirits use for degreasing, as well as to trichlorethylene and tetrachlorethylene (perchlorethylene) use by drycleaning companies. NMVOC emissions from degreasing and dry cleaning processes in 2018 amounted to 2.207 kt, which is 88.01 % less than the same indicator for 1990 (18.41 kt). Emission data for the entire time series are displayed in Fig. 4.4.

Decrease of emissions is due to a sharp decline in white spirit and technical kerosene production, which is not set-off by the slight increase of imports in this commodity group.

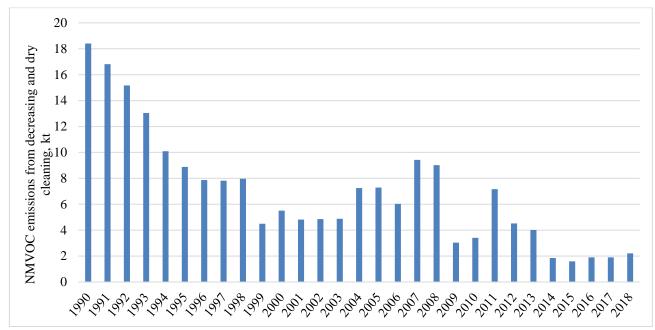


Figure 4.4. NMVOC emissions from degreasing and dry cleaning

4.23.3.2 Methodological issues

To calculate NMVOC emissions from degreasing processes, data on final consumption in Ukraine of the most common degreasing means are needed: white spirit and technical kerosene. To obtain them, statistical reporting form \mathbb{N}_2 4-MTP was used, according to which from the data of final non-energy consumption of white spirits and technical kerosene data on their consumption as ingredients in paint and varnish production were excluded. Data of trichlorethylene and tetrachlorethylene (perchlorethylene) imports were provided by SSSU [23]. The NMVOC emission factor for degreasing agents was taken as default value of 1.0; for chemicals used in dry cleaning – 0.8, according to [17].

4.23.3.3 Uncertainties and time-series consistency

For emissions in this category, uncertainties were not estimated.

4.23.3.4 Category-specific QA/QC procedures

General QA/QC procedures were applied for estimation of emissions in the category.

4.23.3.5 Category-specific recalculations

In this category, no recalculations were made.

4.23.3.6 Category-specific planned improvements

In this category, no improvements are planned.

4.23.4 Chemical Products: Production and Processing (CRF category 2.D.3.b.3)

4.23.4.1 Category description

The category covers NMVOC emissions from production and processing of various chemical products. In this inventory, estimation of NMVOC emissions from the following industries are included:

• oil refining;

- production of benzene and xylene;
- production of paints and varnishes;
- production of chemical fibers and threads;
- manufacture of glass fibers;
- production of rubber products, tire, and rubber footwear.

Due to the fact that Ukraine has a well-developed chemical industry, NMVOC emissions in this category are significant (petrol oil, cyclohexane, acetone, cyclohexanone, etc.). In 2018, NMVOC emissions from production and processing of chemical products amounted to 7.761 kt, which is 92.38 % less in relation to the baseline 1990 (101.9 kt). The emissions decrease in the periods of 1990-2000 and 2004 - 2018 are due to the persistent downward trend in oil refining in Ukraine. Detailed information of emissions in the category is presented in Fig. 4.5.

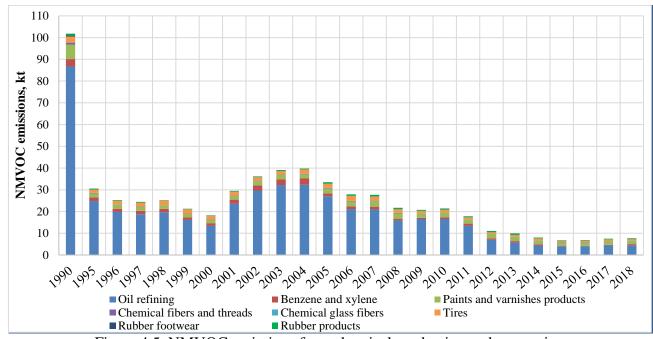


Figure 4.5. NMVOC emissions from chemical production and processing

4.23.4.2 Methodological issues

The data of volumes of chemical production and primary oil refining were taken according to SSSU [2].

Due to the fact that there is insufficient information regarding the calculation of the national emission factors in this category, to assess NMVOC emissions, emission factors by industry types listed in the inventory of the Republic of Belarus (Table 3.1 [18]) were used, which are similar to Ukrainian chemical industry technologies.

4.23.4.3 Uncertainties and time-series consistency

For emissions in this category, uncertainties were not estimated.

4.23.4.3 Category-specific QA/QC procedures

General QA/QC procedures were applied for estimation of emissions.

4.23.4.5 Category-specific recalculations

In this category, no recalculations were made.

4.23.4.6 Category-specific planned improvements

In this category, no improvements are planned.

4.24 Electronics Industry

In Ukraine, the electronics industry, which includes production of flat panel displays on thin film transistors (TFT-FPD) and photovoltaic cells (PV) are absent. Ukraine only conducts SKD assembly of photovoltaic panels. There are no emission assessment in this category.

4.25 Product Uses as Substitutes for Ozone-Depleting Substances (CRF category 2.F)

In this section, estimation of HFC emissions used in refrigeration and air conditioning systems, foam blowing agents, fire protection, aerosols, and solvents was made.

Inventory of HFC and PFC emissions in this category was conducted in accordance with the scientific-research works: by the Ukrainian Research Institute of Medicine and Transport of the Ministry of Health of Ukraine "Development of methods of estimation and determination of emissions of hydrofluorocarbons, perfluorocarbons, and sulfur hexafluoride" [7] and by Cherkasy NIITEKHIM" - "Development of methods of estimation and determination of emissions of hydrofluorocarbons, perfluorocarbons, and sulfur hexafluoride" [13]. The studies clarified the details of all components used as refrigerants, blowing agents, fire protection agents, and gas propellants, as well as to clarify activity data and emission factors as a result of their application in manufacture, installation, and operation of the equipment where they are used.

Since HFCs and PFCs are not produced in Ukraine, potential emissions of these gases are determined only by their imports and exports.

4.25.1 Refrigeration and Air Conditioning Systems

4.25.1.1 Refrigeration Equipment

4.25.1.1.1 Category description

The category of refrigeration equipment includes domestic, commercial, industrial, and transport (including maritime) equipment (systems, installations, machinery, plants, etc.). In 2018, the level of disaggregation of the refrigeration equipment category was deepened to four key subcategories.

In 2018 in subcategory of domestic refrigerators only manufacturer in Ukraine, which as a refrigerant used isobutane R-600a and HFC-134a to check tightness of evaporator units of domestic refrigerators ceased its activities, therefore in 2018 refrigerants for domestic refrigerators were not consumed.

More than 20 producers in Ukraine manufacture commercial and industrial refrigeration equipment. As part of the NIR preparation, industrial activity of producers of cooling systems whose production structure is dominated by autonomous systems was analyzed.

In production of autonomous commercial equipment, they use HFC-134a and HFC-404a, in centralized systems of commercial and industrial refrigeration equipment they use primarily HFC-404a, which is the three-component mixed cooling agent of HFC-125/HFC-143a/HFC-134a.

As the refrigerants in transport refrigeration HFC-134a and HFC-404a are used.

In accordance with provisional main findings identified by the ERT calculations of emissions from disposal in commercial, domestic and transport refrigeration were made.

Data on activities in the refrigeration equipment category are based on data received from refrigeration equipment manufacturers, as well as the data obtained from SSSU.

Table 4.25 summarizes results of GHG inventory in production and operation of refrigeration equipment in Ukraine in 2018.

Table 4.25 Basic data on results of GHG inventory in production and operation of refrigeration equipment in Ukraine in 2018

Category code		2.F.1.A		2.F.1.B		2.F.1.C			2.F.1.D	
Types of refriger- ation equipment	(Commercia	al	Domestic	Industrial Transport					
Gas*	HFC- 134a	HFC- 125	HFC- 143a	HFC- 134a	HFC- 134a	HFC- 125	HFC- 143a	HFC- 134a	HFC- 125	HFC- 143a
				Activ	vity data					
Filled into new manufactured products (primary filling + tightness test), t	37.36	2.56	2.99	0.0	6.908	0.0008	0.0008	10.013	4.675	5.17
HFC-balance after the initial filling, t	36.62	2.51	2.93	0.0	6.70	0.0008	0.0008	10.014	4.687	5.19
Amount of HFC in exported equipment, t	10.79	0.0054	0.0047	0.0	1.864	-	-	-	-	-
Amount of HFC in imported equipment, t	68.9	16.81	11.08	97.93	7.347	0.696	0.466	0.0011	0.012	0.014
In operating systems (average annual stocks)	218.08	54.31	45.52	964.47	31.463	5.35	2.914	14.857	7.895	8.788
		(Category	characterist	tics and est	imated fact	ors			
Key category	T									
Detail level (Tier)	2a	2a	2a	2b	2b	2a	2b	2a	2a	2a
Method for deter- mination of the emission factor	D	D	D	D	D	D	D	D	D	D
Emission factor at primary (initial) filling,%	2	2	2	0.5	3	3	3	2	2	2
Emission factor when testing equip- ment for tight- ness,%	HFCs are not applied			100			HFCs are n	ot applied		
Emission factor at operation of the equipment,%	15	15	15	0.5	25	25	25	15	15	15
Disposal emission factor,%	80	80	80	70	100	100	100	50	50	50
Average life of equipment	15	15	15	18	25	25	25	15	15	15
				GHG	emissions					
HFCs emissions										
at the primary (initial) filling of the equipment(from manufacturing), t	0.747	0.0512	0.06	0.0	0.207	0.000025	0.000025	0.20	0.093	0.103
at exploitation of the equipment(from stocks), t	32.71	8.146	6.83	4.82	7.866	1.34	0.729	2.29	1.184	1.318
from liquidation of the equipment, t	36.96	5.798	6.51	16.93	-	-	-	0.289	0.403	0.476
Emissions of HFCs in the refrigeration	70.41	13.996	13.39	21.75	8.07	1.34	0.729	2.718	1.681	1.898

Category code		2.F.1.A		2.F.1.B		2.F.1.C			2.F.1.D	
Types of refriger- ation equipment	(Commerci	al	Domestic Industrial Transport			Industrial			
Gas*	HFC- 134a	HFC- 125	HFC- 143a	HFC- 134a	HFC- 134a	HFC- 125	HFC- 143a	HFC- 134a	HFC- 125	HFC- 143a
equipment category, total, t										
Global Warming Potential (GWP), t CO _{2-eq.} /t	1430	3500	4470	1430	1430	3500	4470	1430	3500	4470
GHG emissions, kt of CO _{2-eq}	100.7	48.986	59.86	31.10	11.544	4.68	3.257	3.887	5.882	8.483
Change in emissions compared to the previous year,%	59.23	31.38	27.82	236.95	22.79	-13.75	-10.67	57.93	33.49	33.42
Emissions, % of the total direct ac- tion GHG emis- sions in the sector		0.37		0.055		0.034			0.032	
			1	Uncertainty	level estim	ation				
Uncertainty of activity data, %	34.02		26.13	39.78 39.49						
Uncertainty of the emission factor, %		24.37		20.6	32.78				24.37	
Total uncertainty of the emission esti- mation, %		41.85		33.27	51.54				46.40	

^{*} Mixed fluoro-gases are represented by components.

4.25.1.1.2 Methodological issues

4.25.1.1.2.1 Commercial, domestic and industrial refrigeration

Estimation of hydrofluorocarbon emissions from domestic, commercial and industrial refrigeration for production, operation and liquidation of refrigeration equipment was performed with using method 2a and 2b.

As a methodological basis, "The methodology of calculating emissions of hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride (SF $_6$) at the national level (State Enterprise "Cherkasky NIITEKHIM", 2012) [13] was used, which is based on 2006 IPCC Guidelines [1] and 2000 IPCC Guidelines [4].

Activity data were obtained or calculated on the basis of the raw data obtained from enter-prises-producers of refrigeration equipment. Increase in the use of HFC-134a, HFC-125 and HFC-143a in 2018 explains by increase in imports of HFC-containing equipment due to an increase in the demand of HFCs by enterprises, according to the statistics of imports of the State Fiscal Service of Ukraine.

For 2014 - 2018, the analytical study, which includes different approaches, particularly extrapolation, expert judgement and other math and statistical methods [20] was taken into account in adjustment of amounts of hydrofluorocarbons consumption, export and import.

Estimation of HFC emissions in production was based on data of the enterprises-producers on the amount of HFCs used for initial filling and tightness testing of the equipment (if such technical operation was executed). When calculating the total of HFCs in the current stock of equipment, the average factor of filling a piece of equipment with refrigerant is used, which was adopted taking into account the amount of filling for each type of cooling systems. Estimation of emissions from operation of imported equipment, which constitutes the current HFC bank in the refrigeration equipment category, was made based on the stock of refrigeration equipment imported into Ukraine by the key types of equipment and the estimated total content of the cooling agent based on the relevant factors.

The calculations of emissions from disposal in domestic refrigeration was calculated using the default factor, in accordance with IPCC 2006 guidelines[1] and scientific-research work [13]. The calculation of disposal emissions from domestic refrigeration was performed since 2017 in relation with use of assumed life time of the domestic equipment as 18 years, what is related with unstable economic situation in Ukraine which influenced on the reducing of the purchasing ability of the population and accordingly the increase of average lifetime of the refrigerators due to the lack of replacement of refrigerators and an increase in the amount of services provided to the population for the repair of domestic refrigerators in accordance with expert assessment [24] of the scientific research institute Cherkassy NIITECHIM what allow to use of 18 years as lifetime which does not contradict with IPCC 2006 ranges from 12 to 20 years.

4.25.1.1.2.2 Transport refrigeration

Estimation of emissions from manufacturing, exploitation and disposal in transport refrigeration was carried out in accordance with IPCC 2006 guidelines[1] according to the Tier 2a using the default factor. The activity data were obtained from the main companies using HFCs as a refrigerant in automobile and railroad refrigerators for 2014 - 2018, such as "Ukrzaliznytsia" and "Thermo king Ukraine" (the largest certified company of the installation of refrigeration equipment on motor vehicles), with using the method of extrapolation to determine the amount of used HFCs in 2000 – 2014 in accordance with IPCC 2006, Chapter 5: Time series consistency, Section 5.3 Resolving data gaps. Emissions in 1990-1999 years did not occurred because according to customs statistics HFCs used as refrigerant in refrigerating equipment to Ukraine were not imported, as indicated in scientific-research work [13].

4.25.1.1.3. Uncertainties and time-series consistency

The uncertainty level of the activity data and emission factors in the refrigeration equipment category was determined based on the Methods of determination and results of calculations for estimating the uncertainty of activity data and emission factors of hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride (SF₆) in the major categories (SE "Cherkasky NIITEKHIM", Cherkasy 2012) [13], based on the specific characteristics of source and calculated data formation in 2018.

The calculated uncertainty of the activity data in the category of domestic refrigeration equipment in 2018 amounted to 26.13 %, of commercial refrigeration systems – 34.02 %, of industrial cooling systems – 39.79 % and transport refrigeration – 39.49 %. The uncertainty of the default HFC emission factors used in the sub-category of domestic refrigeration equipment in 2018 was 20.6 %, commercial refrigeration systems – 24.37 %, industrial cooling systems – 32.78 % and transport refrigeration – 24.37 %. The total emission estimation uncertainty in 2018 made up in the domestic refrigeration sub-category – 33.27 %, commercial refrigeration systems – 41.85 %, industrial cooling systems – 51.54 % and transport refrigeration – 46.40 %.

4.25.1.1.4. Category-specific QA/QC procedures

General QA/QC procedures were applied for estimation of GHG emissions in HFC use.

4.25.1.1.5. Category-specific recalculations

In 2018 in this category recalculation of HFC emissions for the 2015 - 2017 was made due to adjustment of the data of export, import and usage of HFC and HFC-containing equipment according to the data obtained from enterprises.

Table 4.26 Recalculation of emissions from Transport refrigeration in 2000 - 2016

2.F.1.D Transport refrigeration	2015	2016	2017
HFCs			
Emissions (before recalculating), kt	6.969	6.167	13.206
Emissions (after recalculating), kt	7.013	6.198	13.226
Emission difference,%	0.633	0.492	0.152

4.25.1.1.6. Category-specific planned improvements

See in Annex A8.2 Improvement plan for NIR.

4.25.1.2. Stationary Air Conditioning

4.25.1.2.1 Category description

The currently available in Ukraine stock of equipment for stationary air conditioning (SAC) includes: stationary domestic (residential), semi-industrial, and industrial air conditioning systems (for non-domestic purposes).

The key type of air-conditioning equipment is domestic split systems. They are not produced in Ukraine, and the consumer demand in this market segment is met entirely due to importation of the equipment. In small volumes, domestic mobile floor air conditioners are imported to Ukraine.

To determine GHG emissions from exploitation of imported domestic, semi-industrial, and industrial air conditioning systems, we used data from enterprises.

The customs sampling object was stationary air conditioning systems of various types, namely:

- domestic split systems and mobile floor air conditioners;
- semi-industrial conditioning systems (external units, systems containing refrigeration units);
- industrial air conditioning systems, including autonomous (with a built-in refrigeration unit) ones.

In accordance with provisional main findings identified by the ERT calculation of emissions from disposal in Stationary Air Conditioning was made.

The input data characterizing the status of the stationary air conditioning category, as well as data on results of the GHG inventory in 2018 in Ukraine are summarized in Table 4.27.

Table 4.27 Basic data on results of GHG inventory in production and operation of stationary air-conditioning equipment in Ukraine in 2018

Category code	2.F.1.F						
Category (type of equipment)	Domestic air conditioners (split systems, floor domestic air-conditioners)			Semi	-industrial	air conditio	oners
Gas*	HFC-	HFC-	HFC-	HFC-	HFC-	HFC-	HFC-
	32	134a	125	32	125	134a	143a
Activity data							
Use of a refrigerant in equipment manufacturing (primary filling + tightness test), t When testing tightness, HFCs are not used	-	-	-	-	-	-	-
HFC-balance after the initial filling, t	-	-	-	-	-	-	-
Amount of HFC in exported equipment, t	-	-	-	-	-	-	-
Amount of HFC in imported equipment, t	1647.39	-	765.42	139.75	58.25	68.41	0.0043
HFC balance in operated equipment, t	3279.09	148.9	2229.14	304.507	218.564	132.038	5.197
Category characteristics and estimated factors							
Key category	T						
Detail level (Tier)	2a	2a	2a	2a	2a	2a	2a

Category code	2.F.1.F						
Category (type of equipment)	Domestic air conditioners (split systems, floor domestic air-conditioners)			Semi-industrial air conditioners			
Gas*	HFC-	HFC-	HFC-	HFC-	HFC-	HFC-	HFC-
	32	134a	125	32	125	134a	143a
Method for determination of the emission factor	D	D	D	D	D	D	D
Emission factor at primary (initial) filing,%	0.7	0.7	0.7	1.0	1.0	1.0	1.0
Emission factor when testing equipment for tightness,%	HFCs are not used						
Emission factor at operation of the equipment,%	5	5	5	15	15	15	15
Disposal emission factor,%	70	70	70	70	70	70	70
Average lifetime of the equipment, years	15	15	15	25	25	25	25
GHG emissions							
HFCs emissions							
at the primary (initial) filling of the equipment (from manufacturing), t	-	-	-	-	-	-	-
at exploitation of the equipment(from stocks), t	163.95	7.44	111.457	45.676	32.785	19.806	0.78
from liquidation of the equipment, t	0.571	0.101	0.575	-	-	-	-
Emissions of HFCs in the air conditioning category, total, t	86.288	7.546	112.032	45.676	32.785	19.806	0.78
GWP, t CO _{2-eq} /t	675	1430	3500	675	3500	1430	4470
GHG emissions, kt of CO _{2-eq}	111.06	10.791	392.11	30.831	114.75	28.32	3.485
Change in emissions compared to the previous year,%	90.67	327.11	44.65	57.098	15.883	76.39	-14.93
Emissions, % of the total direct action GHG emissions in the sector	0.91			0.31			
Uncertainty level estimation							
Uncertainty of activity data, %	20.80			44.44			
Uncertainty of the emission factor, %	14.14			29.93			
Uncertainty of the emission estimation, %	25.15			51.96			

^{*} Mixed fluoro-gases are represented by components.

4.25.1.2.2 Methodological issues

Estimation of emissions of hydrofluorocarbons in this category was carried out using method 2a.

As a methodological basis, "The methodology of calculating emissions of hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride (SF $_6$) at the national level (State Enterprise "Cherkasky NIITEKHIM", 2012) [13] was used, which is based on 2006 IPCC Guidelines [1] and 2000 IPCC Guidelines [4].

Activity data were obtained from SSSU [23] on import and export of air-conditioning equipment in 2018 and from companies producing conditioning equipment. For 2014 - 2018, the analytical study, which includes different approaches, particularly extrapolation, expert judgement and other math and statistical methods [20] was taken into account in adjustment of amounts of hydrofluorocarbons consumption, export and import.

When calculating the total of HFCs in the current stock of equipment, the average coefficient of filling a piece of equipment with refrigerant is used, which was adopted taking into account the amount of filling for each type and capacity class of SAC. For domestic air conditioners, the factor of 1.5 kg/unit was used, for semi-industrial and industrial ones -5 kg/unit of equipment.

Estimation of emissions from operation of imported equipment, which constitutes the current HFC bank in this category, was made based on the stock of equipment imported into Ukraine by the key types of equipment and the estimated total content of HFCs in it based on the relevant factors.

Estimation of emissions from liquidation of equipment was carried out in accordance with IPCC 2006 guidelines[1] using the default factor.

Increase in the use of HFC-134a, HFC-125, HFC-32 and HFC-143a in 2018 explains by increase in imports of HFC-containing equipment due to an increase in the demand of HFCs by enterprises, according to the statistics of imports of the State Fiscal Service of Ukraine.

4.25.1.2.3. Uncertainty factors and time-series

The uncertainty level of the activity data and emission factors in the air-conditioning system category was determined based on the Methods of determination and results of calculations for estimating the uncertainty of activity data and emission factors of hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride (SF₆) in the major categories (SE "Cherkasky NIITEKHIM", Cherkasy 2012) [13].

For each sub-category of stationary air conditioning systems, the specific uncertainty factors that affected calculation of the uncertainty level of the activity data and emission factors in 2018 were determined.

In the sub-category of domestic air-conditioning systems, the main uncertainty factors were:

- complexity of statistical data samples for identification of the commodity-product range and establishing import volumes of stationary air conditioning systems with HFC-containing refrigerants;
- complexity of identification of equipment for domestic, industrial, and semi-industrial
 air-conditioning in analysis of customs statistics, in particular for those manufacturers
 and trade marks where there is a diversified range of commodities and consumer equipment;
- possible inaccuracies in determination of the average lifetime of equipment for stationary air conditioning in Ukraine with HFC refrigerants, taking into account the different conditions of operation of the equipment.

The calculated uncertainty of activity data in 2018 was 20.8 % in the category of domestic air-conditioning systems, of the default coefficients used -14.14 %, the combined uncertainty of GHG emission estimation is 25.15 %.

The key uncertainty factors for activity data in the sub-category of semi-industrial and industrial air conditioners were:

- lack of official statistical reporting on production in Ukraine of semi-industrial and industrial air-conditioning systems;
- complexity of identification of industrial and semi-industrial air-conditioning equipment, the absence of unambiguous criteria for grading of such equipment;
- high levels of individualization of technical and consumer parameters of semi-industrial, and especially industrial SACs (selection of the refrigerant type, the period of filling the system with refrigerant, high conditionality of typical emission factors at system filling and operation, etc.);
- difficulty of establishing the average operation period of the equipment in Ukraine.

The calculated uncertainty level of activity data in the sub-category in 2018 was 44.44%, of the default coefficients used -29.93%, the combined uncertainty of GHG emission estimation is 51.96%. The high uncertainty level of the activity data is due to complexity of analyzing foreign trade statistics, which in the reporting year are often fragmented and do not allow for an accurate count of the number of air conditioning equipment imported to Ukraine.

4.25.1.2.4. Category-specific QA/QC procedures

General QA/QC procedures were applied for estimation of GHG emissions in HFC use.

4.25.1.2.5. Category-specific recalculations

In this category, no recalculations were made.

4.25.1.2.6. Category-specific planned improvements

See in Annex A8.2 Improvement plan for NIR.

4.25.1.3 Mobile Air-Conditioning

4.25.1.3.1 Category description

The object of HFC emission estimates in this category is mobile air-conditioning systems (SAC) for road, railway, and maritime transport. The key consumer niche in this category is mobile air-conditioning systems for road transport (99%).

In 2018, 11 vehicle manufacturers operated in Ukraine (passenger cars, trucks, and buses). The level of capacity utilization of the existing enterprises and, accordingly, the volume of production and sales of domestically produced vehicles in the period under review declined by 14% compared with the previous year. Manufacture of vehicles equipped with air-conditioning decreased sharply in the reporting year.

The refrigerant used in automotive and bus air conditioning systems was exclusively HFC-134a.

In accordance with provisional main findings identified by the ERT calculation of emissions from disposal in Mobile Air Conditioning was made.

In Ukraine, production of transport air-conditioning (for railway transportation, heavy vehicles in the construction and mining industries) is performed by six companies, three of them use HFC-134a, HFC-407Cc in production of air-conditioning systems.

Manufacture of air conditioning systems for river and marine vehicles in 2018 in Ukraine was performed by 2 producers. They mainly used fresh or sea water as refrigerants for main air cooling.

In autonomous air-conditioning systems for marine and river vessels, HFC-407c and R22 prevail as refrigerants. The second commodity producer filled air conditioning systems with refrigerant R22.

Table 4.28 summarizes results of GHG inventory in production and operation of vehicle SACs in Ukraine.

Table 4.28 Basic data on results of GHG inventory in production and operation of vehicle SACs in Ukraine in 2018

Category code	2.F.1.E						
	Mobile Air Conditioning Systems		ng Systems				
Category (type of equipment)	for auto- motive vehicles			for sea and river transport			
Gas	HFC- 134a	HFC-32	HFC- 125	HFC- 134a	F		
Activ	Activity data						
Use of the refrigerant in SAC manufacturing (primary filling), t	3.022	0.0	0.0	0.0	NA		
HFC stock after the initial filling, t	3.007	0.0	0.0	0.0	NA		
Amount of HFCs in exported SACs as parts of vehicles, t	0.0	0.000132	0.0	0.0016	NA		
Amount of HFCs in imported SACs as parts of vehicles, t	17.488	0.00131	0.00142	0.0029	NA		
HFC stock in exported SACs as parts of vehicles, t	451.24	0.192	0.155	1.44	NA		
Category characteristi	Category characteristics and estimated factors						
Key category	T						
Detail level (Tier)	2a		2a		2a		
Method for determination of the emission factor	D		D		D		
Emission factor at primary (initial) filling,%	0.5		0.5		0.7		

Category code	2.F.1.E					
Cotogowy (tymo of aguinment)	Mobile Air Conditioning Systems					
Category (type of equipment)	for auto- motive vehicles	for	railway trans	sport	for sea and river transport	
Gas	HFC- 134a	HFC-32	HFC- 125	HFC- 134a		
Emission factor when testing equipment for tightness,%		HI	Cs are not u	sed	1	
Emission factor at operation of the equipment,%	15		15		5	
Disposal emission factor,%	70		70		70	
Average lifetime of the equipment, years	18	25			15	
GHG emissions						
HFCs emissions						
at the primary (initial) filling of the equipment, t	0.015	0.00	0.00	0.00	NA	
at operation of the equipment, t	67.686	0.0287	0.0233	0.216	NA	
at liquidation of the equipment, t	7.575	-	-	-	NA	
Emissions of HFCs in category, total, t	75.276	0.0287	0.0233	0.216	NA	
GWP, t CO _{2-eq} /t	1430	675	3500	1430	NA	
GHG emissions, kt of CO _{2-eq}	107.64	0.019	0.082	0.309	NA	
Change in emissions compared to the previous year, %	-3.99	-14.47	-14.297	-15.81	NA	
Emissions, % of the total direct action GHG emissions in the sector	0.19	0.0007			NA	
Uncertaint	y estimatio	n				
Uncertainty of activity data, %	26.13		34.33		NA	
Uncertainty of the emission factor, %	23.45	29.15 NA			NA	
Uncertainty of the emission estimation, %	35.11	45.04 NA			NA	

4.25.1.3.2 Methodological issues

Estimation of emissions of hydrofluorocarbons in the category of mobile air-conditioning systems was performed for production and operation of air conditioning systems as parts of vehicles using Tier 2a approach. Desaggregation objects in this category were SACs for vehicles and rail transport.

As a methodological basis, "The methodology of calculating emissions of hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride (SF $_6$) at the national level (State Enterprise "Cherkasky NIITEKHIM", 2012) [13] was used, which is based on 2006 IPCC Guidelines [1] and 2000 IPCC Guidelines [4].

Estimation of emissions in production was based on data of the producing companies on the amount of HFCs used for initial SAC filling and tightness testing of the equipment (if such a technical operation was executed). When calculating the total of HFCs in the current stock of vehicles, the average coefficient of filling a piece of equipment with refrigerant was used, which was adopted taking into account the amount of filling for each type and class of SAC. Estimation of emissions from operation of SACs imported are part of vehicles, which constitutes the current HFC bank in this category, was made based on the stock of vehicles imported into Ukraine by the key types of equipment and the estimated total content of HFCs in it based on the relevant factors. Estimation of emissions from liquidation of equipment was carried out in accordance with IPCC 2006 guidelines[1] using the default factor.

Official data of the SSSU [23] were used to calculate HFC emissions from imported vehicles. The calculation did not include automobiles "VAZ", "GAZ", "UAZ", "Daewoo" produced in Russia or Uzbekistan, as well as cars of domestic and foreign brands produced in Ukraine.

Activity data for the SAC sub-category for rail transport and heavy machinery were calculated based on input national statistics on exports and imports, as well as on production of rail vehicles[1, 23]. According to the data obtained from enterprises in 2018 there was no HFC-134a, HFC-

125 and HFC-32 use for rail transport and heavy machinery. For 2014 - 2018, the analytical study, which includes different approaches, particularly extrapolation, expert judgement and other math and statistical methods [20] was taken into account in adjustment of amounts of hydrofluorocarbons consumption, export and import.

Calculation of emissions for railway transport from production was performed on the basis of the data of the amount of HFCs used for the initial SAC filling.

When calculating the total HFC stock in the operated fleet of railway transport, the maximum refrigerant filling of the equipment unit factor (6 kg) was used, which was adopted taking into account data obtained from experts in the field of air conditioning and ventilation systems in railway transport.

The use of the 18 years as the assumed life time for automotive vehicles in estimates for subcategory Mobile Air Conditioning is related to the fact that, according statistical studies, in the current unstable economic situation in Ukraine, the small sales of new cars and the insignificant importation of old cars into the country led to a significant aging of the vehicle fleet, resulting in an average lifetime of cars from 17 to 20 years. Taking into account the national circumstances like unstable economic situation after the collapse of the USSR in 1991 automobile vehicles in Ukraine were producted at only one plant, which does not produces cars with air-conditioned equipment till 2000. In accordance with scientific research work [13] the import of the air conditioned cars in Ukraine starts in 1998. Due to the fact that data of imports of HFCs in automobile vehicles in Ukraine for 1998-1999 are not available, the data ob-tained from SSSU [23]of the total import of cars from Europe and other countries were used, which covers all imports, both public and private. Since the import of cars in 1998 - 1999 compared to 2000 was not significant, and accordingly the use of HFC in automotive air conditioners was also insignificant, a conservative decision was taken into account for HFCs emissions use from automo-bile air-conditioners beginning from 2000, since there was more accurate information starting from the year 2000. And according to the data received from the SSSU [23], import of cars before 1998 was very insignificant, it was assumed that cars with air conditioners containing HFCs were not imported to Ukraine until 1998. But, according to recommendation of ARR 2017 (I.16, 2017) basing on information of the import of cars in 1998 -1999, obtained from SSSU [23] and using extrapolation methods, the calculation of emissions from Mobile air conditioning systems in automotive vehicles for the period of 1998 – 1999 was made. The values of the bank in existing equipment for 2000 was calculated taking into account the estimates of HFCs in-cluded in imported automobile vehicles in 1998 and 1999 basing on the data of the total import of cars obtained from the SSSU [23] in accordance with scientific-research work [13].

4.25.1.3.3. Uncertainties and time-series consistency

The uncertainty level of the activity data and emission factors in the mobile air-conditioning system (SAC) category was determined based on the Methods of determination and results of calculations for estimating the uncertainty of activity data and emission factor of hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride (SF₆) in the major categories (SE "Cherkasky NIITEKHIM", Cherkasy 2012) [13].

For each SAC category (road, railway vehicles), the specific uncertainty factors that affected calculation of the uncertainty level of the activity data and emission factors in 2018 were determined.

The uncertainty level of activity data in the SAC subcategory for the road transport in 2018 amounted to 26.13%, that of default emission factors -23.45%, the total emission estimation uncertainty for the SAC category for road transport accounted for 35.11%.

The uncertainty level in the SAC sector for road transport in 2018 remained at the level of the previous year: the uncertainty of activity data -26.13%, the default emission factors -23.45%, the total emission estimation uncertainty in the sub-category -35.11%.

The key factors contributing into uncertainty of activity data estimation in the SAC subcategory of railway transport are:

- the difficulty of assessing the amount of actually operated railway vehicles with HFC-containing air conditioning systems during the reporting year,
- the difficulty of identifying the amount of imported railway transport vehicles equipped with SACs with HFC refrigerants.

The uncertainty level of activity data in the SAC subcategory for the railway transport in 2018 amounted to 34.33 %, that of default emission factors -29.15 %, the total emission estimation uncertainty for the SAC category for railway transport accounted for 45.04 %.

4.25.1.3.4. Category-specific QA/QC procedures

General QA/QC procedures were applied for estimation of GHG emissions in HFC use.

4.25.1.3.5. Category-specific recalculations

In this category, no recalculations were made.

4.25.1.3.6. Category-specific planned improvements

See in Annex A8.2 Improvement plan for NIR.

4.25.2 Foam Blowing Agents (CRF category 2.F.2).

4.25.2.1 Category description

Disaggregation of activity and GHG emission data in this category was based on production and imports of all types of foam materials and products based on them where hydrofluorocarbon-based foaming agents are used. These subcategories are:

- one-component polyurethane foams (OPF);
- panels and sandwich panels made of rigid polyurethane foams (RPUF);
- rigid polyurethane foam (PUF insulation by spraying, pouring, injection);
- extruded polystyrene foam (XPS).

In 2018, hydrofluorocarbons HFC-134a, HFC-245fa, HFC-365mfc and HFC-227ea were used as blowing agents for production and in composition of imports of foam materials (products).

In the subcategory of one-component polyurethane foams in 2018 one producer operated, which used as a blowing agent a mixture of propane-butane, Freons R-22 and R-406. Imports of OPFs containing HFCs were minimal.

In the subcategory of PUF panels and sandwich panels in 2018, out of the 15 producers operating 10 companies used as blowing agents CO₂(H₂O), pentane, HCFC 141b-based polyols. Imports of PUF panels and sandwich panels comprising HFC as the blowing agent were estimated on the basis of an analytical sample of customs statistics data and expert estimates.

In the subcategory of rigid insulation PUF produced by spraying, pouring, injection, in Ukraine there are around 160 enterprises in various fields of specialization that carry out technological and production work forming rigid polyurethane foam insulation for various purposes: for warehouse and industrial premises, electrical products, refrigeration equipment, automotive industry, and others.

In the subcategory of XPS, in 2018 2 manufacturers of XPS plates operated and used as the blowing agent carbon dioxide alone or as a mixture with ethyl alcohol, and a mixture of chlorofluorocarbons and hydrochlorofluorocarbons (R22, R-142, R-406) with isobutane R-600A.

Formation of activity data in the category of foamed materials (products) production was based on data obtained directly from manufacturers, as well as from other representative sources. They included data on the amounts of hydrofluorocarbons use for production of foamed materials (products), trademarks and formulations of HFC-containing polyols, etc.

Table 4.29 summarizes results of GHG inventory in production and use of foamed HFC-containing materials in 2018.

Table 4.29 Basic data on results of GHG inventory in production and use of foamed HFC-

containing materials in 2018

Category code					2.F.2			
Type of foamed materials (products)	OPF	sandwic	ls and ch panels of PUF	RPUF insulation by spraying, pouring, injection			ring, injec-	Extruded foamed polysty- rene
Gas	HFC- 134a	HFC- 134a	HFC- 245fa	HFC- 134a	HFC- 245fa	HFC- 365mfc	HFC- 227ea	HFC- 134a
			Activity	data				
HFC amount used in production of foamed materials (products), t	0.0	15.43	0.0	45.725	0.0	0.0	12.369	0.0
HFC amount contained in exports of foamed materials (products), t	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
HFC amount contained in imports of foamed materials (products), t	33.82	0.908	1	0.0	0.0	0.0	0.0	0.370
HFC stock as of the end of 2018, t	0.0	25.68	16.413	267.979	141.703	144.965	60.210	160.95
	Catego	ry chara	cteristics	and estima	ted factors			
Key category	No	No	No	No	No	No	No	No
Detail level (Tier)	2a	2a	2a	2a	2a	2a	2a	2a
Method for determination of the emission factor	D	D	D	D	D	D	D	D
Emission factor for the first year,%	100.0	12.5	12.5	25.0	25.0	25.0	25.0	40.0
Emission factor from the stock,%	0.0	0.5	0.5	1.5	1.5	1.5	1.5	3.0
Average service life of the material (product) during operation, years	1	50	50	50	50	50	50	50
			GHG emi	issions	I			
HFCs emissions								
in manufacture of foamed materials (products), t	0.0	1.929	0.0	11.431	0.0	0.0	3.092	0.0
in operation of foamed materials (products), t	33.82	0.128	0.0821	4.019	2.125	2.174	0.903	4.828
Emissions of HFCs in category, total, t	33.82	2.058	0.0821	15.451	2.125	2.174	3.995	4.828
GWP, t CO _{2-eq} /t	1430	1430	1030	1430	1030	794	3220	1430
GHG emissions, kt of CO _{2-eq}	48.36	2.942	0.0845	22.095	2.189	1.726	12.865	6.905
Change in emissions compared to the previous year (increase/decrease rate),%	21.0	19	.33	18.164				-3
Emissions, % of the total di- rect action GHG emissions in the sector	0.085	0.0	005	0.069			0.012	
Uncertainty estimation								
Uncertainty of activity data, %	22.07	28	.35		29	.15		11.70
Uncertainty of the emission factor, %	7.07	36	.05	32.02			20.0	
Uncertainty of the emission estimation, %	22.63	45	.86	43.30 2			23.17	

4.25.2.2. Methodological issues

Estimation of hydrofluorocarbon emissions in the category of foam blowing materials was performed by subcategories using 2a method. All the subcategories, except for one-component polyurethane foams, are closed pore foams.

As a methodological basis, "The methodology of calculating emissions of hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride (SF₆) at the national level (State Enterprise "Cherkasky NIITEKHIM", 2012) [13] was used, which is based on 2006 IPCC Guidelines [1] and 2000 IPCC Guidelines [4].

Activity data were obtained or calculated from the raw data of enterprises-producers and an analytical review of the foam market of Ukraine on production of foams in 2018.

To estimate the volume of HFC imports in composition of polyols, representative data on the composition of polyol blends of the set trademarks were used.

To calculate the scope of HFC imports as part of foamed materials (products), a variety of estimation factors were used depending on characteristics of each sub-category.

In some foamed material sub-categories, amounts - usually minor - of imports with an unidentified foam blowing agent were detected. The concession method was applied to them based on expert judgment regarding the proportion of foam materials that could contain hydrofluorocarbons as blowing agents.

For each sub-category of foamed materials, default emission factors for production and operation were applied, as well as the average data on the lifetime of the materials (products).

According to analytical review of the foam market of Ukraine a sharp increase in HFCs emissions from OPF, RPUF and rigid polyurethane foam (PUF insulation by spraying, pouring, injection) explaines by growth production and use of foamed HFC-containing materials in 2018.

4.25.2.3. Uncertainties and time-series consistency

The uncertainty levels of the activity data and emission factors in the foamed materials category and its subcategories were determined based on the Methods of determination and results of calculations for estimating the uncertainty of activity data and emission factors of hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride (SF₆) in the major categories (SE "Cherkasky NIITEKHIM", Cherkasy 2012) [13].

For each subcategory of foamed materials, the specific uncertainty factors that affected calculation of the uncertainty level of the activity data and emission factors, as well as the total emission estimation uncertainly levels, in 2018 were determined and applied.

The general uncertainty factors in almost all subcategories of foamed materials (products) were: difficulty of identifying foam blowing agents in general and HFC-based ones, in particular in imports of polyols, foam blowing materials (products).

The range of the activity data uncertainty levels in the category of foamed materials in the context of individual subcategories in 2018 was from 11.70 to 29.1 5%; of default HFC emission factors - from 7.07 to 36.05 %, of emission estimates - from 22.63 to 45.86 %.

4.25.2.4. Category-specific QA/QC procedures

General QA/QC procedures were applied for estimation of GHG emissions in HFC use. An expert judgement from a group of experts of SE "Cherkasky NIITEKHIM" was obtained for this category.

4.25.2.5. Category-specific recalculations

In this category, no recalculations were made.

4.25.2.6. Category-specific planned improvements

See in Annex A8.2 Improvement plan for NIR.

4.25.3 Fire protection (CRF category 2.F.3)

4.25.3.1 Category description

In the fire extinguisher category, use of hydrofluorocarbons as extinguishing agents in gas (flooding) extinguishing systems was considered.

Out of the list of hydrofluorocarbons permitted for use in Ukraine as an extinguishing agent in gas fire-extinguishing system, in 2018 only HFC-125 and HFC-227ea were applied.

Manufacture of fire-fighting equipment using HFCs as a fire extinguishing agent in 2018 was carried out only by specialized enterprises.

Formation of activity data in the fire extinguisher category was based on data obtained directly from manufacturers of gas extinguishing systems, namely:

- information on the amount of use of fluorine gases (by type) for production of gas fire fighting modules (GFFM);
- information on the amount of filling with fluorine gases fire fighting modules of various sizes derived from technical specifications.

Documented activity data were provided by producers of GFFMs.

Enterprise data were used to determine the HFC stock and emissions from operation of the existing fleet of gas extinguishing systems in Ukraine.

The object of the sample was charged gas extinguishing units containing HFC-125 and HFC-227ea.

Table 4.30 summarizes results of GHG emission inventory in production and operation of gas extinguishing systems using HFCs in 2018.

Table 4.30. Basic data on results of GHG inventory in production and operation of gas fire fighting modules (GFFMs) in 2018

Category code		F.3	
Type of equipment	Gas fire fighting modules (GF)		
Extinguishing agent (gas)	HFC-125	HFC-227ea	
Activity data			
Use of HFCs in equipment production, t	14.208	13.906	
Amount of HFC in exported equipment, t	-	-	
Amount of HFC in imported equipment, t	-	4.149	
HFC stock in the operated equipment as of the end of 2017, t	143.992	129.494	
HFC stock in the operated equipment as of the end of 2018, t	152.44	142.37	
Category characteristics and estimate	ed factors	1	
Key category	No	No	
Detail level (Tier)	1a	1a	
Method for determination of the emission factor	D	D	
Emission factor at operation of the equipment,%	4	4	
Average life of equipment	15	15	
GHG emissions		_	
HFCs emissions			
at operation of the equipment, t	6.098	5.69	
at liquidation of the equipment, t	0.0	0.0	
Emissions of HFCs in category, total, t	5.098	5.69	
GWP, t CO _{2-eq} /t	3500	3220	
GHG emissions, kt of CO _{2-eq}	21.342	18.337	
Change in emissions compared to the previous year (increase/decrease rate),%	5.867	9.943	
Emissions, % of the total direct action GHG emissions in the sector	0.038	0.032	
Uncertainty level estimation			
Uncertainty of activity data, %		.70	
Uncertainty of the emission factor, %	<u> </u>	formed	
Uncertainty of the emission estimation, %	16.70		

4.25.3.2 Methodological issues

Estimation of hydrofluorocarbon emissions in this category was performed for production and operation of gas fire extinguishing systems using 1a level method.

As a methodological basis, "The methodology of calculating emissions of hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride (SF $_6$) at the national level (State Enterprise "Cherkasky NIITEKHIM", 2012) [13] was used, which is based on 2006 IPCC Guidelines [1] and 2000 IPCC Guidelines [4].

Activity data in 2018 in the category of fire fighting systems were obtained or calculated on the basis of input data:

- on volumes of equipment production and the content of the fire-extinguishing agent received from fire-fighting equipment manufacturing enterprises;
- on HFC volumes imported to replenish available GPPSs with fire extinguishing agents.

The sampling object was a gas fire extinguishing unit (production, export, import) charged with fire extinguishing hydrofluorocarbon agents (HFC-125 and HFC-227ea).

4.25.3.3 Uncertainties and time-series consistency

The uncertainty level of the activity data and emission factors in the fire extinguisher category was determined based on the Methods of determination and results of calculations for estimating the uncertainty of activity data and emission factor of hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride (SF₆) in the major categories (SE "Cherkasky NIITEKHIM", Cherkasy 2012) [13], based on the specific characteristics of input and calculated data formation in 2017.

For the category of gas fire extinguishing, specific of activity and emission data uncertainty factors were established, which were included into the formula for calculating the combined uncertainty level.

The key causes of activity data uncertainty assessment the gas fire extinguisher category were:

- complexity of obtaining data on the amount of HFC use for maintenance of existing gas extinguishing systems (the current period);
- complexity of identifying and calculating the data on the volume of HFC imports into Ukraine (by type) as part of gas fire extinguishing systems.

Activity data in the gas fire extinguisher category were provided by the manufacturing enterprises.

When calculating emissions in this category, the default emission factors recommended by the IPCC were used.

The calculated total uncertainty of activity data and emission estimates in the category of gas fire extinguishers in 2018 was 16.70%.

4.25.3.4 Category-specific QA/QC procedures

General QA/QC procedures were applied for estimation of GHG emissions in HFC use.

4.25.3.5 Category-specific recalculations

In this category, no recalculations were made.

4.25.3.6 Category-specific planned improvements

See in Annex A8.2 Improvement plan for NIR.

4.25.4 Aerosols (CRF category 2.F.4)

4.25.4.1 Category description

In 2018 in Ukraine use of hydrofluorocarbons (HFC-134a) in this category was observed exclusively in production and consumption of medical aerosols for inhalation and for other purposes (metered-dose aerosol inhalation, aerosols for external use, etc.).

In Ukraine, three producers of aerosols for medical purposes operated in 2018, which used HFC-134a in production as a propellant gas. Ukraine only imported inhalation and other aerosol medications containing HFC-134a as the propellant gas. HFC-152a was not imported to Ukraine.

Formation of activity data for production of aerosol formulations for medical purposes was based on data obtained directly from the manufacturers. They included data on production volumes of aerosols for medical purposes containing HFC-134a (in aerosol bottles and in tons by product names), HFC volumes used in manufacture of medical aerosols, the content of the propellant gas. Documented activity data were obtained in this category from all manufacturers.

In 2018, only HFC-134a was used in production and importation of aerosol formulations for medical purposes, HFC-227ea was not included into the composition of the imported aerosols.

Table 4.31 summarizes results of GHG inventory in production and use of HFC-containing aerosols in 2018.

Table 4.31 Basic data on results of GHG inventory in production and use of HFC-containing aerosols in 2018

Category code	2.F.4		
	Aerosols		
Category	Aerosols for medi-	Aerosols for industrial purposes	
	cal purposes		
Gas	HFC-134a	HFC-134a	HFC-152a
Activity data	T	T	
HFC amount used in production of aerosols, t	24.83	-	-
HFC amount contained in exports of aerosols, t	3.44	-	-
HFC amount contained in aerosol supplies for the domestic market, t	-	-	-
HFC amount contained in imports of aerosols, t	70.793	-	-
Net consumption of HFCs contained in aerosols, t	92.185	-	-
Category characteristics and estin	mated factors	II.	
Key category	No	-	ı
Detail level (Tier)	2a	-	ı
Method for determination of the emission factor	D	-	Ī
Emission factor for the first year,%	50	-	-
Emission factor from the stock,%	50	-	-
Average service life of the material (product) during operation, years	2	-	-
GHG emissions		1	
HFCs emissions			
at aerosol use, t	94.147	-	ı
Emissions of HFCs in category, total, t	94.147	-	-
GWP, t CO _{2-eq} /t	1430	-	-
GHG emissions, kt of CO _{2-eq}	134.631	-	-
Change in emissions compared to the previous year (increase/decrease rate),%	13.52	-	-
Emissions, % of the total direct action GHG emissions in the sector	0.238	-	-
Uncertainty estimation	n		
Uncertainty of activity data, %	6.70		
Uncertainty of the emission factor, %	5.39	Not dete	ermined
Uncertainty of the emission estimation, %	8.60		

4.25.4.2 Methodological issues

Estimation of emissions of hydrofluorocarbons in the category of aerosols was carried out using 2a level method.

As a methodological basis, "The methodology of calculating emissions of hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride (SF₆) at the national level (State Enterprise "Cherkasky NIITEKHIM", 2012) [13] was used, which is based on 2006 IPCC Guidelines [1] and 2000 IPCC Guidelines [4].

The calculation of the volume of production, exports, and imports of aerosols for medical purposes included counting of the number of produced, exported, and imported products by trade names of the drugs in vials and in tons (gross weight).

Estimation of GHG emissions in this category was based on calculation of net consumption of HFCs in composition of aerosols in the current period based on the default emission factor for the propellant gas of 50% during the first year, and the HFC stock as of the beginning of the year (50% from the previous year's indicator).

In 2018, the growth dynamics in HFC emissions from the category of aerosol products for medical purposes in Ukraine ceased, and increased compared to the previous year. This trend is likely to be situational and is due, in addition to the purchasing power, to the administration of the domestic pharmaceutical market.

4.25.4.3. Uncertainties and time-series consistency

The uncertainty levels of the activity data and emission factors in the aerosol category were determined based on the Methods of determination and results of calculations for estimating the uncertainty of activity data and emission factors of hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride (SF₆) in the major categories (SE "Cherkasky NIITEKHIM", Cherkasy 2012) [13].

The key uncertainty factors in this category in 2018 were:

- a certain complexity of calculation and possible discrepancies in analytical data processing when converting the quantitative volume of imports of aerosol formulations for medical purposes into the identical measurement units (spray bottles), if another unit is specified in the customs declaration (weight, value);
- unclear identification of data on the composition of aerosol formulations for medical purposes for individual commodity items and the weight fraction of the propellant gas per unit of accounting (spray bottle) contained in the drug use documentation.

Obtaining comprehensive input data from producing companies for 2018 on the composition of aerosol formulations for medical purposes ensured the lowest level of uncertainties in this category.

The total uncertainty of activity data in the aerosol category was 6.70 % in 2018, the uncertainty of the default HFC emission factor for this category was 5.39 %. The total uncertainty of emission data in the aerosol category was 8.60 %.

4.25.4.4. Category-specific QA/QC procedures

General QA/QC procedures were applied for estimation of GHG emissions in HFC use.

4.25.4.5. Category-specific recalculations

In 2018 in this category recalculation of HFC emissions for the 2016 - 2017 was made due to adjustment of the data of export, import and usage of HFC according to the data obtained from enterprises.

Table 4.32 Recalculation of emissions from Aerosols in 2016 - 2017

2.F.4 Aerosols	2016	2017
HFCs		
Emissions (before recalculating), kt	94.78	118.60
Emissions (after recalculating), kt	92.93	118.60
Emission difference,%	-1.959	-0.000021

4.25.4.6. Category-specific planned improvements

See in Annex A8.2 Improvement plan for NIR.

4.25.5 Solvents (CRF category 2.F.5)

In Ukraine, homogeneous solvents and/or mixed (heterogeneous) solvents using HFCs as the primary solvent or blend solvent were not produced in 2018. Analysis of the statistics for 2018 confirmed that solvents were not imported to Ukraine. Therefore, estimation of GHG emissions in this category was not performed.

4.25.6 Other Applications of Substitutes for Ozone-Depleting Substances

As a result of the analysis of imports and domestic sales of HFCs and sulfur hexafluoride in 2018, no data on use of these gases used in other industries were obtained..

Therefore, estimation of GHG emissions in this category was not performed.

4.26 Other Product Manufacture and Use (CRF category 2.G)

4.26.1 Electrical Equipment (2.G.1 CRF)

4.26.1.1 Category description

Sulphur hexafluoride (SF₆₎ is used for transmission and distribution of electric power in switching systems and high voltage equipment (52-380 kV), as well as in medium voltage systems (10-52 kV).

Ukraine has no own production of sulfur hexafluoride (SHF/SF_{6).} It is imported to Ukraine in volumes necessary for production of own gas-insulated equipment, annual assembly and installation of new equipment, as well as for repair and normal operation of the existing fleet of gas-insulated equipment.

A bulk of imported sulfur hexafluoride (over 65%) is used for repair and operation of the available fleet of gas-insulated equipment at electrical substations of the Ministry of Energy and Mines, the Ministry of Infrastructure, industrial enterprises in other sectors. Around 20% of SF_6 imported to Ukraine was used in production of gas-insulated equipment: transformers and gas-insulated switchgears. Ukraine has no own production of gas-insulated circuit breakers. Industrial consumption SF_6 is mainly concentrated in the two segments: production of complete gas-insulated switchgears, production of complete gas-insulated transformer substations, and production of gas-insulated current and voltage transformers.

Table 4.33 summarizes results of GHG inventory in production and operation of gas-insulated equipment.

Table 4.33 Basic data on results of GHG inventory in production and operation of gas-in-sulated equipment in 2018.

Category code	2.G.1
Category (type of equipment)	Gas-insulated equipment
Gas	Sulfur hexafluoride
Activity data	
The amount of SF ₆ imported into Ukraine in 2018, t	12.201
Number SF ₆ used in production of gas-insulated equipment (filling stage), t	2.455
Amount of SF ₆ in exported gas-insulated equipment, t	-
Amount of SF ₆ in imported gas-insulated equipment, t	11.966
Amount of SF ₆ in installed gas-insulated equipment (nameplate capacity of new equipment put into operation in 2017), t	39.025
Amount of SF ₆ in operated gas-insulated equipment (nameplate capacity of operated equipment as of the end of 2016), t	248.651
Amount of SF ₆ in operated gas-insulated equipment (nameplate capacity of operated equipment as of the end of 2017), t	288.629
Category characteristics and estimated factors	
Key category	No
Detail level (Tier)	2a, 3a
Method for determination of the emission factor	D
SF ₆ emission factor in production of gas-insulated equipment (the filling stage),%	0.5
The emission factor at assemblage (installation) of gas-insulated equipment,%	0.0
Emission factor at operation of gas-insulated equipment,%	0.5
Average lifetime of the equipment, years	30-40
GHG emissions	
SF ₆ emissions	
at manufacture of the equipment (the filling stage), t	0.012
at installation (assembly) of gas-insulated equipment, t	0.0047
at operation of gas-insulated equipment, t	1.443
SF ₆ emissions in the gas-insulated equipment category, total, t	1.460
GWP, t CO ₂ e/t	22800
GHG emissions, thousand tons of CO ₂ e	33.29
Growth/reduction of emissions compared to the previous year (+/-),%	16.97
Emissions, % of the total direct action GHG emissions in the sector	0.059
Uncertainty level estimation	
Uncertainty of activity data, %	34.104
Uncertainty of the emission factor, %	18.0
Uncertainty of the emission estimation, %	38.56

4.26.1.2 Methodological issues

Estimation of sulfur hexafluoride emissions in this category was conducted at production and operation of gas-insulated equipment with Tier 2a assessment method and partially the mass-balance Tier 3a method, based on the need.

As a methodological basis, "The methodology of calculating emissions of hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride (SF $_6$) at the national level (State Enterprise "Cherkasky NIITEKHIM", 2012) [13] was used, which is based on 2006 IPCC Guidelines [1] and 2000 IPCC Guidelines [4].

The activity data in 2018 in this category were obtained from manufacturers of high-voltage gas-insulated switchgears, 0.4-110 kV gas-insulated transformers, and gas-insulated equipment using companies and using the method of substitution due to the lack of concretely data for 2018 in accordance with data obtained from State Fiscal Service of Ukraine. Data on actual volumes of sulfur hexafluoride used in production of gas-insulated equipment in 2018 were also obtained from the enterprises-producers with using analytical study, which includes different approaches, particularly extrapolation, expert judgement and other math and statistical methods [20] for adjustment of volumes of sulfur hexafluoride in 2014 - 2018.

During the inventory in the subcategory, the SF_6 emission factor (0.5 %) in production of gas-insulated equipment was used, which was established on the basis of factual data obtained from manufacturers using Tier 3a method (the mass-balance method).

In accordance with the "Methodology for calculating emissions of hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride (SF $_6$) at the national level" (State Enterprise "Cherkasky NIITEKHIM", Cherkasy, 2012) [13], the SF $_6$ emission factor in operation was established on the basis of data from gas-insulated equipment producing and supplying enterprises.

For complete gas-insulated switchgear, as a rule, the zero SF₆ emission factor during operation is applied (for the exception of emergency equipment repairs), or a factor not more than 0.1 %.

For some imported second-generation gas-insulated equipment (current and voltage transformers), the SF_6 emission factor is set at less than 0.1 %.

To calculate SF_6 emissions during operation of gas-insulated equipment in this category in 2018, the average factor of 0.5 % was applied.

4.26.1.3 Uncertainties and time-series consistency

The uncertainty level of the activity data and emission factors in the gas-insulated equipment category was determined based on the Methods of determination and results of calculations for estimating the uncertainty of activity data and emission factors of hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride (SF₆) in the major categories (SE "Cherkasky NIITEKHIM", Cherkasy 2012) [13], based on the specific characteristics of input and calculated data formation in 2016.

Activity data in the gas-insulated equipment category were submitted by the producing companies, consumer companies, and importers of the equipment for the domestic market.

In 2018, the key activity data uncertainty factors in the category of gas-insulated electrical equipment were:

- the difficulty of obtaining comprehensive data on availability of the gas-insulated element with SF₆ in gas-insulated electrical equipment imported to Ukraine (for individual production companies);
- possible partial identification of the consumer range and data collected from enterprises consuming gas-insulated electrical equipment;
- possible inaccuracies in calculation of the nameplate capacity of newly installed and operated gas-insulated equipment.

The calculated activity data uncertainty level in the category of gas-insulated equipment amounted to 34.104 % for the period indicated.

The uncertainty of the default emission factors in the category of gas-insulated equipment in 2018 was 18 %.

The overall uncertainty of sulfur hexafluoride emission estimation was 38.56 % in 2018.

4.26.1.4 Category-specific QA/QC procedures

General QA/QC procedures were applied for estimation of GHG emissions in SF₆ use.

4.26.1.5 Category-specific recalculations

In 2018, recalculation of SF_6 emissions was conducted in this category for 2015 - 2017 due to availability of more accurate data on the amount of the imported SF_6 , in accordance with data obtained from enterprises.

Table 4.34 Recalculation SF6 emissions in electrical equipment in 2015 – 2017

2.G.1 Electrical equipment	2015	2016	2017
Emissions (before recalculation) CO _{2-eq} , kt	19.462	24.298	28.422
Emissions (after recalculation) CO _{2-eq} , kt	19.642	24.312	28.461
Emission difference,%	0.924	0.061	0.138

4.26.1.6 Category-specific planned improvements

See in Annex A8.2 Improvement plan for NIR.

4.26.2 N₂O from Product Uses (2.G.3 CRF)

4.26.2.1 Category description

In this category, nitrous oxide emissions from its use for medical purposes (anesthesia) are estimated. Nitrous oxide emissions in 2018 amounted to 0.474 kt.

Medical nitrous oxide at ambient temperature and atmospheric pressure is a gas. In production, transportation, and up to the direct application in hospitals, it is stored in the liquefied form in bombs under high pressure. The bombs are 10 liter seamless hermetically sealed containers of carbon steel in accordance with GOST 949-73 with the base material content of 6.2 kg. All nitrous oxide used in medical institutions fully gets into the air, since after its use as an inhalation anesthetic the gas is exhaled by the patient (elimination -100 %) with no utilization, and 100 % of its volume releases into the environment.

4.26.2.2 Methodological issues

In this inventory, for the first time in the time series of 1990-2018, estimation of nitrous oxide emissions from its use for medical purposes is done under the algorithm developed by the State Enterprise "Ukrainian Research Institute of Transport Medicine of the Ministry of Health of Ukraine" and described in the scientific-research work "Development of methodological recommendations on definition of indicators of nitrous oxide use for medical purposes" [19], with using national emission factors.

In accordance with the algorithm, annual nitrous oxide emissions from its use for medical purposes are determined according to equation:

$$Q(t) = XO \cdot IA \cdot IA_{N_2O} \cdot N , \qquad (2)$$

where: Q(t) - the volume of nitrous oxide emissions from its use for medical purposes in year t, kt;

XO - the number of surgeries conducted, surgeries/year;

IA - the share of inhalation surgeries in the structure of the total number of surgical procedures performed;

 IA_{N2O} - the proportion of nitrous oxide use as an anesthetic in the structure of inhalation surgeries made;

N - the amount of nitrous oxide used per inhalation surgery with its application, kg.

The data on surgical operations performed in Ukraine in the period of 1990 - 2018 were analyzed and systematized in the expert estimation⁴ in accordance with data obtained from the Ministry of Health of Ukraine with using data from official statistic with using analytical study, which includes different approaches, particularly extrapolation, expert judgement and other math and statistical methods [20] for adjustment of number of surgical operations in 2014 - 2018. The detailed information is presented in Table 4.37 below. In general, the number of surgical operations has gradually increased from 4280.605 thousand in 1990 and reached 4256.299 thousand in 2017, in 2018 – 4171.564 thousand. This trend from 1990 to 2018 is due to a number of reasons: an increase in the general morbidity rate in the population, the growing number of patients who require surgical operations, the number of detected tumors, diseases of the blood circulatory system and the urinary tract,

⁴ A. Fedoruk, MD, Professor of Surgery and Urology Department, Bukovysky State Medical University, deputy chief physician at the medical unit of Chernivtsi city hospital.

as well as introduction into the surgical practice of new technologies in line with an increase in the scope of planned surgical care.

The share of inhalation surgeries (IA). The value of the IA factor for the time-series of 1990-2018 was calculated in the expert estimation¹, according to which this factor gradually increased from 0.15 in 1990 and reached the value of 0.51 in 2018, which is displayed in table 4.35 below. This trend is typical for the majority of countries in the world and was supported by improvement of the material and technical base of medical and preventive treatment facilities of Ukraine: only in the last few years Ukraine received and distributed more than 800 anesthesia and respiratory devices, which allows for inhalation anesthesia.

The proportion of nitrous oxide use as an anesthetic (IA_{N_2O}). The value of the IA_{N_2O} factor for the time-series of 1990-2018 was calculated in the expert estimation¹, according to which this factor gradually increased from 0.100 in 1990 and reached the value of 0.279 in 2018, which is displayed in table 4.35. This trend is due to the relatively low cost of using nitrous oxide as an anesthetic.

The amount of nitrous oxide used per inhalation surgery (N). In the scientific research work [19], it was found that the average weight of nitrous oxide used per inhalation surgery is 0.8 kg. The value of the factor is based on the analysis of nitrous oxide use in 81 health facilities of Ukraine.

Table 4.35. Use of nitrous oxide for medical purposes in Ukraine, 1990 - 2018

Year	The total number of surgi- cal operations (XO), thou- sand	The share of inhalation anesthesia (IA)	The proportion of inhalation anesthesia using N ₂ O (IA _{N2O})
1990	4280.605	0.15	0.100
1991	4395.58	0.15	0.100
1992	4799.39	0.15	0.100
1993	4768.744	0.15	0.100
1994	4709.829	0.15	0.100
1995	4608.056	0.15	0.100
1996	4555.423	0.15	0.100
1997	4379.378	0.15	0.100
1998	4488.427	0.15	0.100
1999	4569.398	0.15	0.100
2000	4905.764	0.15	0.150
2001	4840.657	0.15	0.150
2002	4860.692	0.15	0.150
2003	4973.975	0.15	0.150
2004	5026.678	0.15	0.150
2005	5044.089	0.15	0.150
2006	5053.335	0.18	0.263
2007	5112.678	0.18	0.263
2008	5481.381	0.18	0.263
2009	4915.107	0.51	0.279
2010	4951.215	0.51	0.279
2011	4934.49	0.51	0.279
2012	4907.676	0.51	0.279
2013	4894.296	0.51	0.279
2014	4277.608	0.51	0.279
2015	4300.679	0.51	0.279
2016	4280.791	0.51	0.279
2017	4256.299	0.51	0.279
2018	4171.564	0.51	0.279

4.26.2.3 Uncertainties and time-series

The range of activity data and emission factor uncertainty estimates in the category Other Applications is displayed in table 4.38. and was determined in accordance with 2006 IPCC Guidelines [1].

Table 4.36. The range of uncertainty estimates

Parameter	Estimated	l uncertainty					
rarameter	"_"	"+"					
Activity data							
The number of surgical operations, XO	5	5					
Completeness of the sampling and data processing time series	7.8	7.8					
The balance of domestic consumption of nitrous oxide	10	10					
Uncertainty of activity data	13.63	13.63					
Emission factors							
The share of inhalation surgeries, IA	10	10					
The proportion of nitrous oxide use as an anesthetic, IA _{N2O}	26.42	26.42					
Uncertainty of nitrous oxide emission factors	28.25	28.25					
Standard uncertainty of N ₂ O emissions	31.37	31.37					

4.26.2.4 Category-specific QA/QC procedures

For estimation of emissions in the category, the following quality control procedures were applied:

- comparison of activity data from different sources;
- comparison of emission along the time-series and analysis of activity data trends.

4.26.2.5 Category-specific recalculations

In this category, no recalculations were made.

4.26.2.6 Category-specific planned improvements

In this category, no improvements are planned.

4.27 Pulp and Paper Production (CRF category 2.H.1)

4.27.1 Category description

2018

Pulp and paper industry produces various types of paper and cardboard manufacturing technology of which consists in obtaining paper mass from fibrous material - pulp. The raw material for paper pulp is wood. In pulp and paper production emissions of NMVOCs, NO_x , CO, and SO_2 occurs. Since 2011, pulp has not been produced in Ukraine. Table 4.40 shows the basic data on the results of GHG inventory in paper production.

Table 4.37. The basic data on the results of GHG inventory in paper and pulp production in

Category code	2.H.1				
Gases	NO_x	CO	NMVOC	SO_2	
Emissions from production, kt	0.990	5.45	1.982	1.982	
Change in emissions compared to the previous year,%	39.37				
Change in emissions compared to the baseline year,%	109.37				
Emissions, % of emissions in the sector	6.45	15.61	1.63	3.66	
The key category			No		
Detail level (Tier)	1	1	1	1	
Method for determination of the emission factor	D	D	D	D	
Emission factor at production, t/t	0.001	0.0055	0.002	0.002	

4.27.2 Methodological issues

Emissions of NMVOC, NO_x , CO, and SO_2 in paper manufacture were determined in accordance with 2013 EMEP/EEA recommendations [6]. Data on the amounts of paper production in Ukraine were obtained from SSSU[2]. The default GHG and SO_2 emission factors were used.

4.27.3 Uncertainties and time-series consistency

Since in pulp and paper production GHG emissions do not happen, the uncertainty of emission estimation results in this category was not calculated.

4.27.4 Category-specific QA/QC procedures

General QA/QC procedures were applied to calculation of GHG emissions from paper production.

4.27.5 Category-specific recalculations

In this category, no emission recalculations were made.

4.27.6 Category-specific planned improvements

In this category, no improvements are planned.

4.28 Food and Beverages Industry (CRF category 2.H.2)

4.28.1 Category description

The food industry produces a wide range of products based on application of various technological processes. Food composition includes organic substances that during processing emit into the atmosphere as NMVOCs. The greatest amount of NMVOCs is emitted in production of alcoholic beverages, bakery products, edible fats, meat and fish products.

Table 4.38 presents activity data, emission and NMVOC emission factors at production of food and beverages in Ukraine in 2018.

Table 4.38. NMVOC emissions in production of food and beverages in 2018

Category code	2.H.2
Food Production, kt	12776.290
Beverage Production, 10 ³ hl	21605.089
Gas	NMVOC
Emissions from products, kt	42.059
Emissions from beverages, kt	11.238
Total emissions, thousand tons	53.298
Change in emissions compared to the previous year,%	-9.37
Change in emissions compared to the baseline year,%	-61.81
Emissions, % of emissions in the sector	43.98
The key category	No
Detail level (Tier)	1
Method for determination of the emission factor	D

Activity data, emission factors, and GHG emissions throughout the entire time series in this category are shown in Table A3.1.1.19, Annex 3.1.1.

4.28.2 Methodological issues

Estimation of NMVOC emissions in food and beverage industries was made in accordance with the recommendations in section 2.15 of 2013 EMEP/EEA Guidelines [6] using default emission factors. NMVOC emission estimation was performed for production of bread and bakery products, flour confectionery products, fodder for animals, margarine and solid edible fats, sugar, meat, fish and poultry, spirits, wine and beer. The data used for the estimation of emissions were provided by the SSSU[2].

4.28.3 Uncertainties and time-series consistency

Since in food and beverages production GHG emissions do not happen, the uncertainty of NMVOC emission estimation results in this category was not calculated.

4.28.4 Category-specific QA/QC procedures

General QA/QC procedures were applied for estimation of NMVOC emissions at food and beverage production.

4.28.5 Category-specific recalculations

In this category, no emission recalculations were made.

4.28.6 Category-specific planned improvements

In this category, no improvements are planned.

5 AGRICULTURE (CRF SECTOR 3)

5.1 Sector Overview

The following emission source categories considered in the Agriculture sector:

- 3.A Enteric Fermentation;
- 3.B Manure Management;
- 3.C Rice Cultivation;
- 3.D Agricultural Soils;
- 3.E Prescribed Burning of Savannas;
- 3.F Field Burning of Agricultural Residues;
- 3.G Liming;
- 3.H Urea Application.

Total emissions of direct GHG (CO₂, CH₄, N₂O) in the sector and by categories are reported in Table 5.1. In categories 3.E Prescribed Burning of Savannas and 3.F Field Burning of Agricultural Residues, emissions not estimated, since the savannas ecosystem does not exist in the territory of Ukraine, and burning of crop residues in Ukraine is legally prohibited under the Code of Administrative Offenses (art. 77-1) and the Law of Ukraine On Air Protection (art. 16, 22).

Table 5.1. Changes in GHG emissions in the Agriculture sector

Catagomy	Em	issions, kt CO ₂	Trend, %		
Category	1990	2017	2018	by 1990	by 2017
3.A Enteric Fermentation	39 311.34	8 597.04	8 298.21	-78.89	-3.48
3.B Manure Management	6 774.76	2 022.17	2 002.73	-70.44	-0.96
3.C Rice Cultivation	216.43	94.11	93.58	-56.76	-0.56
3.D Agricultural Soils	37 678.18	29 697.25	33 479.29	-11.14	12.74
3.E Prescribed Burning of Savannas *	NO	NO	NO	_	_
3.F Field Burning of Agricultural Residues **	NO	NO	NO	-	_
3.G Liming	2 592.08	168.60	163.74	-93.68	-2.88
3.H Urea Application	270.14	512.07	201.18	-25.53	-60.71
Total for the sector	86 842.92	41 091.24	44 238.72	-49.06	7.66

^{* –} the emissions not estimated;

The total GHG emissions in the sector have decreased by 49.06 % compared to the base year and increased by 7.66 % in comparison with previous year (Table 5.1).

The highest emissions in the agricultural sector of Ukraine in reported year observed in 3.D Agricultural Soils and 3.A Enteric Fermentation categories, which make up 75.68 and 18.76 % (Fig. 5.1). The next largest category is 3.B Manure Management, which accounts for 4.53 % of the emissions. Contribution of the other categories is negligible and accounts for only 1.04 %.

The key gases in the sector are methane and nitrous oxide (Fig. 5.2), which accounted for 49.55 and 47.16 % in 1990, and 21.23 and 77.94 % of the emissions in reported year, respectively.

The reduction in emissions of GHG over the period of 1990-2018 is primarily due to the decrease in the number of livestock, in the amount of fertilizer applied to soils, as well as to a change in treatment of animal manure as a result of the collapse of the Soviet Union and the ensuing economic crisis.

One of the reasons for the emissions growth in 2001-2002 by comparison with 2000 was stabilization of swine livestock due to renewed operation of some pig farms, procurement from other countries of breeding animals, and increased subsidies. In 2003, as a result of impact of natural and

^{**-}field burning of crop residues prohibited by the Ukrainian legislation.

economic factors, the livestock of animals in household farms declined sharply. In particular, compared with the previous year, the average annual livestock of cattle decreased by 17 %, pigs – by 10 %. The determining factor for the reducing population of animals in 2003 were extreme weather conditions (extreme cold and small amount of snow), which led to deep freezing of the ground and the subsequent decrease in the yield of harvested acreage of forage crops for livestock. In general, 2003 characterized by rapid changes in sales prices for live animals, feed grain, and other fodder.

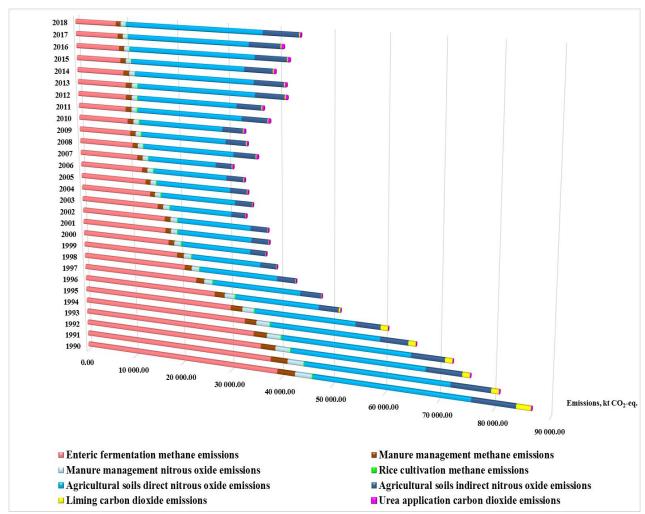


Fig. 5.1. GHG emissions by categories of the Agriculture sector, kt CO₂-eq.

The growth in direct N_2O emissions from agricultural soils in 2008 was due to an increase in the amount of crop residues going into the soil, which in turn is due to the highest in the period of Ukraine's independence gross harvest of grain and leguminous crops, which amounted to 53.3 Mt. In addition, in 2003-2018 there was an increase in the standardly introduced nitrogen fertilizers (except 2009 and 2015).

One of the main reasons of methane emissions decline in the 3.B Manure Management category in comparison with emissions in the other categories is partial replacement from liquid systems to solid storage in the manure management structure at cattle-raising enterprises. Thus, the percentage of cattle manure stored in liquid systems at agrienterprises in 1990 was 21.0 % of the total manure produced. In 2018, the corresponding proportion of manure in liquid systems was approximately 5.1 %, and the rest of the manure mostly remained on pasture/range/paddock or in solid storage. Since the potential of methane production in liquid systems is significantly higher than in case of solid storage, emission factors for the period of 1990-2018 sharply reduced. At the same time, methane emissions in the category in question in the reporting period decreased by 71.4 %.

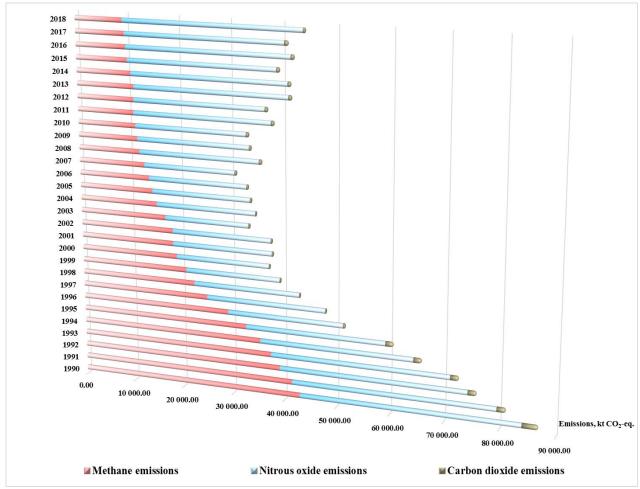


Fig. 5.2. The ratio of direct GHG emissions in the Agriculture sector, kt CO₂-eq.

5.2 Enteric Fermentation (CRF category 3.A)

5.2.1. Category description

Inventory of methane emissions from enteric fermentation in Ukraine includes such types of farm animals (Table 5.2) as cattle, sheep, swine, and other animals (goats, horses, mules and asses, rabbits, fur-bearing animals, camels and buffaloes). Ruminants (such as cattle) produce a largest part of CH₄ emissions from enteric fermentation. Emissions from poultry are not estimated, as 2006 IPCC Guidelines [1] offer no methodology for their calculation.

Table 5.2. Review of category 3.A Enteric Fermentation

Cotogowy	Method	Emission	Gas The key		Emissions, kt		Trend,
Category	applied	factor	Gas	category	1990	2018	%
3.A.1 Cattle	T 2	CS			1 461.46	302.78	-79.28
3.A.2 Sheep	T 2	CS			60.91	8.05	-86.79
3.A.3 Swine	T 1	D			29.53	9.48	-67.89
3.A.4 Other animals:	T 1	D			20.55	11.62	-43.46
fur-bearing animals	T 1	D			0.14	0.11	-25.07
rabbits	T 1	D	CH ₄	Level/Trend	4.27	3.58	-16.13
camels	T 1	D			0.03	0.04	38.50
mules and asses	T 1	D			0.19	0.12	-37.07
buffaloes	T 1	D			0.05	0.01	-86.29
horses	T 1	D			13.43	4.67	-65.26
goats	T 1	D			2.45	3.10	26.71

Next data collected for GHG emissions estimating:

- the type of animals (Table 5.3, Annex 3.2.1) and their number;
- the type of the digestive system of the animals;
- feed digestibility;
- feeding situation: confined, grazing, pasture conditions;
- animal weight and their average weight gain per day;
- milk production and fat content;
- wool growth;
- animal activity and average amount of work performed per day;
- percentage of females that give birth in a year and number of offspring.

Table 5.3. Characteristics of animal species and their sources

Animal species	Data source	Reporting form	Note*
Cattle	SSSU	Livestock of the animals at January 1	Annex 3.2.1.2.1
Sheep	SSSU	Livestock of the animals at January 1	Annex 3.2.1.2.2
Swine	SSSU	Livestock of the animals at January 1	Annex 3.2.1.2.3
Fur-bearing animals	SSSU	Livestock of the animals at January 1	Annex 3.2.1.2.5
Rabbits	SSSU	Livestock of the animals at January 1	Annex 3.2.1.2.5
Buffaloes	Regional state administrations	Livestock of the animals at January 1	Annex 3.2.1.2.5
Goats	SSSU	Livestock of the animals at January 1	Annex 3.2.1.2.5
Camels	FAO	Average annual population	Annex 3.2.1.2.5
Horses	SSSU	Livestock of the animals at January 1	Annex 3.2.1.2.5
Mules and asses	FAO	Average annual population	Annex 3.2.1.2.5
Poultry	SSSU	Livestock of the animals at January 1	Annex 3.2.1.2.5

^{* –} found in Annex 3.2 Agriculture.

EF for cattle sex-age groups and sheep calculated in accordance with corresponding methodology (Annex 3.2.8, Tables A3.2.8.1 and A3.2.8.2). Cattle and sheep EF fluctuations mainly caused by changes of energy expenses and other several data (live weight, milk yield, wool production etc.).

Methane emissions from enteric fermentation in the base, several intermediate and last years reported in Annex 3.2.9 (Table A3.2.9.1).

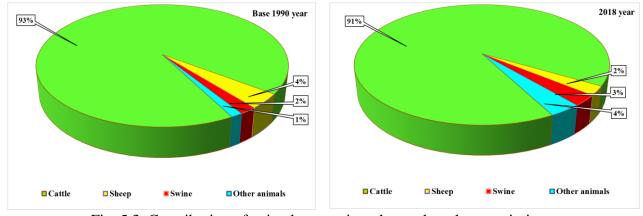


Fig. 5.3. Contribution of animal groups into the total methane emissions from enteric fermentation, %

Analysis of Table A3.2.9.1 leads to the conclusion that the highest emissions in this category produced by cattle enteric fermentation, providing for over 90 % of the total GHG emissions in this category. The next largest source of methane emission is enteric fermentation of sheep, swine and other animals, the total contribution to the overall emissions of which is much smaller (Fig. 5.3).

5.2.2 Methodological issues

5.2.2.1. The methodology for CH₄ emissions estimation from cattle enteric fermentation

Methane emissions from cattle enteric fermentation (Annex 3.2.9, Table A3.2.9.1) estimated according to Tier 2 from 2006 IPCC Guidelines [1]. Institute of Animal Science of the NAASU since 1985 explores different methodologies for calculation GHG from cattle enteric fermentation hold their adaptation with the conditions of Ukraine. We will be able to improve quality of emissions estimation from cattle enteric fermentation after testing the results of their research.

Equation 10.19 [1] used for GHG emissions calculation from cattle enteric fermentation (Table 5.4).

Cattle EF (Annex 3.2.8, Table A3.2.8.1) calculated in accordance with Equation 10.21 [1].

<u>Gross energy intake</u>. Calculation of GE (Annex 3.2.2, Table A3.2.2.1), according to Equation 10.16 [1], required definition of the following components:

- net energy required by the animal for maintenance (Equation 10.3 [1]);
- net energy for animal activity (Equation 10.4 [1]);
- net energy for lactation (Equation 10.8 [1]);
- net energy required for pregnancy (Equation 10.13 [1]);
- ratio of net energy available in a diet for maintenance to digestible energy consumed (Equation 10.14 [1]);
 - net energy needed for growth (Equation 10.6 [1]);
- ratio of net energy available for growth in a diet to digestible energy consumed (Equation 10.15 [1]);
 - digestible energy expressed as a percentage of GE (Table 5.4).

Activity data sources that used for cattle sex-age groups gross energy estimation reported in Table 5.4.

Table 5.4. Characteristics of AD sources for cattle GE estimation

AD name	Symbol	Source	Note
Weight coefficient for each cattle sex-age group	Cf	2006 IPCC Guidelines	Table 10.4
Coefficient corresponding to ani- mal's feeding situation for each cattle sex-age group	Ca	2006 IPCC Guidelines	Table 10.5
Coefficient for live body weight of an adult animal	C	2006 IPCC Guidelines	A coefficient with a value of 0.8 for females, 1.0 for castrates and 1.2 for bulls
Average live body weight of the animals in the population	Weight (for Equation 10.3) or BW (for Equation 10.6)	Country specific standards [3-5]	Annex 3.2.2, Tables A3.2.2.2 - A3.2.2.4
Mature live body weight of an adult animal in moderate body condition	MW	Country specific standards [3-5]	Annex 3.2.2, Tables A3.2.2.2 - A3.2.2.4
Average daily weight gain of the animals in the population	WG	Country specific standards [3-5]	Annex 3.2.2, Table A3.2.2.5
Amount of milk produced	Milk	SSSU ("Milk production", Table No.15) and analyti- cal study [2]	Annex 3.2.2, Table A3.2.2.6
Fat content of milk	Fat	SSSU	Annex 3.2.2, Table A3.2.2.6
Pregnancy coefficient	C pregnancy	2006 IPCC Guidelines	Table 10.7
Digestible energy DE		SSSU; expert judgment from the NAASU (№13700/10-16 on 13 Dec 2016)	Annex 3.2.2, Table A3.2.2.7

<u>Livestock</u>. In line with the requirements of [1], data of the SSSU used as the information base to estimate the average annual cattle livestock (Table 5.3; Annex 3.2.1.3, Tables A3.2.1.3.1 and A3.2.1.3.2).

<u>Methane conversion factor</u>. Methane conversion factor (Y_m) for cattle (for dairy cows and other cattle as 6.5 %) used from Table 10.12 [1].

5.2.2.2. The methodology for CH₄ emissions estimation from sheep enteric fermentation

Tier 2 used for methane emissions from sheep enteric fermentation calculation [1]. According to them, to estimate methane emissions, it is necessary to determine:

- the amount of GE intake (Annex 3.2.2, Table A3.2.2.8);
- number of sheep (Table 5.3; Annex 3.2.1.3, Table A3.2.1.3.1);
- methane conversion factor (Table 10.13 [1]).

Estimation of methane emissions from sheep enteric fermentation (Annex 3.2.9, Table A3.2.9.1) carried out according to Equation 10.19 of 2006 IPCC Guidelines [1].

Sheep EF by sex-age groups calculated in accordance with Equation 10.21 [1] and reported in Table A3.2.8.2 (Annex 3.2.8).

<u>Gross energy intake</u>. Calculation of GE, according to Equation 10.16 [1], required definition of the following components:

- net energy required by the animal for maintenance (Equation 10.3 [1]);
- net energy for animal activity (Equation 10.5 [1]);
- net energy for lactation (Equation 10.9 [1]);
- net energy required for pregnancy (Equation 10.13 [1]);
- ratio of net energy available in a diet for maintenance to digestible energy consumed (Equation 10.14 [1]);
 - net energy needed for growth (Equation 10.7 [1]);
 - net energy required for production of wool during a year (Equation 10.12 [1]);
- ratio of net energy available for growth in a diet to digestible energy consumed (Equation 10.15 [1]);
 - digestible energy expressed as a percentage of GE (Table 5.5).

Activity data sources that used for seep sex-age groups gross energy estimation reported in Table 5.5.

Table 5.5. Characteristics of AD sources for sheep GE estimation

AD name	Symbol	Source	Note
Weight coefficient for each sheep sex-age group	Cf	2006 IPCC Guidelines	Table 10.4
Coefficient corresponding to ani- mal's feeding situation for each sheep sex-age group	C _a	2006 IPCC Guidelines	Table 10.5
Coefficient for live body weight of an adult animal	C	2006 IPCC Guidelines	A coefficient with a value of 0.8 for females, 1.0 for castrates and 1.2 for bulls
Average live body weight of the animals in the population	Weight	Country specific standards [6-7]	Annex 3.2.2, Ta- bles A3.2.2.9 - A3.2.2.12
The weight gain	WG lamb	2006 IPCC Guidelines	Equation 10.7
The live bodyweight at weaning	BW i	Country specific standards [6-7]	See description below

AD name	Symbol	Source	Note
The live bodyweight at 1-year old or at slaughter (live-weight) if slaughtered prior to 1 year of age	BW f	Country specific standards [6-7]	See description below
Constants for sheep net energy for growth calculation	a, b	2006 IPCC Guidelines	Table 10.6
Amount of milk produced	Milk	SSSU ("Milk production", Table No.15) and analytical study [2]	Annex 3.2.2, Table A3.2.2.9
The net energy required to produce 1 kg of milk	EV milk	Country specific standards [9]	4.75 MJ × kg ⁻¹
Annual wool production per sheep	Production wool	SSSU [10] and analytical study [2]	Annex 3.2.2, Table A3.2.2.9
The energy value of each kg of wool produced	EV wool	2006 IPCC Guidelines	A default value of 24 MJ × kg ⁻¹
Pregnancy coefficient	C pregnancy	2006 IPCC Guidelines	Table 10.7
Digestible energy	DE	Expert judgment from the NAASU (№20009/10-17 on 04 Aug 2017)	67.5 %

For the purposes of the inventory, average values of live weight of ewes and rams were used [6-7], estimated based on the average live weight of sheep by breeds and breed types, their breed composition structure.

Weaning of lambs for the purpose of feeding and fattening is done at the age of 3 months (live weight -24 kg). The live weight of lambs at weaning at the age of 4 months for the purpose of herd replacement on average is 30 kg, of young replacement stock at the age of 1 year (mostly female lambs) -50 kg, of feeding livestock at slaughter - approximately 49 kg, and of wethers -60 kg [6-7].

Information about the method of sheep feeding obtained based on an expert opinion of the National University of Life and Environmental Sciences of Ukraine.

Maintenance of sheep characterized by long (on average about 270 days) grazing in large pastures. Sheep grazing is accompanied by constant migrations (several kilometers a day), as a consequence they spend a considerable amount of energy to receive fodder. The rest of time sheep stay in sheep pens, around which they arrange a fold for the animals' feeding and walking (the pasture-stall system). A number of farms in the steppe zone of the country successfully apply the pasture-semistall system with partial grazing of sheep in winter dry and cold weather with temperatures down to -8°C on winter crops, natural pastures, swamps. Ewes a month before calving and for 3 weeks after, as well as youngsters, not grazed. Sheep pasture system not practiced in Ukraine due to the high rate of land plowing [8].

Milking capacity of ewes depends on the breed, individual characteristics, age (yields increased up to the age of five years and then go down), maintenance conditions, and feeding [8]. The lactation period of sheep in the conditions of Ukraine is on average 4 months. According to the SSSU, the milking herd of ewes founded in the several key regions: Vinnytska, Ivano-Frankivska, Odesska, Chernivetska Oblast, and the Autonomous Republic of Crimea.

To estimate the rate of sheep milk production, data from SSSU observations ("Milk production", Table No.15) and analytical study [2] were used, but with adjustments to account for the sheep milk used in the suckling period for feeding lambs. In particular, in the estimations it assumed that the amount of milk consumed by lambs prior to weaning from ewes on average is 60 kg (expert assessment based on materials of the Ukrainian literature review [7-8]). The energy value of sheep milk taken in accordance with [9] as equal to 4.75 MJ/kg.

There are no statistics in the country on the proportion of sheep that give birth to one, two, or three lambs in the total population of ewes, which are required to determine the net energy required for pregnancy (NE_p). Therefore, it assumed that all the ewes during the year are pregnant, and the coefficient corresponding to the average number of lambs born in a year defined based on Table A3.2.2.9 (Annex 3.2.2). The average value of the pregnancy coefficient ($C_{pregnancy} = 0.087290$) was calculated using the default values from Table 10.7 [1].

The value of digestibility of fodders for sheep (for good pastures, well preserved forages and feeding regimes based on forage with the addition of grain) was taken as 67.5 % on base of expert judgment from the NAASU (№20009/10-17 on 04 Aug 2017).

<u>Livestock</u>. SSSU data used as the information base to estimate the average annual sheep livestock (Table 5.3; Annex 3.2.1.3, Table A3.2.1.3.1).

<u>Methane conversion factor</u>. Default methane conversion factors from Table 10.13 [1] used for GHG estimation. According to this table, the methane conversion factor is 0.065 rel. units for animals older than 1 year, and for youngsters it is 0.045 rel. units. Since the livestock of sheep fattening are both youngsters (83.5 %) and adult animals (16.5 %) [6], the weighted average calculated, which corresponds to the mark 0.0483 rel. units.

5.2.2.3. The methodology for CH₄ emissions estimation from other animals enteric fermentation

Estimation of GHG emissions from the vital activity of animal species like goats, horses, swine, mules and asses, rabbits, fur-bearing animals, camels and buffaloes (Annex 3.2.9, Table A3.2.9.1) was performed under Tier 1 method (Equation 10.19) with the default emission factors (Table 10.10) [1]. The emission factors used to calculate emissions reported in Table A3.2.8.3 (Annex 3.2.8).

The values of the horses, goats, swine, mules and asses, rabbits, fur-bearing animals, camels and buffaloes average annual population used in the GHG inventory reported in Table A3.2.1.3.1 (Annex 3.2.1.3).

Data on the live weight of rabbits were obtained from analysis of literature materials [8] and make up 3.8 kg (the average for all breeds bred in Ukraine). The value of the live weight of furbearing animals of 4.1 kg was calculated as average between the data on the weight of minks -2.1 kg, polar foxes -5.0 kg, foxes -4.9 kg, and nutria -6.5 kg [8]. As animals with a similar digestive system for rabbits were mules and asses, whose live weight is 130 kg, for fur-bearing animals - swine (the live weight -50 kg).

5.2.3 Uncertainty and time-series consistency

Uncertainty estimated in accordance with the Tier 1 methodology from 2006 IPCC Guidelines [1].

The uncertainty of emission estimation in category 3.A Enteric Fermentation is determined by uncertainties of AD and EF. Ranges and sources of uncertainty of input data used in calculation of national EF from cattle and sheep enteric fermentation reported in Table 5.6.

Table 5.6. The uncertainty of input data used in calculation of national emission factors from cattle and sheep enteric fermentation, %

Indicator	Measurement unit	Uncertainty	Source
		Cattle	
Statistical data on livestock	thsd. head	6	Expert opinion based on SSSU data
Cf coefficient	$MJ \times day^{-1} \times kg^{-1}$	20	2006 IPCC Guidelines [1]
C _a coefficient corresponding to animal's feeding situation	$MJ \times day^{-1} \times kg^{-1}$	20	2006 IPCC Guidelines [1]
C coefficient	dimensionless	20	2006 IPCC Guidelines [1]
Average live body weight data of the animals in the population (Weight/BW)	kg	1-35	Range of average body weight values depending on the breed and sex-age indicators, according to data of [3-5, 11]

Indicator	Measurement unit	Uncertainty	Source
MW mature live body weight of an adult animal in moderate body condition	kg	1-35	Range of average body weight values depending on the breed and sex-age indicators, according to data of [3-5, 11]
WG average daily weight gain of the animals in the population	kg	1-35	Range of average body weight values depending on the breed and sex-age indicators, according to data of [3-5, 11]
Statistical data on milk production	$kg \times day^{-1} \times head^{-1}$	6	Expert opinion based on SSSU data
Fat content of milk	%	6	Expert opinion based on SSSU data
C pregnancy pregnancy coefficient	dimensionless	20	2006 IPCC Guidelines [1]
DE digestible energy	%	± 20	2006 IPCC Guidelines [1]
		Sheep	
Statistical data on livestock	thsd. head	6	Expert opinion based on SSSU data
Cf coefficient	$MJ \times day^{-1} \times kg^{-1}$	20	2006 IPCC Guidelines [1]
Ca coefficient corresponding to animal's feeding situation	$MJ \times day^{-1} \times kg^{-1}$	20	2006 IPCC Guidelines [1]
C coefficient	dimensionless	20	2006 IPCC Guidelines [1]
WG _{lamb} weight gain	kg	1-35	Range of average body weight values depending on the breed and sex-age indicators, according to data of [6-9]
BW i live bodyweight at weaning	kg	4-7	Values depending according to [9]
BW f live bodyweight at 1- year old or at slaughter	kg	10-18	Values depending according to [9]
a, b constants for sheep net energy for growth calcula- tion	dimensionless	20	2006 IPCC Guidelines [1]
Statistical data on milk production	$kg \times day^{-1} \times head^{-1}$	6	Expert opinion based on SSSU data
EV _{milk} net energy required to produce 1 kg of milk	$MJ \times kg^{-1}$	16	Value range according to data of [7]
Statistical data on wool production	$kg \times day^{-1} \times head^{-1}$	6	Expert opinion based on SSSU data
EV wool energy value of each kg of wool produced	$MJ \times kg^{-1}$	± 20	2006 IPCC Guidelines [1]
C pregnancy pregnancy coefficient	dimensionless	27	2006 IPCC Guidelines [1]
DE digestible energy	%	± 20	2006 IPCC Guidelines [1]
Methane conversion factor	rel. u	7-9	2006 IPCC Guidelines [1]

Estimation of GHG emissions for the reporting period carried out with the same method and the same degree of detail. Time series data collected and processed according to the agreed procedures.

The significant reduction in the population of cattle at agricultural enterprises as a result of the collapse of the Soviet Union and the subsequent restructuring of the agricultural sector led to the situation where the key impact on the trend of methane emissions from enteric fermentation is exerted by livestock dynamics in households. Fig. 5.4 illustrates the dependence of the methane emission trend in category 3.A Enteric Fermentation on the cattle population, which is the major factor regulating emissions.

The trend of methane emissions from enteric fermentation of animals consistently demonstrates the downward trend for cattle livestock in the public sector all through the time series.

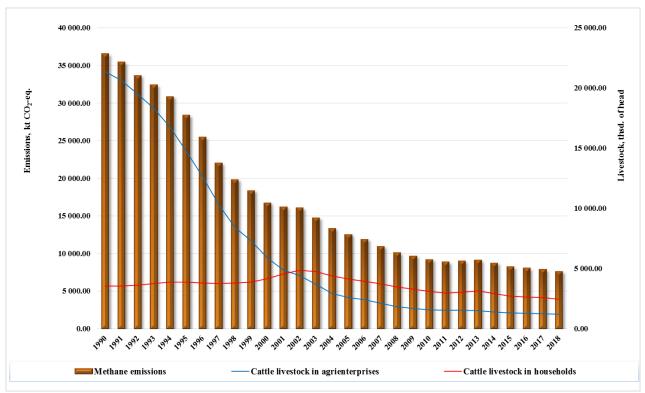


Fig. 5.4 Dependence of methane emission trends in category 3.A Enteric Fermentation on cattle population

5.2.4 Category-specific QA/QC procedures

Quality control and assurance carried out with general and detailed procedures, which include comparisons of activity data with similar FAO data, check of national EF by comparing them with the respective default coefficients [1] and coefficients of countries with similar conditions, etc.

Check of the GE values calculated for each sex-age group of cattle and sheep carried out by means of their conversion into food consumption units in the dry matter ($kg \times day^{-1} \times head^{-1}$) and comparison with live weight values of the corresponding cattle groups. According to results of the estimations conducted, daily dry matter intake for all groups of cattle and sheep is within the range specified in 2006 IPCC Guidelines [1].

Table 5.7. Comparison of methane emission factors from enteric fermentation with emission coefficients of Central and Eastern Europe countries*, $kg \times head^{-1} \times yr^{-1}$

Indicator	Ukraine	Federal Republic of Germany	French Republic	Czech Republic	Slovak Republic	Hungary
Mature dairy cattle	110.06	136.58	122.10	148.05	121.72	136.37
Mature non-dairy cat- tle**	45.58	49.7	53.49	55.25	58.64	55.17
Sheep	8.73	6.36	12.97	8.00	9.38	8.00

^{*}Source: NIR of the Central and Eastern Europe countries, data for 2017, Ukraine – 2018 data.

Methane emission factors from enteric fermentation of mature dairy cattle according to the CRF data compared with the default factor [1]. The difference in the estimations is due to differences in input data and the approaches used to estimate them.

A comparison of enteric fermentation EF for dairy and non-dairy cattle with the similar coefficients of Central and Eastern Europe countries has shown that they are in the same range (Table 5.7).

^{**} For reporting, Ukraine uses option B, therefore the emission factors shown for growing cattle, given its dominant share in the structure of non-dairy cattle herds.

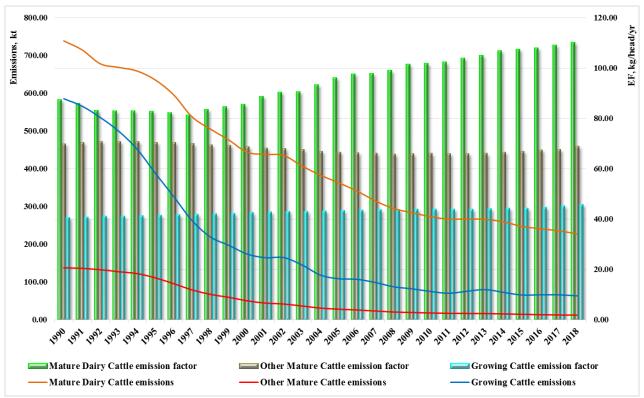


Fig. 5.5. Emission values and methane emission factors dynamics from cattle enteric fermentation

Also, a cross-analysis of factor time series and the totals of emissions from enteric fermentation of cattle was conducted according to CRF data (Fig. 5.5).

Fig. 5.6. The dependence of ewes EF on milk yield in 3.A Enteric Fermentation

The results of comparison of national EF from sheep enteric fermentation according to CRF data with the default factors indicate the discrepancy within 0.6-12.0 % (the average for the reporting period -6 %). Furthermore, the foregoing comparison of the sheep enteric fermentation EF's, with the similar coefficients of Central and Eastern Europe countries has shown that they are in the same range (Table 5.7). The discrepancy of the factors in this case may be explain by the significant

changes in the sheep livestock structure along the time series. In particular, the percentage of ewe and gimmers 1 year old and older population in the total herd structure in all categories of farms increased from 42 % in 1990 up to 67.1 % in 2018 with the proportional decrease in the share of growing sheep, to which the lowest EF apply.

The coefficients of methane emissions from enteric fermentation of ewes and gimmers is directly dependent on the amount of milk production, as shown on Fig. 5.6.

5.2.5 Category-specific recalculations

Methane emissions in 3.A Enteric Fermentation category were recalculated and reported in Annex 3.2.10 (Table A3.2.10.1).

There were several reasons for the methane emissions recalculation in the current category:

- mules and asses livestock clarification for 1993-2002;
- camels livestock clarification for 2015-2017;
- fodder consumption data* specification for 2014-2017.

5.2.6 Category-specific planned improvements

The Institute of Animal Science of the NAASU since 1985 explores different methodologies for calculation GHG from cattle enteric fermentation hold their adaptation with the conditions of Ukraine. We will be able to improve quality of emissions estimation from cattle enteric fermentation after testing the results of their research.

5.3 Manure Management (CRF category **3.B**)

5.3.1. Category description

An important area of stock-raising is manure management, which leads to emissions of various GHG (Table 5.8), namely: methane (CH₄), nitrous oxide (N₂O), and non-methane volatile organic compounds (NMVOCs).

Table 5.8. Review	of category 3	.B Manure	Managem	ent

	Method ap-	Emis-		The key	Emissions, kt		Trend,
Category	plied	sion fac- tor	Gas	category	1990	2018	%
3.B.1 Manure Management	CS, T 1, T 2	CS, D	CH ₄	No	140.04	40.01	-71.43
3.B.2 Manure Management	CS, T 1, T 2	CS, D	N ₂ O	No	10.99	3.36	-69.38
3.B.2 Manure Management	T 1	D	NMVOC	No	198.77	66.64	-66.47

As a result of vital activity of a complex set of microorganisms in anaerobic conditions, methane fermentation takes place (the decomposition process of organic substances to end products, in particular to methane and carbon dioxide). The level of methane emissions from manure depends on the following key factors:

- manure storage conditions (in the liquid or solid form);
- type of climate (cold, temperate, or warm);
- composition of feed rations for animals;
- type of manure (cattle, swine, sheep, poultry manure, etc.);
- dry matter content in manure.

^{*} Fodder consumption used for cattle digestible energy calculation in accordance with expert judgment from the NAASU (Table 5.4).

While agricultural enterprises in Ukraine mainly comply with the practice of manure storage in the liquid and in solid form, in the private sector manure is only stored in the solid form in clamps or remains in pastures. Methane emissions from solid storage are much lower than in the case of liquid storage, since a large part of it decomposed under aerobic conditions. However, such conditions become favorable for formation of another $GHG-N_2O$. This gas can be produced both when there is access of oxygen as a result of oxidative processes of NH_3 nitrification into NO_3 , and in anaerobic conditions due to recovery denitrification processes.

There is a big fluctuation of GHG emissions in 3.B Manure Management category for a reporting period (Annex 3.2.9, Table A3.2.9.2).

Along the 2013-2018 period, a sharp reduction of CH₄ emissions from manure compared to the base 1990 observed. Primarily, this explained by the reduction in the main livestock species and groups due to the economic crisis in Ukraine that followed the collapse of the USSR. Besides, the downward trend of emissions in this category determined by the change in the manure management practice over the time series.

The main source of nitrous oxide emissions is the manure that is stored in the solid form. The significant reduction in N_2O emissions from all MMS during the reporting period was due to the reduced population of animals and decreased amount of nitrogen in the composition of manure stored in the solid form.

Fluctuation key for NMVOC emissions is animal's livestock.

5.3.2 Methodological issues

5.3.2.1 Methane emissions from Manure Management

Research paper "Development of the method to estimate and determine methane and nitrous oxide emissions as a result of manure management of animal and poultry: the final report on completion of the II (second) phase of the research work" [12] was conducted to evaluate national opportunities for estimation of CH₄ emissions from manure management. IPCC methodologies, some national methodological approaches, country specific and default EF's recommended by this paper.

Emissions of methane (Annex 3.2.9, Table A3.2.9.2) from manure estimated according to Equation 10.22 of 2006 IPCC Guidelines [1] and determines by the emission factor and livestock population (Table 5.3; Annex 3.2.1.3, Tables A3.2.1.3.1 and A3.2.1.3.2).

The information base on the population of animals for CH₄ emissions estimation (Annex 3.2.1.2) are statistical materials (Findings of cattle registry, Table No.7; Statistical bulletin: "The status of livestock in Ukraine" [13]; Statistical yearbook: "Animal Production of Ukraine" [10] and analytical study [2]. Cattle, swine, sheep, and poultry livestock at agrienterprises and households specialization by categories performed in accordance with Tables A3.2.1.1.1 and A3.2.1.1.2 of Annex 3.2.1.1.

Cattle, sheep, swine, and poultry methane EF's calculated in accordance with Equation 10.23 [1] and reported in Annex 3.2.8 (Table A3.2.8.4). Default EF from Tables 10.14 - 10.16 [1] used for estimation methane emissions from manure management of other animals and reported in Annex 3.2.8 (Table A3.2.8.3).

The next components used for EF estimation:

- maximum methane producing capacity (Annex 3.2.3, Table A3.2.3.1);
- volatile solid excretion rates (Equation 10.24 [1] for cattle and sheep and Equation 5.1 for swine and poultry; Annex 3.2.3, Table A3.2.3.3);
 - methane conversion factors (Table 10.17 [1]; Table 5.10);
 - manure management system usage (Annex 3.2.3 Table A3.2.3.2).

<u>Maximum methane-producing capacity of the manure</u>. Expert judgment was a source base for values of maximum methane-producing capacity for manure produced by cattle, sheep, swine, and poultry livestock (B_O). Its values reported in Table A3.2.3.1 of Annex 3.2.3.

<u>Volatile solid excretion rate</u>. The amount of volatile dry substances, which emitted from the cattle and sheep manure, calculated according to Equation 10.24 [1]. For swine and poultry, this factor obtained with Equation 5.1.

$$VS = MDM_{ex} \times (1 - ASH), \tag{5.1}$$

where:

VS – volatile solid excretion per day on a dry-organic matter basis, kg VS day⁻¹ (Annex 3.2.3, Table A3.2.3.3);

MDMex – amount of manure excreted by animals in dry matter, kg of dry mater day⁻¹ (Annex 3.2.3, Table A3.2.3.1);

ASH – the ash content (inorganic component) of manure calculated as a fraction of the dry matter feed intake (Annex 3.2.3, Table A3.2.3.1).

Estimation of cattle, sheep, swine and poultry VS required definition of gross energy, digestible energy, urinary energy, ash content and amount of manure excreted by animals. Its sources reported in Table 5.9.

Table 5.9. Characteristics of AD sources for VS estimation

AD name	Symbol	Source	Note			
		Cattle				
Gross energy intake	GE	3.A Enteric Fermentation category (Chapter 5.2.2.1)	Table 5.4 Table A3.2.2.1 (Annex 3.2.2)			
Digestible energy	DE	SSSU; expert judgment from the NAASU (№13700/10-16 on 13 Dec 2016)	Table 5.4 Table A3.2.2.7 (Annex 3.2.2)			
Urinary energy expressed as fraction of GE	UE × GE	2006 IPCC Guidelines [1]	0.04 (Equation 10.24 description)			
ASH content of manure	ASH	Expert judgment	Annex 3.2.3 Table A3.2.3.1			
		Sheep				
Gross energy intake	GE	3.A Enteric Fermentation category (Chapter 5.2.2.2)	Table 5.5 Table A3.2.2.8 (Annex 3.2.2)			
Digestible energy	DE	Expert judgment from the NAASU (№20009/10-17 on 04 Aug 2017)	67.5 %			
Urinary energy expressed as fraction of GE	UE × GE	2006 IPCC Guidelines [1]	0.02 (Equation 10.24 description)			
ASH content of manure	ASH	Expert judgment *	Annex 3.2.3 Table A3.2.3.1			
		Swine				
ASH content of manure	ASH	Expert judgment	Annex 3.2.3 Table A3.2.3.1			
Amount of manure ex- creted by animals in dry matter **	MDMex	Expert judgment from the NAASU (№30432/10-17 on 28 Nov 2017) ***	Annex 3.2.3 Table A3.2.3.1			
Poultry						
ASH content of manure	ASH	Expert judgment	Annex 3.2.3 Table A3.2.3.1			
Amount of manure excreted by animals in dry matter	MDMex	Expert judgment from the NAASU (№30432/10-17 on 28 Nov 2017) ***	Annex 3.2.3 Table A3.2.3.1			

^{* –} to determine the proportion of ASH in sheep manure, data on the content of organic substances in sheep manure (28 %) and its moisture content (64.6 %) resulting from the conducted studies [19-20] were used;

^{** –} for swine at households, in accordance with the standards [14], the amount of manure excreted in dry matter is 30 % more than for agricultural enterprises, due to the peculiarities of feeding (diets of swine at agricultural enterprises dominated by concentrated fodders, whereas in households – multi-component fodders);

^{*** –} the source of swine and poultry MDMex values is a judgment from the NAASU (№30432/10-17 on 28 Nov 2017), where they show an algorithm of its calculation according to "Departmental standards of technological design" [14-16].

<u>Methane conversion factor</u>. Default values of methane conversion factor (MCF) for each manure management system (MMS) used from the Table 10.17 [1]. MCF values for cattle, swine, sheep and poultry, that determined by current manure management systems, reported in Table 5.10.

Table 5.10. The kinds of manure management systems* that used in various types of live-stock owners and their methane conversion factor values**

Animal species	MMS type	MCF value, %
Cattle at agrienterprises	Liquid system with natural crust cover	10
	Solid storage	2
	Pasture/Range/Paddock***	1
	Composting	0.5
Cattle at households	Solid storage	2
	Pasture/Range/Paddock***	1
Swine at agrienterprises	Uncovered anaerobic lagoon	66
	Liquid system with natural crust cover	10
	Solid storage	2
	Composting	0.5
	Aerobic treatment	0
Swine at households	Solid storage	2
Sheep (at all types of livestock owners)	Solid storage	2
	Pasture/Range/Paddock***	1
Poultry at agrienterprises	Poultry manure without litter	1.5
	Composting	0.5
Poultry at households	Poultry manure without litter	1.5
	Pasture/Range/Paddock***	1
Buffaloes	Solid storage	
(at all types of livestock owners)	Pasture/Range/Paddock***	
Horses (at all types of livestock owners)	Solid storage	
	Pasture/Range/Paddock***	
Goats (at all types of livestock owners)	Solid storage	
	Pasture/Range/Paddock***	
Mules and Asses (at all types of livestock owners)	Solid storage	
	Pit storage below animal confinements	
Camels	Solid storage	
(at all types of livestock owners)	Pit storage below animal confinements	
	Solid storage	
Rabbits	Solid storage	

^{* –} the manure management systems characteristic according to 2006 IPCC Guidelines [1];

<u>Manure management system</u>. The main institution that collected all kinds of agricultural data is SSSU. But SSSU do not collect MMS data (fraction of livestock category manure handled using manure management system). To estimate these data the expert judgment from National University of Life and Environmental Sciences used as an alternative source for the time series MMS values estimation (Annex 3.2.3, Table A3.2.3.2).

There is a necessity to verify this expert judgment, because ERT has some important comments to it (ARR 2019, A 11-A 13 on p. 16; ARR 2017, A 10 on p. 19, A 23 on p. 47 and other). To solve this issue, MEEP has an offer to include to their activity plan and conduct a relevant research study. However, due to the difficult political and economic situation in the country, the chance of this

^{** –} in this table reported only cattle, swine, sheep and poultry MCF values;

^{*** -} emissions from manure in Pasture/Range/Paddock are reported in 3.D Agricultural Soils.

study conducting and its timing is unknown. That is why for current MMS estimation this expert judgment used as main source with only one correction*.

* According to recommendation from «Potential Problems formulated in the course of the review of the 2015 and 2016 annual submissions of Ukraine and of the report to facilitate the calculation of the assigned amount for the second commitment period (10 September 2016)» MMS types for cattle manure managing were changed (MMS "Uncovered anaerobic lagoon", that recommended by expert judgment, was changed to "Liquid/Slurry" in accordance with official responses from several largest cattle enterprises).

This judgment based on departmental standards of technological design of livestock MMS operating on the farms and complexes [9, 11, 14-16] and used some indirect SSSU data.

Due to lack of data, the cattle and swine manure distribution by systems estimated in accordance with the following sources:

- SSSU data of the agricultural animals livestock (Findings of cattle registry, Table No.7; Statistical bulletin: "The status of livestock in Ukraine" [13]);
- SSSU data of the statistical collection on the grouping of enterprises based on the available cattle and swine livestock (Statistical yearbook: "Animal Production of Ukraine" [10]);
 - Statistical form "NO.1-Waste";
- Departmental standards of technological design of livestock MMS operating on the farms and complexes [11, 14, 16].

A departmental standards of technological design [16] determines a cattle and swine manure management systems planning at agrienterprises. The introduction of livestock enterprises is not allowed without the simultaneous introduction of MMS, which must conform to the manure characteristic and amount of its allocation. The amount and properties of manure depend on the type, age, diet and method of animals keeping and litter using.

According to standards [16], systems for manure managing have considered with the next marks: physical composition, removal method, storing method and duration, using method.

The manure with litter, manure without litter and slurry manure depends according to the method animals keeping.

Manure removal is carried by mechanical (conveyors, scraper installations, bulldozers) and hydraulic (uninterrupted gravity-flowing and periodic gravity-flowing systems) methods. Their using depends on period of manure storage, and animals keeping and feeding.

The storage period of all types of manure depends on the structure, humidity and technology of its storage and is 4–8 months for cattle manure and 8–12 months for swine manure.

Cattle and swine manure mostly used as natural fertilizer, and for biofuels production.

The choice of cattle and swine manure managing system is determined by the specific feasibility study and finally is a typical indicator of farm specialization and capacity.

Cattle and swine enterprises have several directions: dairy (only for cattle), beef, pregnancy/maternity, breeding etc. However, it is typically, that agricultural enterprises have a combined specialization, where these directions are combined. As a result, several manure managing systems can simultaneously use in a particular farm. But, only one specialization is a basic direction and defines the type of farm main manure managing system (other types of system can be ignored).

A farm capacity, except their specialization, is another criterion for MMS determination. Feasibility study determines [11, 14, 16] operating conditions of farms with different capacity (Table 5.11). SSSU provides a specific classification of cattle and swine enterprises (Annex 3.2.1.4, Table A3.2.1.4.1) in accordance with their capacity (they are grouped to simplify the report).

A judgment analysis states that manure storage practices at agricultural enterprises is significantly differ from manure storage practices at households (Table 5.10). Thus, the agricultural enterprises mainly comply with the practice of manure storage in the liquid and in solid forms, and in the private sector manure is only stored in the solid form in clamps or remains in pastures. In this regard, the data for these categories of farms estimated separately.

Table 5.11. Cattle and swine manure managing systems harmonization with the farm capac-

ity [16]

Farm capacity	Manure removal system [16]	Manure managing system [1]	Note	
Cattle at agrienterprises				
No more than 999 heads	Mechanical	Solid storage	Stable and stable-pasture types of cattle keeping with application of litter; outdoor keeping; calves keeping; maternity	
More than 999 heads	Hydraulic	Liquid system	Cattle keeping without litter; silage, root crops, bard, pulp and green mass used for feeding	
Swine at agrienterprises				
No more than 4999 heads	Mechanical	Solid storage	Swine keeping with litter; keeping technology provides, that feeding waste (mainly stems and tops) mixed with manure; maternity	
5000-5999 heads	Hydraulic	Liquid system	Liquid and dry compound feeds used for feeding (without silage and green mass); keeping technology provides, that any feed- ing waste don't mixed with manure	
More than 5999 heads	Hydraulic	Uncovered anaero- bic lagoon / Aero- bic treatment	Liquid and dry compound feeds used for feeding (without silage and green mass); keeping technology provides, that any feeding waste don't mixed with manure; accumulates for biofuel production	

A judgment analysis states that manure storage practices at agricultural enterprises is significantly differ from manure storage practices at households (Table 5.10). Thus, the agricultural enterprises mainly comply with the practice of manure storage in the liquid and in solid forms, and in the private sector manure is only stored in the solid form in clamps or remains in pastures. In this regard, the data for these categories of farms estimated separately.

Solid and liquid systems, composting, and pasture/range/paddock are typical for cattle manure managing at agrienterprises. Manure stored in unconfined piles or stacks for a several months processed in solid systems. That manure fraction, which stored as excreted or with some minimal addition of water in either tanks or earthen ponds without mixing, is processed in liquid systems. According to expert opinion (No25334/10-16 on 11 Oct 2016), the period of manure storage in liquid systems is mainly up to 6 months.

Swine manure at agrienterprises managed in solid and liquid systems, by composting and aerobic treatment or uncovered anaerobic lagoons. There are typical manure specification for solid and liquid systems. Liquid manure with either forced or natural aeration or without aeration in lagoons properly stored in aerobic (aerobic treatment) and anaerobic (uncovered anaerobic lagoons) lagoons.

It is country specific that solid systems and pasture/range/paddock used for cattle and only solid systems – for swine manure managing at households.

At agricultural enterprises, poultry manure usually removed mechanically by a belt conveyor or a delta transporter in case the poultry kept in coop, and with the help of a bulldozer in case of floor keeping, and it is stored in piles or manure pits in the solid form.

For other types of animals (sheep, buffaloes, horses, goats, rabbits, fur-bearing animals, camels, mules and asses), there is also the common practice of manure management in the solid storage, pit storage below animal confinements, and pasture/range/paddock.

Manure in households are kept exclusively in clamps with litter (straw, sawdust, peat), or remains in paddocks. After several months of storage, the rotten manure brought to the field [17]. Therefore, the livestock and poultry manure rate by the MMS in households estimated according to expert estimation.

Duration of the grazing period depends on the regions where farm animals kept, while the average for Ukraine is 165 days [18]. According to [9, 11, 14-16], approximately 50 % of the annual amount of cattle and poultry manure remain on pasture, range or paddock. The same value for the amount of manure on pasture, range or paddock used in the calculations for goats, horses, and buffaloes (expert judgment from National University of Life and Environmental Sciences). As a fact that

the majority of sheep, camels, mules and asses kept in Steppe, which have a high enough average annual temperature, the calculations reflect the fact that 74 % of the annual amount of sheep manure and 92 % of camels, mules and asses manure remain on pasture, range or paddock (the IPCC default data on distribution of manure of these animals by systems are representative for the Ukraine conditions).

5.3.2.2 Nitrous oxide and NMVOC emissions from Manure Management

5.3.2.2.1 Nitrous oxide emissions from Manure Management

Direct and indirect emissions estimated for a full N_2O evaluation from manure management systems (Annex 3.2.9, Table A3.2.9.2).

Research paper "Development of the method to estimate and determine methane and nitrous oxide emissions as a result of manure management of animal and poultry: the final report on completion of the II (second) phase of the research work" [12] was conducted to evaluate national opportunities for estimation of N_2O emissions from manure management. This paper recommends the IPCC methodologies, some national methodological approaches, country specific and default EF.

Direct N₂O emissions from manure management systems

Direct N_2O emissions from MMS estimated according to Equation 10.25 [1]. Thus, the estimate of nitrous oxide emissions in this category requires determination of the following indicators: livestock of cattle and poultry; amount of Nex in the composition of animal manure; shares of animal manure distribution by MMS; emission factors for each MMS.

Default [1] nitrous oxide EF from MMS reported in Table A3.2.8.5 (Annex 3.2.8).

The information base on the population of animals for N₂O emissions estimation (Annex 3.2.1.2 and Tables A3.2.1.3.1-A3.2.1.3.2 of Annex 3.2.1.3) are statistical materials (Findings of cattle registry, Table No.7; Statistical bulletin: "The status of livestock in Ukraine" [13]; Statistical yearbook: "Animal Production of Ukraine" [10] and analytical study [2]. Cattle, swine, sheep, and poultry livestock at agrienterprises and households specialization by categories performed in accordance with Tables A3.2.1.1.1 and A3.2.1.1.2 of Annex 3.2.1.1.

The same values of MMS for each animal group (Annex 3.2.3, Table A3.2.3.2) reported in Chapter 5.3.2.1 Methane emissions from Manure Management.

Based on the data available in Ukraine, the amount of Nex (Annex 3.2.3, Table A3.2.3.4) in manure composition of cattle sex-age groups was calculated in accordance with Equations 10.31-10.33. Cattle GE values (Annex 3.2.2, Table A3.2.2.1) for this estimation used from 3.A Enteric Fermentation (see Chapter 5.2.2.1). Crude protein fraction in diet of each cattle sex-age group calculated according to the judgment from the NAASU (№13700/10-16 on 13 Dec 2016) and reported in Table A3.2.3.7 (Annex 3.2.3). Database of milk production is SSSU source "Table No.15: Milk production", and for protein content in milk − expert judgment, which reported in Table A3.2.2.6 of Annex 3.2.2. Typical values of live weight for each sex-age cattle groups reported in Annex 3.2.2 (Tables A3.2.2.3 and A3.2.2.4). These values used for "Mature Dairy Cattle", "Other Mature Cattle" and "Growing Cattle" live weight calculation (Annex 3.2.2, Table A3.2.2.2).

Fodder consumption structure (Annex 3.2.3, Table A3.2.3.6) at all livestock owners and ratio of cattle sex-age groups at agrienterprises and households are the key drivers for Nex estimation. Agrienterprises and households have a fundamental difference in the cattle diet structure. The share of concentrated and succulent fodders at agrienterprises is over 60 % (more than 30 % of each type of fodders). Other fodders share mainly not more than 10 %. Another situation is typical for households, where the share of concentrated fodders -9 %, succulent fodders -12 %, coarse fodders -30 % and other fodders -49 %.

Sheep, swine and poultry Nex estimation based on the amount of manure excreted in dry matter and the proportion of nitrogen in it. These values calculated in accordance with the Equation 5.2 and reported in Annex 3.2.3 (Annex 3.2.3, Table A3.2.3.5):

$$N_{ex} = MDM_{ex} \times fn \times 365, \tag{5.2}$$

where:

Nex – annual average N excretion per head, kg N animal⁻¹ yr⁻¹;

MDMex – amount of manure excreted by animals in dry matter, kg of dry mater day⁻¹ (Annex 3.2.3, Table A3.2.3.1);

fn – fraction of nitrogen in manure dry matter from species/group of animals, dimensionless (Annex 3.2.3, Table A3.2.3.5).

The values of the amount of manure excreted in dry matter for swine and poultry were the same as those that used in Chapter 5.3.2.1 Methane emissions from Manure Management (also, see Table 5.9). Their source is a judgment from the NAASU (№30432/10-17 on 28 Nov 2017), where they show an algorithm of its calculation according to "Departmental standards of technological design" [14-16]. The source of sheep MDMex values (Annex 3.2.3, Table A3.2.3.1) is a NAASU judgment (№13700/10-16 on 13 Dec 2016).

The values of nitrogen fractions in dry matter (Annex 3.2.3, Table A3.2.3.5) of sheep, swine and poultry manure are standard [9, 14-16, 21].

For goats (Nex = 17.987), horses (Nex = 41.282), mules (Nex = 14.235), camels (Nex = 30.098) and buffaloes (Nex = 44.384) values of annual average N excretion per head estimated in accordance with Tables 10.19, 10A-6, 10A-9 and Equation 10.30 [1]. Nex for rabbits (Nex = 8.1) takes from Table 10.19 [1].

National statistics do not provide data to determine the population of fur-bearing species before 2004 (only total number of fur-bearing animals for 1990-2003, and fur-bearing livestock by species from 2004). In accordance with the ERT's recommendation (ARR 2015, Table 5, A.12), the weighted average Nex was calculated for fur-bearing animals from 2004. Furthermore, it is possible to calculate only average Nex for 1990-2003. There was a big difference between Nex values for 1990-2003 and 2004-present. That is why Nex rates for 1990-2003 have been revised with consideration with ERT recommendation (ARR 2016, Table 3, A.9) and taken as 4.672625 kg × head ⁻¹ × yr ⁻¹. Nex values for 1990-present period reported in Annex 3.2.3 (Annex 3.2.3, Table A3.2.3.4).

The amount N excretion determination per each MMS was performed using animal livestock values, the amount of Nex per head ×yr⁻¹ and the proportion of manure processed in the corresponding system. Nex for cattle, sheep, swine and poultry was calculated on a more disaggregated level – separately for each gender and age groups of animals in the various farms categories. This approach takes into account the characteristics of different manure management sex and age groups of animals in the agricultural enterprises and households (Table 5.10), the corresponding average annual number of livestock and Nex (Annex 3.2.3, Tables A3.2.3.4-A3.2.3.5), and MMS typical share of processed manure (Annex 3.2.3, Table A3.2.3.2).

Indirect N_2O emissions from manure management systems

Indirect N_2O emissions includes the amount of emissions that have occurred as a result of GHG leaching and volatilization from MMS. There is no national factor of N losses due to runoff and leaching during solid and liquid storage. That is why, the indirect N_2O emissions estimated from MMS volatilization only.

Manure management N_2O indirect emissions estimated according to Equation 10.27, where EF_4 – default value, and $N_{Volatilization-MMS}$ calculations based on Equation 10.26 [1].

Default value of fraction of managed manure nitrogen for livestock category that volatilizes as NH_3 and NO_X in the manure management system used for $N_{Volatilization-MMS}$ estimation. SSSU sources used for animal's livestock estimation. This data reported in Annex 3.2.1.2 and Tables A3.2.1.3.1-A3.2.1.3.2 of Annex 3.2.1.3. Annual average N excretion values used from previous section "Direct N_2O emissions from manure management systems" of current chapter. The same values of MMS for each animal group (Annex 3.2.3, Table A3.2.3.2) applied in Chapter 5.3.2.1 Methane emissions from Manure Management.

5.3.2.2.2 NMVOC emissions from Manure Management

To determine emissions of non-methane volatile organic compounds (NMVOC) from manure management systems, Tier 1 method was used [22]. In accordance with the methodological guidelines, estimation of NMVOC emissions from manure carried out according to Equation 5.3 [22]:

$$E_{pollutant_animal} = AAP_{animal} \times EF_{pollutant_animal}$$
(5.3)

where:

 $E_{pollutant_animal}$ – pollutant emissions for each livestock category, tons yr⁻¹ (Annex 3.2.9, Table A3.2.9.2);

 AAP_{animal} – number of animals of a particular category that are present, on average, within the year;

*EF*_{pollutant_animal} – emission factor for each livestock species/category.

The information base on the population of animals for NMVOC emissions estimation (Annex 3.2.1.2 and Tables A3.2.1.3.1-A3.2.1.3.2 of Annex 3.2.1.3) are statistical materials (Findings of cattle registry, Table No.7; Statistical bulletin: "The status of livestock in Ukraine" [13]; Statistical yearbook: "Animal Production of Ukraine" [10] and analytical study [2]. Cattle, swine, sheep, and poultry livestock at agrienterprises and households specialization by categories performed in accordance with Tables A3.2.1.1.1 and A3.2.1.1.2 of Annex 3.2.1.1.

	Table 5.12.	Tier 1	EF for	NMVOC	by default
--	-------------	--------	--------	--------------	------------

T	Tier 1 default EF for NMVOC, kg AAP-1. a-1				
Livestock	with silage feeding	without silage feeding			
Dairy cattle	17.937	8.047			
Other cattle ¹	8.902	3.602			
Fattening swine ²	-	0.551			
Sows	-	1.704			
Sheep	0.279	0.169			
Goats	0.624	0.542			
Horses	7.781	4.275			
Mules and asses	3.018	1.470			
Laying hens (laying hens and parents)	-	0.165			
Broiler chickens (broilers and parents)	-	0.108			
Other poultry (ducks, geese, turkeys) ³	-	0.489			
Fur-bearing animals	-	1.941			
Rabbits	-	0.059			
Reindeer ⁴	-	0.045			
Camels	-	0.271			
Buffaloes	9.247	4.253			

¹ Includes young cattle, beef cattle and suckling cows

Tier 1 standardized emission factors for NMVOC used by default [34] and reported in Table 5.12.

² Includes piglets from 8 kg to slaughtering

³ Based on data for turkeys

⁴ Assume 100% grazing

5.3.3 Uncertainty and time-series consistency

Uncertainty assessment calculated according to Tier 1 method [1].

Uncertainty of the inventory results in this category is determined by: the population of animals; the amount of volatile solid substances and nitrogen the composition of manure; the maximum methane producing potential; manure distribution by manure management systems; methane conversion factors; nitrous oxide emission factors; emission factors for NMVOCs.

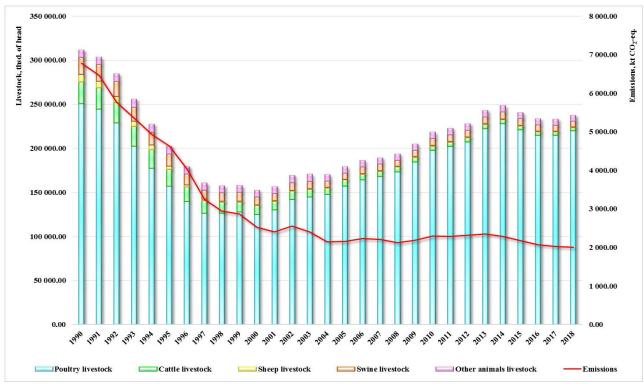


Fig. 5.7. Emission trends in category 3.B Manure Management, and those of cattle, swine, poultry and other animals populations

The uncertainty of statistical data on the population of cattle and poultry evaluated at the level of 6 %. According to the expert judgment, the accuracy of standards of manure and litter excretion in the dry matter, of nitrogen fractions and ASH in it, as well as of data on manure distribution by species and sex-age groups of animals in the public and private sectors corresponds to the statistic uncertainty. Default uncertainty of methane emissions factors for goats, horses, camels, buffaloes, asses and mules, as well as rabbits and fur-bearing animals is 30 %, [1].

Table 5.13. The uncertainty of data for calculation of national factors of CH_4 emission from Manure Management, %

Indicator	Measurement unit	Uncertainty	Source
Excretion of manure and litter	kg/head per day	5	State regulatory data
The proportion of ASH in manure and litter	rel. u	5	State regulatory data
The proportion of volatile solid substances and nitrogen in sheep manure	rel. u	5	Expert judgment
The maximum potential of methane emission from manure and litter	m ³ /kg of VS	15	2006 IPCC Guidelines
Methane conversion factor for uncovered anaerobic lagoons	rel. u	56	2006 IPCC Guidelines
Methane conversion factor for solid storage	rel. u	50	2006 IPCC Guidelines
Methane conversion factor for liquid system with natural crust cover	rel. u	42	2006 IPCC Guidelines
Methane conversion factor for pas- ture/range/paddock	rel. u	50	2006 IPCC Guidelines
Distribution of manure and litter by systems	rel. u	5	Expert judgment

The accuracy of national data on the amount of emissions of volatile solid substances and nitrogen in the composition of manure/litter of cattle, pigs, sheep, and poultry calculated based on the standards corresponds to the mark of 7 %.

Table 5.13 shows uncertainties of the input data for estimating methane emission factors from manure and their sources.

The accuracy of default nitrous oxide emission factors based on [1] and constituted 50.0 %, and the estimated uncertainty of methane emission factors from manure was 12.5 %.

Estimation of methane and nitrous oxide emissions in category 3.B Manure Management in the reporting period was performed based on the same method, with the same level of detail. For activity data collection and processing for the entire time series, the SSSU applied harmonized methodologies. Fig. 5.7 shows diagrams of methane and nitrous oxide emissions from manure management, as well as that of the main types of livestock farm animals during the reporting period.

Against the background of the catastrophic decline in cattle population in the reporting period (approximately 5 times), a growth of poultry and swine population observed in recent years. Such divergent population trends are largely due to higher competitiveness of swine and poultry meat products in the market.

5.3.4 Category-specific QA/QC procedures

The general and detailed quality control and assurance procedures were applied to estimation of emissions in category 3.B Manure Management. In particular, according to the recommendations [1], a cross-check of the national values of volatile solids and nitrogen excreted during the reporting period was held by means of their comparison with the respective default values in 2006 IPCC Guidelines [1].

As part of the quality control procedures, national methane emission from manure factors were compared with the factors of Comparison of methane emission factors from enteric fermentation with emission coefficients of Central and Eastern Europe countries (Table 5.14). The main reasons of the EF's differences are the type of manure management systems and their range.

Table 5.14. Comparison of emission factors in 3.B Manure Management category*, kg/head

per year

oci year							
Emission factor	Ukraine	Federal Republic of Germany	French Republic	Republic of Austria	Czech Republic	Slovak Republic	Hungary
		3.B Manure Man	agement (meth	hane emissions)			
Mature dairy cattle	3.98	21.05	10.32	17.09	22.55	7.79	30.08
Other mature cattle **	1.28	7.49	3.11	6.16	9.34	1.76	10.23
Sheep	0.24	0.28	0.32	0.31	0.19	0.27	0.29
Swine	2.65	4.14	4.01	1.14	6.00	4.56	3.66
Other livestock	0.06	0.04	0.03	0.05	0.10	0.03	0.03
3.B Manure Management (direct nitrous oxide emissions)							
Mature dairy cattle	0.28	0.60	0.41	0.65	1.29	0.72	1.24
Other mature cattle **	0.12	0.34	0.18	0.38	0.91	0.25	0.53
Sheep	0.02	0.03	0.02	0.07	0.24	0.09	0.07
Swine	0.09	0.07	0.005	0.05	0.12	0.10	0.06
Other livestock	0.002	0.002	0.001	0.004	0.01	0.002	0.004
3.B Manure Management (indirect nitrous oxide emissions)							
Atmospheric deposition	0.02	0.02	0.02	0.02	0.02	0.02	0.02
Nitrogen leaching and run-off	NE	NO	0.01	NO	NE	NA	0.01

^{*} Source: NIR of the countries, data for 2017, Ukraine – 2018 data.

^{**} For reporting, Ukraine uses option B, therefore the emission factors reported for growing cattle, given its dominant share in the structure of non-dairy cattle herds.

The key factor determining trends of emissions from manure management of the main types of farm animals – cattle and swine – is the degree of utilization of liquid and anaerobic systems at agricultural enterprises. Moreover, a correlation analysis was conducted for national methane emission factors from manure of cattle and swine and the shares of these animals' manure by liquid and anaerobic systems for the reporting period (Fig. 5.8 and 5.9).

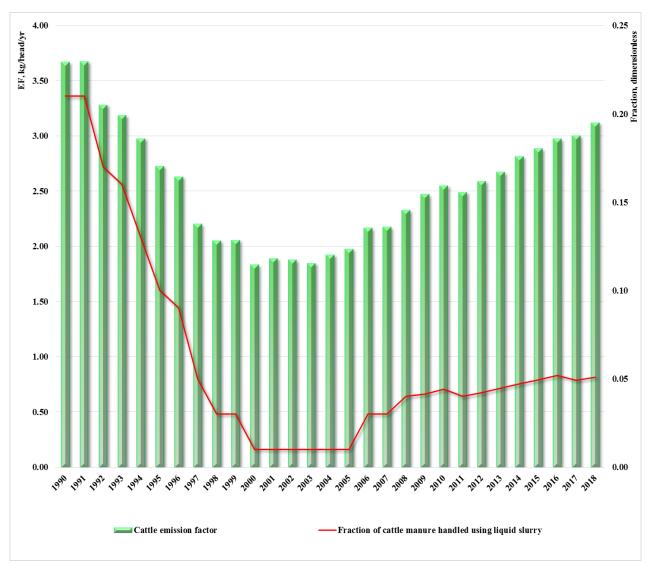


Fig. 5.8. Comparison of cattle emission factors and the shares of manure in MMS

Based on its results, it can be note that the trends of the emission factors and manure shares managed in anaerobic lagoons are closely related.

It should be noted that since 2005 (Fig. 5.8), there is a certain growth observed in the share of cattle manure in anaerobic systems in the manure management system distribution structure in the public sector (except for the last year). This pattern is due to the trend emerging in the recent years of expansion and construction of new large specialized dairy farms. Moreover, since 2006 there has been a clear trend of an increase in the share of swine manure processed in the liquid form, which is associated with the leading rate of swine population increase at large complexes with the capacity of 5,000 heads and more and manure storage systems in lagoons and manure pits in the slurry form, against the background of the total population of swine at agrienterprises.

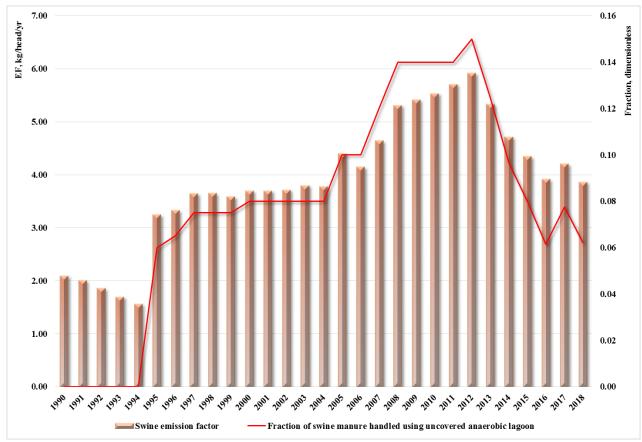


Fig. 5.9. Comparison of swine emission factors and the shares of manure in MMS

As part of quality assurance procedures, an independent expert review of the approaches and source data used to calculate emissions in category 3.B Manure Management performed.

5.3.5 Category-specific recalculations

Time series GHG emissions in 3.B Manure Management category recalculated and reported in Annex 3.2.10 (Table A3.2.10.2).

There were several reasons for the recalculations in the current category:

- recalculations in the 3.A Enteric Fermentation category;
- swine MDMex revising according to judgment from the NAASU (№30432/10-17 on 28 Nov 2017).

5.3.6 Category-specific planned improvements

MEEP has an offer to include to their activity plan and conduct research study for cattle and swine MMS data estimation ("Scientific researches on environmental impact assessment of the cattle and swine manure distribution and the various systems for its managing"). Planned results of this study: MMS determination in accordance with 2006 IPCC Guidelines; quantitative indicators of cattle and swine manure (tones) at agrienterprises and households, and its distribution (%).

5.4 Rice Cultivation (CRF category 3.C)

5.4.1. Category description

Rice cultivation is one of minor methane sources in Ukraine (Annex 3.2.9, Table A3.2.9.3). This fact explains the negligible GHG in category 3C Rice Cultivation (Table 5.15).

The annual amount of methane released from rice cultivation areas [1] depends on factors such as the area of rice fields, rice variety, the number of harvests, the duration of the culture cultivation, the water regime before and during the period of cultivation, the fertilization system, soil type, temperature. The key factor that affects the emissions volume is the area of rice fields (Annex 3.2.4, Table A3.2.4.1).

Table 5.15 Review of category 3C Rice Cultivation

Category	Method ap-	Emission	Gas	The key	Emission	ns, kt	Trend,
Category	plied	factor	Gas	category	1990	2018	%
Rice Cultivation	T1	D	CH ₄	No	8.66	3.74	-56.76

In Ukraine, areas of rice fields are negligible. They were the lowest in 2014 and amounted to 10,200 hectares, and the largest – in 2011, 29,600 ha. In general, Ukraine has reducing rice cultivation areas. Changes in the rice harvesting areas directly cause the dynamics of methane emissions in the entire time series (Fig. 5.10) and determines the trend.

A sharp reduction in harvested rice acreage in 2014-2018 was due to absence of activity in the Autonomous Republic of Crimea.

5.4.2 Methodological issues

Methane emissions from rice cultivation were calculated according to Tier 1 of the 2006 IPCC Guidelines [1] based on SSSU data (Annex 3.2.4, Table A3.2.4.1) on rice harvested area and the amount of organic fertilizers brought into the soil for this crop, as CH₄ emissions from rice cultivation are not the key category.

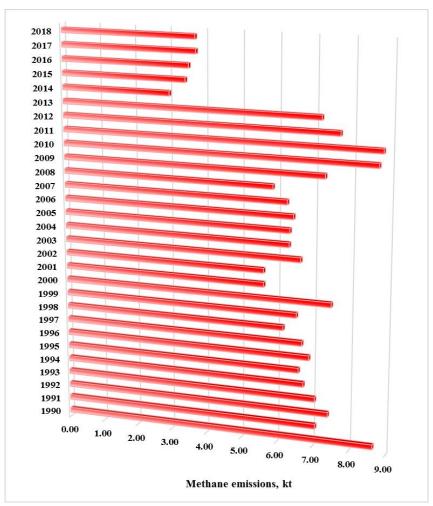


Fig. 5.10. Changes in methane emissions from rice cultivation

Based on information obtained from rice farms, rice fields in Ukraine characterized as constantly flooded ones. The commonly used types are those where the vegetation period is 120 days. Rice harvested once a year. Soil types used for rice cultivation – alkaline and brownstone alkaline.

Compost used as an organic fertilizer for rice (fermented fertilizers). Data on application of organic fertilizers for rice in 1991-1992 and 1994-1995 are not available from statistics, so the interpolation method was apply (Annex 3.2.4, Table A3.2.4.1).

A basic Equation 5.1 [1] used for calculations, and an adjusted daily emission factor (Annex 3.2.8, Table 3.2.8.6) was determined based on Equation 5.2 [1] of the 2006 IPCC Guidelines.

As a start point for calculations of the adjusted daily emission factor, the basic emission factor for fields without flooding for less than 180 days prior to rice cultivation and those continuously flooded during the rice cultivation period without organic fertilizers (EF_c) used. Its default value is $1.30 \, \text{kg}$ of CH₄ ha⁻¹ per day (with the error range of 0.80 - 2.20, Table 5.11 of 2006 IPCC Guidelines) [1].

Several factors used for calculations:

- scaling factor to account for differences in water regimes during the cultivation period (SF_w) used as default data from Table 5.12 [1];
- scaling factor to account for differences in the water regime before the season, before the cultivation period (SF_p) from Table 5.13 [1];
- scaling factor both for the type and amount of organic fertilizers applied (SF_o) that was calculated according to Equation 5.3. (Table 5.14) [1].

The input data, which used for methane emissions estimation from rice cultivation, reported in Table 5.16.

Tuble 3:10 Helling data for est							
Indicator	1990	1995	2000	2005	2010	2015	2018
The baseline emission factor for continuously flooded fields without organic fertilizers (EF _c), kg of CH ₄ ha ⁻¹ per day	1.3	1.3	1.3	1.3	1.3	1.3	1.3
The scaling factor to account for differences in water regime during the cultivation period (SF _w)	1	1	1	1	1	1	1
The scaling factor to account for the differences in water regime in the pre-season before the cultivation period (SF _p)	1.9	1.9	1.9	1.9	1.9	1.9	1.9
The scaling factor should vary for both type and amount of organic amendment applied (SF _o)	1.0544	1.0132	1.0021	1.0000	1.0009	1.0000	1.0000
The adjusted daily emission factor for a particular harvested area (EF _i), kg of CH ₄ ha ⁻¹ per day	2.60	2.50	2.48	2.47	2.47	2.47	2.47
The cultivation period of rice (t), days	120	120	120	120	120	120	120

Table 5.16 Activity data for estimation of methane emissions from rice cultivation

5.4.3 Uncertainty and time-series consistency

Uncertainty estimation performed on base of Tier 1 method according to the methodology set out in Section 5.5.4, Volume 4 of the 2006 IPCC Guidelines [1].

The sources of uncertainty related to methane emissions from rice cultivation are various indicators (Table 5.17).

Table 5.17. Uncertainties in category 3.C Rice Cultivation

Indicator	Uncertainty, %
The scaling factor should vary for both type and amount of organic amendment applied (SF_o)	35.0
The baseline emission factor for continuously flooded fields without organic fertilizers (EF_c)	47.0
The scaling factor to account for differences in water regime during the cultivation period (SF_w)	23.0
The scaling factor to account for the differences in water regime in the pre-season before the cultivation period (SF_p)	14.0
The adjusted daily emission factor for a particular harvested area (EF_i)	15.14
The cultivation period of rice (t)	5
The annual rice harvested area (A)	6

To calculate the uncertainty of the conversion factor for compost, the basic emission factor for continuously flooded fields, the scaling factor to account for water regimes differences during the period of rice cultivation, and the scaling factor to account for differences in water regimes before the season, before the cultivation period, the corresponding error ranges used from Tables 5.11-5.14 of the 2006 IPCC Guidelines [1].

Over the entire reporting period, the same approach to collection of the basic information applied, and calculation of GHG emissions held on based of Tier 1 procedure from the 2006 IPCC Guidelines [1], which allowed forming consistent time series.

5.4.4 Category-specific QA/QC procedures

The general quality control and assurance procedures were applied to estimation of methane emissions as a result of rice cultivation.

Comparison of data on rice harvested areas with the same values used for estimation of emissions in the LULUCF sector showed that these data coincide.

5.4.5 Category-specific recalculations

Any recalculations of GHG emissions performed in the category 3C. Rice Cultivation.

5.4.6 Category-specific planned improvements

Any improvements planned in this category.

5.5 Agricultural Soils (CRF category 3.D)

5.5.1. Category description

Nitrous oxide emissions from soils occur naturally as a result of the microbial processes of ammonification, nitrification, and denitrification. However, application of nitrogenous fertilizer (nitrogen fertilizers, manure, crop residues) contributes into an increase in the amount of nitrogen involved in the processes of ammonification, nitrification, and denitrification, and ultimately – amount the N_2O emitted [23]. N_2O emissions in category 3.D Agricultural Soils reported in Table A3.2.9.4 of Annex 3.2.9 (also see Table 5.18).

Table 5.18. Review of category 3.D Agricultural Soils

Cohonom	Method	Emission	Gas	The key cat-	Emissi	ons, kt	Trend,
Category	applied	factor	Gas	egory	1990	2018	%
3.D.1.1 Inorganic N Fertilizers	T1	D	N ₂ O		28.89	24.54	-15.08
3.D.1.2 Organic N Fertilizers	T1	D	N ₂ O		7.78	2.19	-71.86
3.D.1.3 Urine and Dung Deposited by Grazing Animals	T1	D	N ₂ O		10.59	3.68	-65.30
3.D.1.4 Crop Residues	CS	D	N_2O	Level/Trend	46.26	34.54	-25.33
3.D.1.5 Mineralization/Immobilization Associated with Loss/Gain of Soil Organic Matter	T2	D	N ₂ O		NO	18.62	NO
3.D.1.6 Cultivation of Organic Soils	T1	D	N ₂ O		5.99	5.97	-0.46
3.D.2.1 Atmospheric Deposition	T2	D	N ₂ O	Level/Trend	6.93	4.39	-36.55
3.D.2.2 Nitrogen Leaching and Run-off	T1	D	N_2O	Level/Heliu	19.99	18.43	-7.83

During the observation period, there was redistribution of the share of emissions among sources in category 3.D Agricultural Soils (Fig. 5.11).

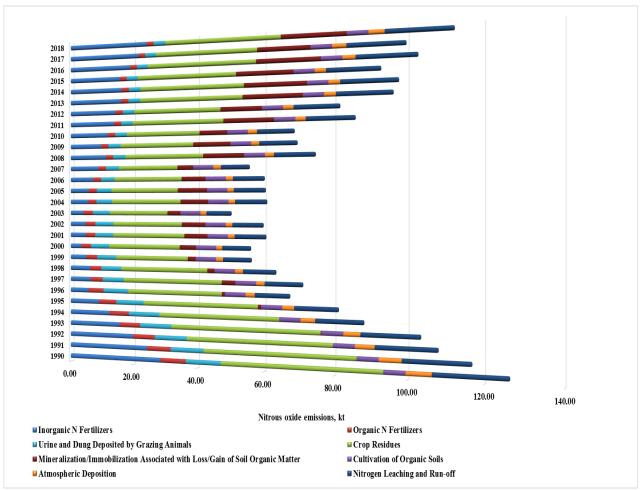


Fig. 5.11. Emission distribution in category 3.D Agricultural Soils

The key reasons for redistribution of shares of emissions in the category are the increase in emissions from crop residues and the reduction in other GHG sources, especially use of inorganic N fertilizers.

5.5.2 Methodological issues

5.5.2.1 Direct nitrous oxide emissions from agricultural soils

Sources of direct nitrous oxide emissions are [23]:

- application inorganic N Fertilizers (F_{SN});
- application organic N Fertilizers (F_{ON});
- urine and dung deposited by grazing animals (F_{PRP});
- crop residues, including nitrogen fixation (F_{CR});
- N mineralization associated with loss of soil organic matter resulting from change of land use or management of mineral soils (F_{SOM});
 - cultivation of organic soils (Fos).

Research paper "Development of the method to estimate and determine nitrous oxide emissions from agricultural soils: the final report on completion of the II (second) phase of the research work" [23] conducted to evaluate national opportunities for estimation of N_2O emissions from agricultural soils. This paper recommended IPCC methodology [1], some national methodological approaches and default EF's (Annex 3.2.8, Table A3.2.8.7).

Direct emissions of N_2O estimated in accordance with Equation 11.1 from 2006 IPCC Guidelines [1].

Annual direct N_2O -N emissions from N inputs to managed soils

To calculate annual direct emissions of N_2O -N as a result of nitrogen application to managed soils, Equation 11.1 [1] used.

This equation will provide the values of F_{SN}, F_{ON}, F_{CR} and F_{SOM} for rice and the other crops. Activity data for determining the annual amount of inorganic N fertilizers, organic N fertilizers, N of crop residues and the N of mineralized soils for crops (and separately rice) are given in appropriate forms and SSSU bulletin and the results of analytical study [2].

According to Equation 11.1 [1], the indicators of the annual amount of nitrogen from inorganic fertilizers and manure, compost, sewage sludge and other organic nitrogen-containing additives brought under rice and the annual amount of nitrogen in crop residues of rice allocated separately and marked as FR.

<u>Synthetic fertilizer</u>. Nitrogen emissions from application of nitrogen fertilization calculated according to method that based on data from the statistical bulletin: "The application of synthetic and organic fertilizers for harvest of agricultural crops" [24] and analytical study [2]. FAO data (http://fao-stat.fao.org) and interpolation (Annex 3.2.5, Table A3.2.5.2) used for the years for which there are no statistical data (1991-1992 and 1994-1995). For managed soil application several types of synthetic N fertilizers (sodium nitrate, calcium nitrate, ammonium nitrate, ammonium chloride and others) used in Ukraine, but SSSU provide only total annual amount values of these synthetic fertilizers (without their division into species). The calculation of the annual amount of inorganic N fertilizers does not provide accounting losses of nitrogen in the ammonia and NO_X compounds form as the correction occurs during the EF determination [1].

<u>Organic fertilizer</u>. The annual amount of manure, compost, sewage sludge, and other organic nitrogen-containing additives introduced into soils was determined based on Equation 11.3 [1]. It should be noted that organic fertilizers (F_{ON}) consist only from annual amount of animal manure N (F_{AM}) and compost N (F_{COMP} ; N₂O emissions from applied to soils compost N are reported in CRF Table 3.D as "[a. Direct N₂O emissions from managed soils] [2. Organic N fertilizers ($^{(3)}$)] [c. Other organic fertilizers applied to soils]"). According to SSSU data sewage N (F_{SEW}) and N from other organic amendments that used as fertilizer (F_{OOA}) not applied on managed soils.

The annual amount of nitrogen in introduced into soils manure determined by Equation 11.4 [1]. Calculation of the amount of nitrogen in treated manure introduced into the soil, used for feeding, as fuel, or in construction based on Equation 10.34 [1]. National statistics do not keep records of the amount of treated manure used for feeding, construction, and as fuel, so Frac Feed, Frac $_{FUEL}$, and Frac $_{CNST}$ not used for $N_{MMS\ Avb}$ estimation.

Estimation of the amount of N in the managed manure, which inputted into the soil, carried out without considering Composting MMS as compost taken into account when calculating the annual total amount of N in the compost F_{COMP} .

Moreover, the SSSU does not collect a data of the amount of N in sewage that introduced into soils (F_{SEW}). Also, they does not have a data on the amount of other organic improvers that used as fertilizers (F_{OOA}). Thus, these figures were not take into account for estimation of the annual amount of manure, compost, sewage sludge, and other organic nitrogen-containing additives introduced into soils (F_{ON}).

Nitrogen, which inputted with the compost, taken into account only in F_{COMP} . Thus, the total annual amount of N in the compost F_{COMP} includes a compost that produced from plant residues and compost obtained through the managed manure.

The amount of N in compost that applied to soils calculated according to Equation 10.25 [1] using the values and the coefficient for the Composting MMS.

<u>Crop residues</u>. Estimation of nitrogen in crop residues carried out according to the national methodology, based on data on the biomass of plant residues plowed into the soil and the nitrogen content in them. Estimations of the amount of crop residues plowed into the soil carried out based on Levin's method quoted in the research paper [25] on the base of yield data for the key agricultural crop products. The amount of crop residues in crop sowed depends on biological properties of the

cultivated plants, ecological (mainly soil and climate) conditions, the agricultural technologies and productivity levels, ways of sowing, seeding rates, and a number of other reasons. Therefore, when conducting the research, the results of which shown in Levin's paper, an attempt made to take into account the factors indicated above. For that sake, regression equations developed to determine the mass of plant residues based on the key product yields. The dependence of the amount of plant residues on crop growth is not always straightforward, so the biomass structure and the equations calculated for two yield levels – high and low. The advantage of Levin's method is that it provides for not only determination of the mass of side-products (hay, straw, tops, etc.) and surface residues (stubble) of crops, but also the mass of roots, making it possible to more comprehensively account for nitrogen in crop residues returned to soil. The values of the amount of plowed in side-products, stubble, and roots (in kilograms per hectare) for each crop calculated using the regression equations were then multiplied by the corresponding proportions of nitrogen and the total harvested area under the crop to assess the volume of nitrogen mineralized in soils in composition of plant residues in the national scope.

The amount of side-products entering the soil was accounted for based on findings of the studies that showed that plowed in side-products are those of corn for grain, soybeans, potatoes, vegetables, sunflowers, as well as food and fodder melons. Straw, tops, and other side-products of other agricultural crops are harvested as forage or bedding for animals.

Estimation of nitrogen emissions as a result of crop residue return into soil was performed based on Equation 5.4 [25]:

$$F_{CR} = \sum_{i} \{ [(a_i \times P_i + b_i) \times f_{ai} \times (1 - Frac_{Remove}) + (c_i \times P_i + d_i)] \times f_{ai} + (x_i \times P_i + y_i) \times f_{ri} \} \times S_i \times 10^2$$
, (5.4)

where:

i – agricultural crop type index;

 P_i – yield of crop i, kg ha⁻¹;

 S_i – total harvested area under crop i with correction to the area that affected by the fires, ha;

 a_i and b_i – regression coefficients for side-products of crop i;

 c_i and d_i – regression coefficients for surface residues of crop i;

 x_i and y_i – regression coefficients for roots of crop i;

 f_{ai} – the proportion of nitrogen in the mass of side-products and surface residues of crop i, rel. u;

 f_{ri} – the proportion of nitrogen in the mass of roots of crop i, rel. u;

 EF_1 – nitrous oxide emission factor for mineralization of plant residues in soil, kg of N₂O-N kg⁻¹ N;

Frac_{Remove} – the amount of side-products residues of a crop removed for feeding, bedding, and construction, kg of N kg⁻¹ of N;

44/28 – the stoichiometric ratio between nitrogen content in N₂O-N and N₂O.

The values of yield and total harvested area of agricultural crops taken from the Statistical bulletin: "The area, gross harvesting and yields of crops, fruits, berries and grapes" [26] and analytical study [2]. The statistical bulletin contains data on all agricultural enterprises whose activities aimed at production of marketable agricultural products.

The estimations assumed that about 25 % of harvested areas under perennial grasses and herbage of cultivated pastures and hayfields renewed annually [27]. Similarly, to herbs, it assumed that each year 50 % of areas under biennial vegetables for seeds are renewed.

The sources of data on nitrogen fractions in underground and above-ground residues of most crops were national publications [17, 28-30]. For melons, coriander, broad beans, chick-peas, lathyrus and mung bean, spring rye, rice, barley, rape seeds, mustard and camelina, tobacco and wild tobacco, castor-oil beans, soybeans, sorghum, beans, and lupine data on nitrogen content were used in accordance with [1] or based on expert judgment.

For the crops where Levin's method offers no regression coefficients, the same data for biologically similar crops used. The information base for determining taxonomic similarity of crops was

the reference book for identification of crop plants [31-32]. In particular, for soybean, vicia, beans, lupine, broad beans and chick-peas, lathyrus, mung bean data on pea (the legume family) used, for spring rye – data on winter rye were used, for rice – barley data, for sorghum – data on millet (the family of cereals), for crown flax – data on flax-fiber (the flax family), for tobacco and wild tobacco – potato data (the Solanaceae family), for rape seed, mustard, and camelina – data on annual grasses (the cruciferous family). In the absence of regression coefficients for the food and feed melons (the gourd family), the calculation based on vegetables. For vegetables, regression coefficients for coriander (Umbelliferae) used. Castor (the Euphorbiaceae family) correlated with sunflower (oilseed crops). In hayfields and managed pastures in the general herbage, there are perennial gramineous and leguminous grasses, so the corresponding regression coefficients used in the estimations.

Fires events stratified by timing of burning: before or after crop harvesting. If fires occurred before the crops have been harvest that is accounted by SSSU in the Statistical bulletin [26], where areas and yield of harvested crops reported. In the case of fires after crop harvest, regional departments of the SESU provided data of areas, which used for harvested area adjustment.

Regression coefficients depending on the crop yields, as well as the proportion of nitrogen in side-products, stubble and roots reported in Table A3.2.5.3 (Annex 3.2.5).

In the inventory, it assumed that the entire nitrogen accumulated by nitrogen-fixing rhizobia in roots of legumes accounted for when estimating emissions from mineralization of plant residues in soil.

<u>Mineralized N</u>. Country specific C:N ratio of the soil organic matter and ΔC used for F_{SOM} estimation according to Equation 11.8 [1]. More detail information about F_{SOM} estimation reported in Chapter 6.3 and Annex 3.3.2.

For N_2O - N_N Input direct emissions, calculation default factors used from 2006 IPCC Guidelines [1].

Annual direct N_2O -N emissions from managed organic soils

The 2013 Wetlands Supplement contains updated EFs for direct N_2O emissions from drained organic soils in all land use. However, country specific AD not harmonized with 2013 Wetlands Supplement EFs. That is why estimation of GHG emissions from managed organic soils can based only on 2006 IPCC Guidelines.

The annual direct emissions of N_2O -N from cultivated organic soils calculations based on histosols area data and default EF (Table 11.1 of 2006 IPCC Guidelines) according to Equation 11.1 [1].

Data on areas of peat soils covering all of their types obtained from the State Agency of Water Resources of Ukraine. They are the most reliable ones, because they are based on information obtained directly the regional offices (Annex 3.2.5, Table A3.2.5.4).

Annual direct N_2O -N emissions from urine and dung inputs to grazed soils

Emissions of N_2O -N from animal manure on pastures (N_2O - N_{PRP}) estimated in accordance with Equation 11.1 [1]. In general, the methodology for estimating emissions in this category is similar to calculation of emissions from the other systems within category 3.B Manure Management. However, since manure from animals on pasture remains unharvested, emissions from this source should be estimated under category 3.D Agricultural Soils.

The annual amount of nitrogen from urine and litter deposited on pasture, range, and paddock by grazing animals was calculated according to Equation 11.5 [1], which is based on use of national data on the amount of N_{ex} in the MMS composition of manure (see Chapter 5.3.2).

The amount of nitrogen excreted in manure composition of species/category of cattle, sheep, swine, and poultry (N_{ex}) was calculated based on the amount of manure excreted in dry matter and the proportion of nitrogen in it using the Equations (10.31-10.3 from [1] and 5.2), as presented above (see Chapter 5.3.2.2.1) and reported in Tables A3.2.3.4-A3.2.3.5 of Annex 3.2.3.

The applied values of the proportion of total annual nitrogen emissions for each cattle species/category, which remains on pasture or paddock (MMS _(T, PRP)) were the same as in 3.B.1 Manure Management (methane emissions) category (see Annex 3.2.3, Table A3.2.3.2).

To estimate the emissions of N_2O -N from animal manure on pastures (N_2O - N_{PRP}), a default EF for N_2O emissions from nitrogen in urine and manure left by animals on pasture, range, and paddock was used [1].

5.5.2.2 Indirect nitrous oxide emissions from agricultural soils

Research paper "Development of the method to estimate and determine nitrous oxide emissions from agricultural soils: the final report on completion of the II (second) phase of the research work" [23] conducted to evaluate national opportunities for estimation of N_2O emissions from agricultural soils. This paper recommended IPCC methodology [1], country specific and default EF's (Annex 3.2.8, Table A3.2.8.7).

In addition to direct N_2O emissions from managed soils that happen directly from soil receiving nitrogen, N_2O emissions also occur through two indirect pathways – as nitrogen deposition from the atmosphere in the form of NH_3 and NO_{X_s} and by leaching/runoff of introduced or deposited nitrogen.

The following sources of nitrogen for indirect N_2O emissions from managed soils that occur as a result of agricultural nitrogen introduction considered next positions:

- N of synthetic fertilizers (F_{SN});
- N of organic matter that applied as fertilizer (F_{ON});
- -N of urine and dung deposited on pasture, range and paddock by grazing animals (F_{PRP});
- -N in crop residues (above- and below-ground), including N-fixing crops and forage/pasture renewal returned to soils (F_{CR});
- N mineralization associated with loss of soil organic matter resulting from change of land use or management on mineral soils (F_{SOM}).

The type of N sources and their characteristic reported above in Chapter 5.5.2.1 Direct nitrous oxide emissions from agricultural soils.

Volatilization

Assessment of indirect N₂O emissions as a result of deposition from the atmosphere of nitrogen volatilized from managed soils was conducted according to Equation 11.1 [1].

Values of the annual amount of N from synthetic (F_{SN}) and organic (F_{ON}) fertilizers, and N from urine and dung left on pasture, range, and paddock by animals (F_{PRP}) calculated according to the corresponding equations, as described in Chapter 5.5.2.1 Direct nitrous oxide emissions from agricultural soils.

To estimate indirect N_2O emissions as a result of deposition from the atmosphere of nitrogen volatilized from managed soils, country specific share of nitrogen in synthetic fertilizers, which is volatilized as NH_3 and NO_X , used [33]. A spring application of synthetic N fertilizers is a widespread practice of its using, because inputting N, which inputted in autumn, leached in nitrate form. Gaseous losses of N makes up 5-24 % [33] when fertilizers applies under the crop. A country specific middle value (14.5 %) of this diapason used for GHG emissions calculation (Annex 3.2.8, Table A3.2.8.7).

The share of nitrogen in organic nitrogen fertilizers introduced and nitrogen from urine and dung left by grazing animals, which volatilized as NH_3 and NO_X and the EF for N_2O emissions estimation from N volatilization taken as default values from 2006 IPCC Guidelines [1].

Leaching/Runoff

 N_2O emissions from leaching and runoff of introduced or deposited nitrogen estimated using Equation 11.10 [1].

As described in Chapter 5.5.2.1 Direct emissions of nitrous oxide from agricultural soils, according to the respective equations the next values are calculate:

- F_{SN} (N from synthetic fertilizers);

- F_{ON} (organic fertilizers);
- $-F_{PRP}$ (N from urine and dung deposited by grazing animals on pasture, range and paddock);
- F_{CR} (N returned to soils with crop residues, including from N-fixing crops);
- $-F_{SOM}$ (annual amount of N in mineral soils that is mineralized, in association with loss of soil C from soil organic matter as a result of changes to land use or management).

To estimate indirect N_2O emissions from leaching and runoff of introduced or deposited nitrogen, default values (Annex 3.2.8, Table A3.2.8.7) of the share of the total nitrogen added to managed soils or mineralized in cultivated soils that is lost through leaching and runoff, and EF for N_2O emissions from nitrogen leaching and runoff were applied [1].

5.5.3 Uncertainty and time-series consistency

Uncertainty assessment calculated in accordance with Tier 1 method [1].

The accuracy of emission data by source sub-categories within category 3.D Agricultural Soils depends on the AD and EF uncertainty. The uncertainty of statistical data on the amount of introduced mineral nitrogen fertilizers, crop yields, and harvested crop areas can used at the level of 6 % [2].

Table 5.19 shows uncertainties of the values nitrogen loss shares and their sources.

Table 5.19. The uncertainty of data of the fractions of nitrogen losses in category 3.D Agricultural Soils

Indicator	Uncertainty, %	Source
The fraction of nitrogen lost as NH ₃ and NO _X at application of synthetic N fertilizers into soil	66	Value range according to data of [33] and expert judgment
The fraction of nitrogen lost as NH ₃ and NO _X at manure storage in anaerobic lagoons	75	Value range according to data of [33] and expert judgment
The fraction of nitrogen lost as NH ₃ and NO _X at liquid systems	38	Value range according to data of [33] and expert judgment
The fraction of nitrogen lost as NH ₃ and NO _X in solid storage	33	Value range according to data of [33] and expert judgment
The fraction of nitrogen lost as NH ₃ and NO _X at manure storage in other systems	33	Expert judgment
The fraction of nitrogen lost as NH ₃ and NO _X at manure introduction into soil	50	2006 IPCC Guidelines [1]
The fraction of nitrogen lost as NH ₃ and NO _X from manure on pasture	50	2006 IPCC Guidelines [1]
The fraction of nitrogen lost through leaching/runoff from introduced mineral nitrogen fertilizers in the Polissia	10	Expert judgment
The fraction of nitrogen lost through leaching/runoff from introduced mineral nitrogen fertilizers in the Wooded Steppe	35	Value range according to data of [33]
The fraction of nitrogen lost through leaching/runoff from introduced mineral nitrogen fertilizers in the Steppe	60	Value range according to data of [33]
The fraction of nitrogen lost through leaching/runoff from organic fertilizers introduced	43	Value range according to data of [33]

Uncertainties of activity data and default emission factors in category 3.D Agricultural Soils reported in Table 5.20.

The same method with the same degree of detail used for the entire time series direct emissions estimation in 3.D Agricultural Soils category. The coordinated procedures for activity data collection and processing that used at the SSSU during the reporting period ensure a good succession of time-series.

Table 5.20. Activity data and emission factors uncertainties of reporting year in category 3.D Agricultural Soils, %

Name of the emission source	Activity data	Emission factors
Direct N ₂ O emissions	6	91.62
Indirect N ₂ O emissions	6	102.72

5.5.4 Category-specific QA/QC procedures

General and detailed quality control and assurance procedures applied for estimation of direct and indirect N_2O emissions from agricultural soils. In particular, in accordance with the recommendations of [1], a comparison of data of the SSSU on the amount of N fertilizers introduced in the country with the same data from FAO was held. The comparison showed that during the years for which there is a statistical database, SSSU and FAO data on the amount of N fertilizers introduced virtually coincide for 1996-1999 (the difference is within 0.2 %) and closely coincide for 1994-1995 and 2005-2008. At the same time, for 1993, 2000-2004 and 2009-2018 these AD differ by 5-57 %, which may be due to use of the SSSU's preliminary data.

Such SSSU data as the amount of nitrogen introduced into soil as a component of fertilizer, crop yields and harvested areas are in line with the same data used in estimations for the LULUCF sector.

Moreover, the calculations performed analyzed the correlation between direct and indirect emissions, as well as between emissions from atmospheric deposition of nitrogen and leaching/runoff. The analysis showed that these data are well-agreed (the correlation coefficient in the both cases is close to one).

Assurance of the quality of direct emissions from agricultural soil estimations ensured by independent peer review of the national methodologies to estimate emissions at mineralization of plant residues by specialized experts.

5.5.5 Category-specific recalculations

Time series direct and indirect N_2O emissions in 3.D Agricultural Soils category recalculated as reported in Table A3.2.10.3 (Annex 3.2.10).

There were several reasons for the recalculations in the current category:

- recalculations in the 3.B Manure Management category;
- harvested area clarification;
- clarification of inorganic N fertilizers quantity.

5.5.6 Category-specific planned improvements

Any improvements planned in this category.

5.6 Prescribed Burning of Savannas (CRF category 3.E)

Estimation of GHG emissions in category 3.E Prescribed Burning of Savannas is not performed due to the fact that "Savannas" as an ecosystem does not exist in the territory of Ukraine.

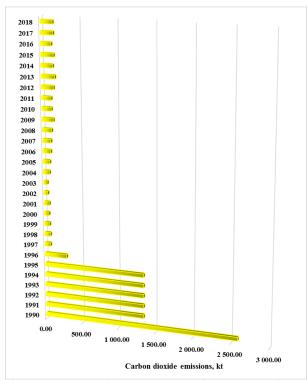
5.7 Field Burning of Agricultural Residues (CRF category 3.F)

As above-mentioned in the text (Chapter 5.1), burning of agricultural residues in Ukraine is prohibited under the Code of Administrative Offenses (Art. 77-1) and the Law of Ukraine On Air Protection (Art. 16, 22).

In croplands, there are periodical fires that lead to burning of biomass from residues of various agricultural crops and, consequently, GHG emissions. The cause character of fires shows that

we have classified them as wildfires. That is why emissions from burning of agricultural residues biomass on agricultural soils accounted in Cropland category of the LULUCF sector.

5.8 Liming (CRF category 3.G)


5.8.1. Category description

The contribution of category 3.G Liming in total GHG emissions is insignificant, which allows for estimation of CO₂ emissions with Tier 1 methodology (Table 5.21; Annex 3.2.9, Table A3.2.9.5).

Table 5.21. Review of category 3.G Liming

Cotogowy	Method ap-	Emission Gas		The key Emissions, kt			Trend,
Category	plied	factor	Gas	category	1990	2018	%
Liming	T1	D	CO_2	No	2592.08	163.74	-93.68

Emissions of carbon dioxide (CO_2) from the liming of agricultural soils (Fig. 5.12) decreased significantly over the time series.

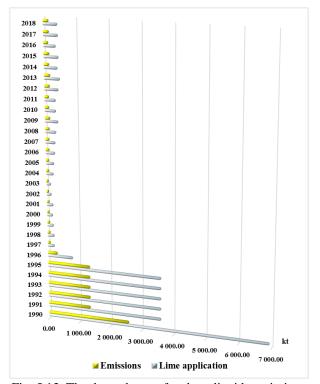


Fig. 5.12. Carbon dioxide emissions from liming of agricultural soils

Fig. 5.13. The dependence of carbon dioxide emissions on the amount of liming material introduced

The dynamics of emission reduction clearly demonstrate a sharp reduction from 1990 to 1991 and stabilization till 1995. From 1995 till 1997 there was the next stage of CO₂ emission reduction. The reduction of carbon dioxide emissions continued till 2003, but with smoother dynamics. Since 2004, there was a trend towards a gradual increase in the CO₂ emissions. In comparison with the previous year, in 2018 carbon dioxide emissions decreased by -2.88 %, which was caused by the dynamics of annual inputted lime materials (Annex 3.2.6, Table A3.2.6.1).

Liming used to reduce soil acidity and improve plant growth in managed systems, in particular on agricultural soils and in managed forests. For liming, ground lime used in Ukraine. There are no statistical information on the dolomite application.

Ground lime often contains a significant amount of inert material. Ground lime with different content of inert materials used for liming of soils. National statistics do not carry out research on the quality of applied ground lime. Industrial limestone fertilizers contain not less than 85 % of the active

substance [19-20]. This coefficient used for estimation the amount of ground lime in weight of active matter (Annex 3.2.6, Table A3.2.6.1).

5.8.2 Methodological issues

Emissions estimation performed in accordance to Equation 11.12 of the 2006 IPCC Guidelines Tier 1 procedure [1].

The input data that used for the relevant calculations were:

- the annual amount of ground lime;
- the active substance share;
- emission factor.

The source of data on liming materials introduced (in particular, ground lime) was Statistical bulletin: "The application of synthetic and organic fertilizers for harvest of agricultural crops" [24] and analytical study [2]. For those years where statistics are not available, the interpolation method used. SSSU collect data in full weight. The opinion that industrial limestone fertilizers contain not less than 85 % of the active substance [19-20] used to exclude inert materials. The amount of ground lime in weight of active matter (Annex 3.2.6, Table A3.2.6.1) used for carbon dioxide emissions estimation.

As the liming is performed in the first place by introduction of ground lime, it was decided to use the default emission factor from the 2006 IPCC Guidelines to evaluate CO₂ emissions from liming, which is 0.12 [1].

5.8.3 Uncertainty and time-series consistency

The uncertainty assessment performed based on Tier 1 procedure of the 2006 IPCC Guidelines [1]. Table 5.22 shows uncertainties of AD and the EF for category 3.G Liming.

Table 5.22. Uncertainties of reporting year in category 3.G Liming

Category	Uncertainty, %
Amount of liming materials introduced	6
Emission factor	50

Estimation of direct emissions in category 3.G Liming for the entire time series carried out using the same method with the same degree of detail.

5.8.4 Category-specific QA/QC procedures

The general quality control and assurance procedures were applied to estimation of GHG emissions in category 3.G Liming. In 3.G Liming category, a well-correlated link between the AD and GHG emissions can be traced (Fig. 5.13).

5.8.5 Category-specific recalculations

Any recalculations of GHG emissions performed in category 3.G Liming.

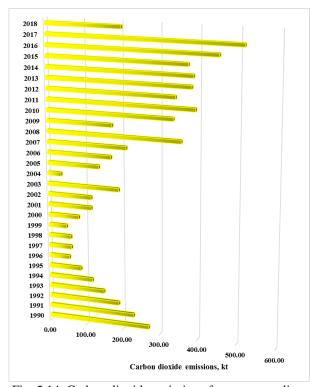
5.8.6 Category-specific planned improvements

Any improvements planned in this category.

5.9 Urea Application (CRF category 3.H)

5.9.1. Category description

Urea (or Carbamide) – $CO(NH_2)_2$ used as nitrogen fertilizer in all soil and climatic zones of Ukraine. It attributed to the group of amide fertilizers and the most concentrated solid nitrogen fertilizer. It characterized by insignificant losses of nitrogen in soil. In soil, the amide form transformed into ammonia one, and then – into the nitrate one, which conditions its use for crops with a long vegetation season.


National characteristics of agricultural practices condition limited use of urea as a nitrogen fertilizer, which makes it possible to apply Tier 1 method (Table 5.23; Annex 3.2.9, Table A3.2.9.5).

After the economic crisis caused by the collapse of the USSR, from 1990 to 1999 there was a decline in the amount of urea used and the related emissions in Ukraine (Fig. 5.14).

Table 5.23. Review of category 3.H Urea Application

Category	Method ap-	Emission	Gas	The key	Emission	ns, kt	Trend,
Category	plied	factor	Gas	category	1990	2018	%
Urea Application	T 1	D	CO_2	No	270.14	201.18	-25.53

Since 2000, the amount of urea introduced into agricultural soils and, consequently, that of emissions gradually increased and in 2008 exceeded the indicators of the baseline 1990. In 2004 and 2009, the emissions decreased sharply due to unfavorable economic conditions.

2017 2016 2015 2013 2012 2011 2009 2008 2006 2005 2003 2000 1998 199 1996 1995 1994 1993 1992 1991 100.00 400.00 500.00 600.00 700.00 ■Emissions ■Urea application

Fig. 5.14. Carbon dioxide emissions from urea application on agricultural soils

Fig. 5.15. The dependence of carbon dioxide emissions on the amount of urea introduced into soil

5.9.2 Methodological issues

Emissions estimation performed in accordance to Equation 11.13 of the 2006 IPCC Guidelines Tier 1 procedure [1].

The input data that used for the relevant calculations are the annual amount of urea used as fertilizer and emission factor.

The SSSU do not collect a data of amount of urea that used as a fertilizer on agricultural soils during the 1990-2017 period. The source of data (Annex 3.2.7, Table A3.2.7.1) on the amount

of urea used were FAO resources (http://faostat3.fao.org/download/R/RF/E). FAO data archive provides information for the periods of 2002-2004 and 2008-2012. To restore the data for 1990-2001, 2005-2007 and 2013-2017, extrapolation methods and analytical study [2] applied. However, the statistical bulletin "The application of synthetic and organic fertilizers for harvest of agricultural crops" [24] contains this data from 2018.

The default EF from the 2006 IPCC Guidelines to evaluate CO_2 emissions from urea application was used, which is 0.20 [1].

5.9.3 Uncertainty and time-series consistency

The uncertainty assessment performed based on Tier 1 procedure of the 2006 IPCC Guidelines [1]. Table 5.24 shows uncertainties of AD and the EF for category 3.H Urea Application.

Table 5.24. Uncertainties of reporting year in category 3.H Urea Application

Category	Uncertainty, %
Amount of urea applied	6
Emission factor	50

Estimation of CO₂ emissions in category 3.H Urea Application for the entire time series carried out using the same method with the same degree of detail.

5.9.4 Category-specific QA/QC procedures

The general quality control and assurance procedures were applied to estimation of GHG emissions in category 3.H Urea Application.

In 3.H Urea Application category, a well-correlated link between the AD and GHG emissions can be traced (Fig. 5.15).

5.9.5 Category-specific recalculations

Time series CO_2 emissions in 3.H Urea Application category recalculated as reported in Table A3.2.10.4 (Annex 3.2.10). The amount of urea that applied to agricultural soils is a reason for these recalculations.

5.9.6 Category-specific planned improvements

SSSU data (data of amount of urea that used as a fertilizer on agricultural soils) accumulation over the following years will provide an opportunity for AD reviewing.

6 LAND USE, LAND-USE CHANGE AND FORESTRY (CRF SECTOR 4)

6.1 Sector Overview

In the sector of land use, land-use change and forestry (LULUCF), not only greenhouse gas emissions are accounted, but also removals in land-use categories in accordance with recommendations of the Guidelines [1]. Throughout the reporting period from 1990 to 2017 the resulting GHG removals were observed in the sector, while in 2018 the sector became net source (Fig. 6.1).

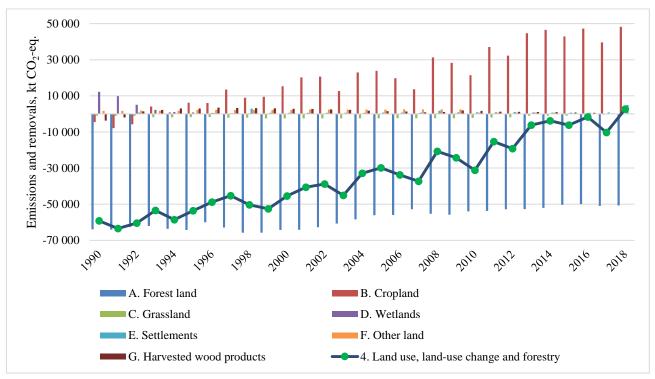


Fig. 6.1 Emissions and removals in the LULUCF sector in Ukraine in 1990-2018

The resulting values for the LULUCF sector vary from -63.4 Mt CO_2 -eq. removals in 1991 to 2.6 Mt CO_2 -eq. emissions in 2018.

Land-use areas representation in GHG inventory in the LULUCF sector was performed based on Approach 2. Ukraine is currently seeking for possibilities to change activity data gathering procedure and its further processing aiming to address recommendations from ERT. It was expected to be finalized in 2019 submission however due to technical difficulties and uncertainty of funding this is expected to be finalized later. Current NIR is prepared using previous activity data sources and approaches.

The total area of land use categories in the national statistical reporting form 16-zem was used (previously been called 6-zem) as the source data for area presentation according to IPCC classification. Table 6.3 shows total areas of land-use categories for Ukraine as a whole, which were used in construction of land-use change matrix (Table 6.4).

After subtraction of areas with anthropogenic influence from the totals of corresponding land-use categories of 16-zem statistical form unmanaged areas were derived. In CRF tables for stated land-use categories information regarding areas is presented by components – "managed" and "unmanaged" lands, where it is required by 2006 IPCC Guidelines. Table 6.2 presents detailed information sources and how they were used during the inventory preparation.

In the land-use category Forest Land, a fairly stable total GHG removal level is observed - 50.0-65.8 Mt CO₂-eq. throughout the time series. Among different factors, which influence the trend, the most significant are:

• intensity of wood harvesting;

- frequency, intensity and the nature of fires and other disturbances of forest stands;
- change in land area converted into this category.

For the estimations both for UNFCCC reporting, and for the KP (3.3-3.4), the same information source from the anthropogenic activities in the forest sector updating database was used. The information in the database contains the characteristics of human activities under Article 3.3 KP by individual plots of forestry enterprises subordinated to the State Forest Resources Agency of Ukraine (Tier 2) and by the administrative categorization of activities under Article 3.4 (Tier 1). For detailed information regarding the database, see chapter 11.2.3.

GHG emissions and removals trend in Cropland category varies between -7.9 Mt CO₂-eq. removals in 1991 and 48.2 Mt CO₂-eq. emissions in 2018.

Significant Cropland category trend changes are caused mostly by CSC in mineral soils from crop grow. Particularly since 1990 there was change from 2.5 Mt C removals to 12.0 Mt C emissions totally in mineral soil pool. That change is caused mainly by switch of crops to more soil exhausting with lower rates of organic fertilizers application (fig. 6.2 and 6.3). Moreover there is a variety in amount of crops harvested between years.

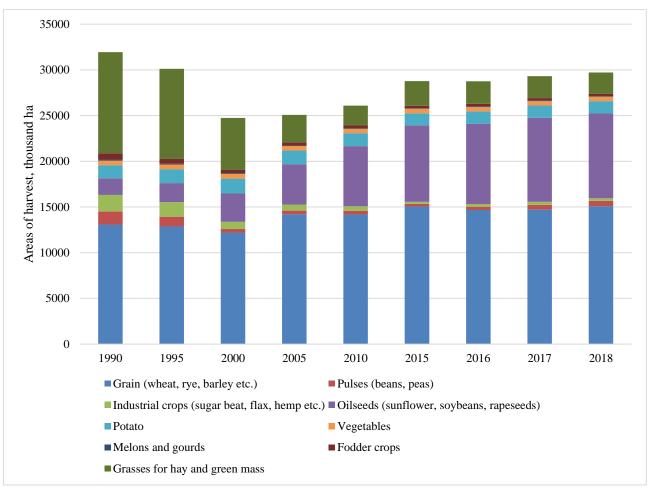


Fig. 6.2. Structure of crops grown on Croplands

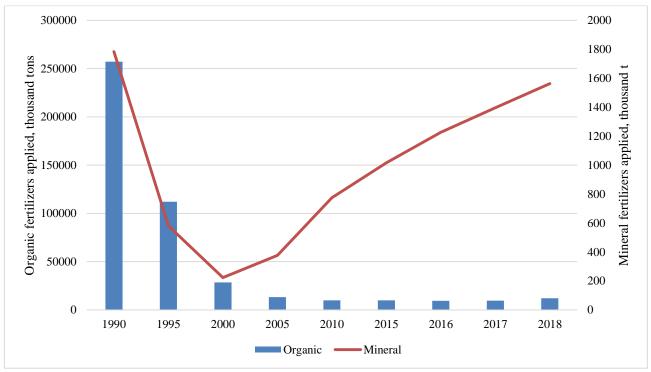


Fig. 6.3. Fertilizers input to Cropland

Grassland category is a net sink within entire time series with 0.9 Mt CO_2 -eq. removals in 1990 with increase of removals in 2001-2003 to 2.5 Mt CO_2 -eq., and then drop in removals to 0.2 Mt CO_2 -eq. in 2018. The most significant reasons for such trend is CSC in mineral soil pool, caused by land-use changes to Grassland category and change in areas and management of pastures and hay-fields.

Throughout the time series since 1990, emissions in the category Wetlands decreased in line with reduction in the area of peat extraction. Significant influence on GHG emissions has peat extraction process. Since 1990 peat extraction areas, as well as amounts of extracted peat for non-energy use, has decreased by several times (Fig. 6.1 and 6.4). Due to that the drop occurred from 12.3 Mt CO₂-eq. to 0.3 Mt CO₂-eq.

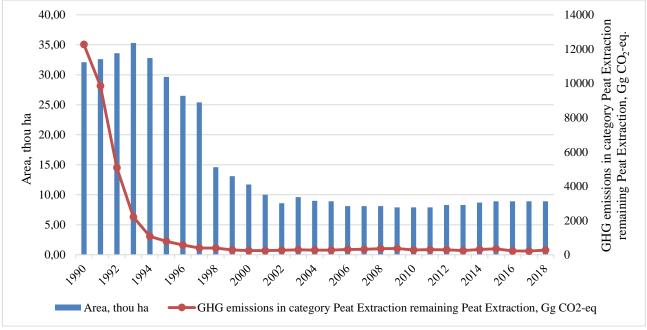


Fig. 6.4 Peat extraction areas and emissions in the category Wetlands in 1990-2018

Emissions in categories Settlements and Other Land occur when there are land-use changes only. Due to significance of areas converted there are emissions up to 5.1 Mt CO₂-eq. in 1998 and 5.3 Mt CO₂-eq. in 2018 totally in these categories.

Indirect N₂O emissions were estimated from all land-use categories. In Ukraine those emissions occur in LULUCF sector during conversions between land-use categories.

The share of carbon in harvested wood products (category 4.G) is presented in figure 6.5.

The switch of removals to emissions within the time series is caused by reorientation of industrial roundwood use – from internal use within the country to export, which has grown from around 693 m³ in 1992 (the earliest available data) to 2074100 m³ in 2016. Restriction of export of raw roundwood resulted in export of industrial roundwood as much as 3300 m³ in 2018, while production increased from 4.7 million m³ in 1997-1999 to 9.0 million m³ in 2018. Similar trend is observed in sawnwood production: decline on around 66% - from 7441 thousand m³ in 1990 to 1781 thousand m³ in 2014, but then increase to 3271 thousand m³ in 2018.

Fig. 6.5 HWP contribution into the total emissions/removals in the LULUCF sector

6.1.1 Land-use change matrix

For the GHG inventory, land-use areas representation is presented using Approach 2 according to IPCC land classification [1]:

- 1) Forest Land;
- 2) Cropland;
- 3) Grassland;
- 4) Wetlands;
- 5) Settlements;
- 6) Other Land.

Current NIR was prepared using approach and data sources as in 2017 submission. Ukraine's efforts on transition to use of remote sensing data is described in chapter 6.1.2 of NIR submitted in 2019. Unfortunately, results had low accuracy and time series consistency to be used as a main source of data for land-use change matrix.

The main source of information for this distribution of land in Ukraine is statistical reporting form No. 6-zem. Definitions of land-use categories adopted in the national statistical practice [2] and their alignment with those proposed in the methodology [1] are presented in Table 6.1.

It should be noted that every land use category in CRF sector 5 reporting is divided into the two components:

- land constantly remaining in the respective category (i.e. for more than 20 years);
- land converted from one category to another. By default, the land remains in this category for 20 years before moving on to the respective category [1].

Table 6.1. Land systematization in statistical reporting form No.16-zem

	0.1.2	The systematics	ation in statistical reporting form No. 10-2cm
Land-use category under 2006 IPCC Guidelines	Column # in form No. 16-zem	Category name	Category description
4.B. Cropland	4	Arable lands	Land systematically cultivated and used for sowing perennial grasses, as well as for bare fallow and greenhouses. "Arable land" does not include hayfields and pastures plowed for the purposes of their radical improvement and constantly used for grass forage crops for mowing hay and grazing, as well as areas between rows of gardens used for sowing
4.B. Cropland	5	Fallow lands	Land previously plowed, and later (for more than a year starting from the autumn) they were not used for planting of agricultural crops and were not prepared for conversion into the "bare fallow" category
4.B. Cropland	9	Perennial crops	Perennial plantations created to produce fruits, berries
4.C. Grass- land	7	Hayfields	Agricultural land systematically used for hay mowing, including plots covered with tree and shrub vegetation by 20% or less
4.C. Grass- land	8	Pastures	Agricultural land systematically used for grazing, including plots covered with tree and shrub vegetation by 20% or less
4.A. Forest Land	16	Forest areas, covered with woody vegeta- tion	Areas of forest plots, covered by woody and shrub vegetation with crown cover 40% in young stands and 30% in older stands of area.
4.A. Forest Land	17	Forest areas, not covered with woody vegetation	Areas of forest plots, temporarily or permanently not covered by forest vegetation (due to unevenness of landscape, forest management, natural disturbances etc.). It includes recently reforested/afforested areas, nurseries, forest roads, fire breaking open areas, open areas assigned for afforestation/reforestation and other.
4.A. Forest Land	15	Shrubs	Land covered with shrub vegetation
4.E. Settlements	25-42	Lands with buildings, in- frastructure, cemeteries and other	All land occupied by industrial facilities, built-up with residential houses, roads, mines, open extraction sites, and any other facilities established for various types of human activities, including the areas for their maintenance
4.D. Wet- lands	12, 20- 24	Open water	Marshes, lakes, rivers, artificial water bodies etc.
4.F. Other Land	10-11, 13-14	Open land without vege- tation or with little vegeta- tion	Land not included into the above categories (rocks, sand, solonchaks, and other land)

 $Table \ 6.2. \ National \ statistical \ forms \ and \ databases \ used \ for \ GHG \ inventory \ in \ the \ LULUCF$

Data source	Content	Category and the way of application
Land-use ca	ntegory Forest Land	
Database	Information on the activities under Article 3.3, including the main features of species and natural areas, with the geo-coordinate pegging of the sites by forestry enterprises, with cartographic images, as well as characteristics of the anthropogenic component confirmed with documents. Activity data under Article 3.4, not accounting for the areas considered for activity 3.3. Based on use of: • information array of the Ukrainian State Forest Inventory Design Association (Forest Design); • land-use change matrix for definition of the land conversion vector and the share of each of the categories in these conversions, in the national statistical practice this information is not available	3.3, 3.4, 4.A, 4.B.2.1, 4.C.2.1, 4.D.2.1, 4.E.2.1, 4.F.2.1. Data on the area, species composition by natural and climatic zones and territorial administrative information
3-lg	"Forest management" (annual). Contains information on amounts of harvesting and fire areas and its types by the administrative and territorial division on forest land	4.A.
Land-use ca	ategories Cropland and Grassland	
F16-zem	"Report on availability of lands and their distribution by land owners, land users, land plots, and economic activities" (annual). Contains data on the area of territories with anthropogenic activities, which are subject to reporting under the GHG inventory	4.B.1, 4.C.1.
29-sg	"Agricultural crop harvesting" (annual). The data for each of the agricultural crops grown in the reporting year includes: • areas harvested; • gross harvest in weight after processing; • crop yield	4.B.1, 4.C.1.
9-bsg	"Application of mineral and organic fertilizers, gypsum and liming" (annual). The data includes: • amounts of applied nitrogen fertilizers, presented in active substance; • amounts organic fertilizers applied; • amounts of liming	4.B.1, 4.C.1.
Land-use ca	ategory Wetlands	
F16-zem	"Report on availability of lands and their distribution by land owners, land users, land plots, and economic activities" (annual). Contains totals of landuse category areas considered for the purposes of the balance of the territories, as well as operated peat extraction areas	4.D.1
1-Π	"Industrial production in Ukraine". Contains data on peat obtained from peat extraction, which is used in agriculture	4.D.1
Land-use ca	ategory Settlements and Other Land	
F16-zem	"Report on availability of lands and their distribution by land owners, land users, land plots, and economic activities" (annual). Contains totals of landuse category areas considered for the purposes of the balance of the territories	4.E.1, 4.F.1

Table 6.3. Areas of land-use categories (reporting form No. 16-zem), kha

Year	Forests and other forest-cov- ered areas	Agricultural land (except hayfields and pastures)	Hayfields and pastures	Open wet- lands and inland wa- ters	Settlements	Open land with- out vegetation and with special vegetation
1990	10221.5	35847.3	7232.2	3319.1	2420.3	1314.5
1991	10248.2	35731.2	7329.6	3337.3	2409.2	1299.4
1992	10306.6	35897.9	7311.8	3338.0	2308.2	1192.4
1993	10331.0	35706.2	7473.2	3340.4	2386.2	1117.9

Year	Forests and other forest-cov- ered areas	Agricultural land (except hayfields and pastures)	Hayfields and pastures	Open wet- lands and inland wa- ters	Settlements	Open land with- out vegetation and with special vegetation
1994	10352.2	35639.6	7504.2	3347.8	2403.2	1107.9
1995	10357.8	35605.5	7523.9	3353.5	2312.7	1201.5
1996	10372.0	35478.8	7628.8	3350.7	2334.4	1190.2
1997	10380.2	35328.6	7773.0	3355.4	2336.9	1180.8
1998	10397.6	35277.9	7789.6	3372.2	2442.0	1075.6
1999	10403.3	35229.1	7838.1	3372.2	2457.4	1054.8
2000	10413.6	35147.9	7910.0	3370.7	2456.2	1056.5
2001	10426.2	35115.2	7924.4	3374.2	2449.4	1065.5
2002	10438.9	35083.6	7938.8	3372.8	2463.0	1057.8
2003	10457.5	35040.5	7968.4	3374.0	2459.3	1055.2
2004	10475.9	35017.7	7968.2	3378.2	2458.3	1056.6
2005	10503.7	34992.1	7950.6	3382.9	2467.5	1058.1
2006	10539.9	34954.7	7938.9	3391.1	2470.2	1060.1
2007	10556.3	34935.5	7933.5	3397.4	2476.6	1055.6
2008	10570.1	34926.8	7918.1	3400.5	2489.0	1050.4
2009	10591.9	34914.2	7899.6	3402.6	2499.1	1047.5
2010	10601.1	34899.0	7892.9	3403.4	2512.5	1046.0
2011	10611.3	34890.9	7886.0	3402.9	2523.2	1040.6
2012	10621.4	34885.9	7870.1	3403.1	2535.2	1039.2
2013	10624.4	34888.9	7855.6	3404.5	2542.6	1038.9
2014	10630.3	34883.2	7848.3	3409.0	2550.4	1033.7
2015	10633.1	34885.9	7840.5	3408.7	2552.9	1033.8
2016	10663.8	34875.3	7833.8	3408.7	2561.6	1011.8
2017	10675.0	34869.6	7820.9	3408.7	2577.6	1003.2
2018	10685.6	34952.0	7577.0	3406.7	2827.7	905.95

The national statistical system currently does not reflect the actual change in land-use categories and the nature of the change of management practices for the lands that are part of the land-use categories. Therefore, the conservative decision was made to assume that the difference between category areas in the accounting year and in the previous year is the area that was converted from one category into another. Thus, it is distributed among the categories that increased in size, proportionally to the area increase. For activities related to deforestation or afforestation, actual data from the database for the activities under Article 3.3 KP was used. The aggregated land-use change matrix is shown in Table 6.4.

Since 2010, the lands in the subcategories of "converted" that were converted in 1990 are included into the respective subcategories of "remaining", maintaining the conversion period proposed by the IPCC - 20 years.

Table 6.4. The land-use change matrix with cumulative approach between categories for the time series of 1990-2018, kha

	,						
Category prior to conversion	Forest Land	Cropland	Grassland	Metlands	Settlements	Other Land	Total
		ı	1990		l.	l	l
Forest Land	10 211.94	0.04	0.01	0.00	0.08	0.01	10 212.08
Cropland	9.55	35 847.26	194.23			100.16	36 151.21
Grassland			7 037.96				7 037.96

		C	ategory afte	r conversion			
Category prior to conversion	Forest Land	Cropland	Grassland	Wetlands	Settlements	Other Land	Total
Wetlands				3 319.10			3 319.10
Settlements					2 420.22		2 420.22
Other Land						1 214.33	1 214.33
Total	10 221.50	35 847.30	7 232.20	3 319.10	2 420.30	1 314.50	60 354.90
T 1	10.220.05	0.14	1991	0.00	0.20	0.04	10 221 22
Forest Land	10 230.85	0.14	0.02	0.00	0.28	0.04	10 231.33
Cropland Grassland	15.92	35 731.06	273.70 7 037.94	14.85		100.16	36 135.69 7 037.94
Wetlands			7 037.94	3 319.10			3 319.10
Settlements	0.61		7.60	1.42	2 408.92		2 418.55
Other Land	0.83		10.34	1.93	2 400.72	1 199.19	1 212.29
Total	10 248.20	35 731.20	7 329.60	3 337.30	2 409.20	1 299.40	60 354.90
10111	10 2 10.20	35 731.20	1992	3 337.30	2 .03.20	1 200.10	00 22 1.70
Forest Land	10 282.73	2.94	0.50	0.04	5.98	0.93	10 293.11
Cropland	15.92	35 728.26	273.70	14.85		100.16	36 132.89
Grassland	0.51	13.14	7 019.67	0.06			7 033.38
Wetlands				3 319.06			3 319.06
Settlements	3.52	74.56	7.60	1.73	2 302.22		2 389.64
Other Land	3.92	78.99	10.34	2.26		1 091.31	1 186.82
Total	10 306.60	35 897.90	7 311.80	3 338.00	2 308.20	1 192.40	60 354.90
	T		1993	T	_	T	
Forest Land	10 299.97	2.94	0.54	0.04	6.00	0.93	10 310.42
Cropland	21.08	35 536.56	389.93	16.58	56.17	100.16	36 120.47
Grassland	0.51	13.14	7 019.63	0.06			7 033.34
Wetlands	2.52	74.56	7.60	3 319.06	2 202 20		3 319.06
Settlements	3.52	74.56	7.60	1.73	2 302.20	1.016.01	2 389.62
Other Land	5.92	78.99	55.51	2.93	21.83	1 016.81	1 181.99
Total	10 331.00	35 706.20	7 473.20 1994	3 340.40	2 386.20	1 117.90	60 354.90
Forest Land	10 314.62	2.95	0.54	0.04	6.01	0.93	10 325.09
Cropland	26.77	35 469.95	416.88	23.01	70.95	100.16	36 107.73
Grassland	0.51	13.14	7 019.63	0.06	70.73	100.10	7 033.34
Wetlands	0.51	13.11	7 015.05	3 319.06			3 319.06
Settlements	3.52	74.56	7.60	1.73	2 302.19		2 389.60
Other Land	6.78	78.99	59.55	3.90	24.05	1 006.81	1 180.08
Total	10 352.20	35 639.60	7 504.20	3 347.80	2 403.20	1 107.90	60 354.90
			1995				
Forest Land	10 312.69	2.96	0.55	0.06	6.03	0.98	10 323.27
Cropland	28.83	35 435.84	422.27	24.57	70.95	125.78	36 108.24
Grassland	0.51	13.14	7 019.61	0.06			7 033.32
Wetlands				3 319.04			3 319.04
Settlements	8.99	74.56	21.91	5.87	2 211.67	67.98	2 390.99
Other Land	6.78	78.99	59.55	3.90	24.05	1 006.76	1 180.03
Total	10 357.80	35 605.50	7 523.90	3 353.50	2 312.70	1 201.50	60 354.90
Daniel I and	10 217 04	2.07	1996	0.00	7.40	1 40	10.217.04
Forest Land	10 317.84	3.07	2.32	0.22	7.48	1.49	10 317.84
Cropland Grassland	36.97 0.51	35 309.03 13.14	516.67 7 017.84	24.57 0.06	90.48	125.78	36.97 0.51
Wetlands	0.51	13.14	2.09	3 316.08	0.43		0.51
Settlements	8.99	74.56	21.91	5.87	2 210.22	67.98	8.99
Other Land	7.50	78.99	67.97	3.87	25.79	994.95	7.50
Total	10 372.00	35 478.80	7 628.80	3.50	2 334.40	1 190.20	60 354.90
101111	10 372.00	JJ 770.00	1997	3 330.10	_ <i>2 </i>	1 1/0.20	00 337.70
Forest Land	10 318.63	3.09	2.35	0.22	7.48	1.52	10 318.63
Cropland	43.94	35 158.81	652.38	28.99	92.83	125.78	43.94

		C	ategory afte	r conversion			
Category prior to conversion	Forest Land	Cropland	Grassland	Wetlands	Settlements	Other Land	Total
Grassland	0.51	13.14	7 017.82	0.06			0.51
Wetlands	0.18		2.09	3 316.08	0.43		0.18
Settlements	8.99	74.56	21.91	5.87	2 210.22	67.98	8.99
Other Land	7.94	78.99	76.46	4.18	25.94	985.51	7.94
Total	10 380.20	35 328.60	7 773.00	3 355.40	2 336.90	1 180.80	60 354.90
			1998		T		
Forest Land	10 331.65	3.09	3.75	2.63	27.51	1.52	10 370.16
Cropland	45.37	35 108.11 13.14	657.77	34.46	127.01	125.78	36 098.50
Grassland Wetlands	0.51 0.18	13.14	7 016.42	0.06 3 313.67	0.43		7 030.13 3 316.37
Settlements	8.99	74.56	21.91	5.87	2 190.19	67.98	2 369.51
Other Land	10.89	78.99	87.67	15.51	96.86	880.31	1 170.24
Total	10.89	35 277.90	7 789.60	3 372.20	2 442.00	1 075.60	60 354.90
101111	10 371.00	33 211.70	1999	5 512,20	2 172.00	1 075.00	00 337.70
Forest Land	10 333.10	3.09	3.77	2.65	27.53	1.52	10 371.66
Cropland	48.35	35 059.31	691.78	34.46	137.81	125.78	36 097.48
Grassland	0.51	13.14	7 016.40	0.06			7 030.11
Wetlands	0.18		2.09	3 313.65	0.43		3 316.35
Settlements	8.99	74.56	21.91	5.87	2 190.17	67.98	2 369.49
Other Land	12.16	78.99	102.16	15.51	101.46	859.51	1 169.81
Total	10 403.30	35 229.10	7 838.10	3 372.20	2 457.40	1 054.80	60 354.90
		T	2000		ı	· · · · · · · · · · · · · · · · · · ·	
Forest Land	10 338.40	3.11	3.90	2.65	27.53	1.62	10 377.21
Cropland	53.19	34 978.09	761.37	34.46	137.81	127.42	36 092.34
Grassland	0.51	13.14	7 016.27	0.06	0.42	0.02	7 029.98
Wetlands Settlements	9.07	74.56	3.37 22.93	3 312.15 5.87	0.43 2 188.97	0.03 68.01	3 316.25 2 369.42
Other Land	12.16	78.99	102.16	15.51	101.46	859.42	1 169.71
Total	10 413.60	35 147.90	7 910.00	3 370.70	2 456.20	1 056.50	60 354.90
10111	10 115.00	33 117.50	2001	3 37 0.7 0	2 130.20	1 020.20	00 22 1.70
Forest Land	10 345.95	3.16	3.98	2.66	27.56	1.65	10 384.96
Cropland	57.37	34 945.34	773.29	37.36	137.81	134.87	36 086.04
Grassland	0.51	13.14	7 016.19	0.06			7 029.90
Wetlands	0.27		3.37	3 312.14	0.43	0.03	3 316.24
Settlements	9.94	74.56	25.41	6.48	2 182.14	69.56	2 368.08
Other Land	12.16	78.99	102.16	15.51	101.46	859.38	1 169.68
Total	10 426.20	35 115.20	7 924.40	3 374.20	2 449.40	1 065.50	60 354.90
E . I 1	10 251 70	2.16	2002	2.67	27.06	1.65	10 201 40
Forest Land	10 351.79 62.70	3.16 34 913.74	4.17 784.47	2.67 37.36	27.96 148.37	1.65 134.87	10 391.40 36 081.50
Cropland Grassland	0.51	13.14	7 016.00	0.06	148.57	134.87	7 029.71
Wetlands	0.51	13.14	3.87	3 310.73	0.90	0.03	3 316.04
Settlements	9.94	74.56	25.41	6.48	2 181.74	69.56	2 367.69
Other Land	13.46	78.99	104.88	15.51	104.03	851.68	1 168.57
Total	10 438.90	35 083.60	7 938.80	3 372.80	2 463.00	1 057.80	60 354.90
			2003			/	
Forest Land	10 365.21	3.26	4.17	2.73	27.96	1.73	10 405.06
Cropland	67.21	34 870.54	810.29	38.40	148.37	134.87	36 069.69
Grassland	0.51	13.14	7 016.00	0.06			7 029.71
Wetlands	0.51		3.87	3 310.67	0.90	0.03	3 315.97
Settlements	10.32	74.56	27.63	6.57	2 178.04	69.56	2 366.68
Other Land	13.73	78.99	106.44	15.58	104.03	849.01	1 167.79
Total	10 457.50	35 040.50	7 968.40	3 374.00	2 459.30	1 055.20	60 354.90
Daniel I 1	10 277 17	2.05	2004	0.72	20.21	1.02	10 416 06
Forest Land	10 376.16	3.85	4.17	2.73	28.21	1.83	10 416.96

		C	ategory afte	r conversion			
Category prior to conversion	Forest Land	Cropland	Grassland	Wetlands	Settlements	Other Land	Total
Cropland	74.29	34 847.15	810.29	42.39	148.37	136.20	36 058.69
Grassland	0.58	13.14	7 015.80	0.09		0.01	7 029.62
Wetlands	0.51		3.87	3 310.67	0.90	0.03	3 315.97
Settlements	10.63	74.56	27.63	6.74	2 176.79	69.62	2 365.97
Other Land	13.73	78.99	106.44	15.58	104.03	848.91	1 167.69
Total	10 475.90	35 017.70	7 968.20	3 378.20	2 458.30	1 056.60	60 354.90
			2005				
Forest Land	10 396.29	3.86	4.19	2.75	28.29	1.83	10 437.21
Cropland	78.84	34 821.54	810.29	45.18	153.82	137.09	36 046.76
Grassland	3.70	13.14	6 998.17	2.00	3.75	0.62	7 021.39
Wetlands	0.51		3.87	3 310.65	0.90	0.03	3 315.96
Settlements	10.63	74.56	27.63	6.74	2 176.71	69.62	2 365.89
Other Land	13.73	78.99	106.44	15.58	104.03	848.91	1 167.69
Total	10 503.70	34 992.10	7 950.60	3 382.90	2 467.50	1 058.10	60 354.90
E . I . 1	10 411 00	2.06	2006	2.75	20.27	1.06	10 452 01
Forest Land	10 411.90	3.86	4.27	2.75	28.37	1.86	10 453.01
Cropland	94.52	34 784.14	810.29 6 986.40	51.42	155.88	138.62	36 034.86
Grassland Wetlands	8.61 0.51	13.14	3.87	3.96 3 310.65	4.39 0.90	1.10 0.03	7 017.60 3 315.96
	10.63	74.56	27.63	6.74	2 176.63	69.62	2 365.81
Settlements Other Land	13.73	78.99	106.44	15.58	104.03	848.88	1 167.66
Total	10 539.90	34 954.70	7 938.90	3 391.10	2 470.20	1 060.10	60 354.90
Total	10 339.90	34 934.70	2007	3 391.10	2 470.20	1 000.10	00 334.90
Forest Land	10 403.65	3.86	4.28	2.86	28.46	2.01	10 445.12
Cropland	110.78	34 764.94	810.29	55.58	160.10	138.62	36 040.31
Grassland	13.18	13.14	6 980.99	5.13	5.58	1.10	7 019.12
Wetlands	0.51	1011	3.87	3 310.54	0.90	0.03	3 315.84
Settlements	10.63	74.56	27.63	6.74	2 176.54	69.62	2 365.73
Other Land	17.55	78.99	106.44	16.55	105.02	844.23	1 168.79
Total	10 556.30	34 935.50	7 933.50	3 397.40	2 476.60	1 055.60	60 354.90
			2008				
Forest Land	10 389.16	3.86	4.28	2.86	36.41	2.01	10 438.58
Cropland	119.18	34 756.24	810.29	56.50	163.78	138.62	36 044.61
Grassland	28.05	13.14	6 965.59	6.76	12.10	1.10	7 026.74
Wetlands	0.51		3.87	3 310.54	0.90	0.03	3 315.84
Settlements	10.63	74.56	27.63	6.74	2 168.59	69.62	2 357.78
Other Land	22.57	78.99	106.44	17.10	107.22	839.03	1 171.36
Total	10 570.10	34 926.80	7 918.10	3 400.50	2 489.00	1 050.40	60 354.90
Farret Land	10 272 12	3.87	2009	2.96	26.42	2.01	10 422 57
Forest Land Cropland	10 373.12 133.20	34 743.63	4.28 810.29	2.86 57.28	36.43 167.52	2.01 138.62	10 422.57 36 050.55
Grassland	48.64	13.14	6 947.09	7.90	17.59	1.10	7 035.47
Wetlands	0.51	13.14	3.87	3 310.54	0.90	0.03	3 315.84
Settlements	10.63	74.56	27.63	6.74	2 168.57	69.62	2 357.76
Other Land	25.79	78.99	106.44	17.28	108.09	836.13	1 172.72
Total	10 591.90	34 914.20	7 899.60	3 402.60	2 499.10	1 047.50	60 354.90
- 0 0002	10 071.70	2.711.20	2010	2 102.00	_ 1///10	2 3 17.50	55 55 1.70
Forest Land	10 368.56	3.83	4.27	2.86	36.35	2.00	10 417.86
Cropland	138.80	34 728.47	616.06	57.80	176.23	38.45	35 755.81
Grassland	55.32	13.14	7 134.63	8.13	21.43	1.10	7 233.75
Wetlands	0.51	0.00	3.87	3 310.54	0.90	0.03	3 315.84
Settlements	10.63	74.56	27.63	6.74	2 168.65	69.62	2 357.84
Other Land	27.29	78.99	106.44	17.33	108.94	934.80	1 273.80
Total	10 601.100	34 899.00	7 892.90	3 403.40	2 512.50	1 046.00	60 354.90
			2011				

		C	ategory afte	r conversion			
Category prior to conversion	Forest Land	Cropland	Grassland	Wetlands	Settlements	Other Land	Total
Forest Land	10 364.12	3.73	4.25	2.86	36.25	1.97	10 413.18
Cropland	141.41	34 720.47	536.60	42.95	180.33	38.46	35 660.21
Grassland	62.72	13.14	7 225.15	8.13	24.93	1.10	7 335.17
Wetlands	0.51	0.00	3.87	3 328.24	1.20	0.03	3 333.84
Settlements	10.03	74.56	20.03	5.32	2 168.85	69.62	2 348.41
Other Land	32.52	78.99	96.11	15.40	111.64	929.43	1 264.09
Total	10 611.30	34 890.90	7 886.00	3 402.90	2 523.20	1 040.60	60 354.90
	T		2012		T		
Forest Land	10 362.35	0.93	3.77	2.83	30.94	1.09	10 401.91
Cropland	145.52	34 884.97	536.60	43.00	183.02	38.46	35 831.56
Grassland	75.31	0.00	7 209.73	8.21	33.49	1.10	7 327.84
Wetlands	0.51	0.00	3.87	3 328.98	1.20	0.03	3 334.59
Settlements	7.11	0.00	20.03	5.01	2 174.15	69.62	2 275.92
Other Land	30.60	0.00	96.11	15.07	112.40	928.91	1 183.09
Total	10 621.40	34 885.90	7 870.10	3 403.10	2 535.20	1 039.20	60 354.90
Fanat Land	10.259.62	0.02	2013 3.73	2.82	21.01	1.00	10 200 10
Forest Land	10 358.62 140.37	0.93 34 884.97	420.37	41.27	31.01 126.85	1.08 38.46	10 398.19
Cropland Grassland	88.93	2.94	7 356.66	9.59	40.65	1.10	35 652.28 7 499.87
Wetlands	0.51	0.00	3.87	3 331.39	1.20	0.03	3 336.99
Settlements	7.11	0.00	20.03	5.01	2 252.17	69.62	2 353.94
Other Land	28.87	0.06	50.94	14.43	90.72	928.62	1 113.64
Total	10 624.40	34 888.90	7 855.60	3 404.50	2 542.60	1 038.90	60 354.90
Total	10 024.40	34 000.70	2014	3 404.30	2 342.00	1 030.70	00 334.70
Forest Land	10 365.83	0.92	3.73	2.82	31.00	1.12	10 405.42
Cropland	136.31	34 879.28	393.41	36.25	114.51	38.46	35 598.21
Grassland	91.03	2.94	7 380.36	11.39	43.78	1.10	7 530.60
Wetlands	0.51	0.00	3.87	3 338.79	1.20	0.03	3 344.39
Settlements	7.11	0.00	20.03	5.01	2 269.19	69.62	2 370.95
Other Land	29.51	0.06	46.89	14.75	90.73	923.38	1 105.33
Total	10 630.30	34 883.20	7 848.30	3 409.00	2 550.40	1 033.70	60 354.90
			2015				
Forest Land	10 373.36	0.91	3.72	2.80	30.98	1.09	10 412.86
Cropland	134.25	34 879.29	388.02	34.69	114.51	12.84	35 563.60
Grassland	93.73	5.54	7 392.28	11.39	46.18	1.20	7 550.32
Wetlands	0.61	0.10	3.87	3 344.21	1.29	0.03	3 350.11
Settlements	1.64	0.00	5.72	0.87	2 269.20	1.63	2 279.07
Other Land	29.51	0.06	46.89	14.75	90.73	1 017.00	1 198.95
Total	10 633.10	34 885.90	7 840.50	3 408.70	2 552.90	1 033.80	60 354.90
Forest Land	10 292 40	0.90	2016	2.64	20.52	0.61	10 292 40
Forest Land	10 382.40 134.40	0.80 34 868.78	1.95 293.63	2.64 34.69	29.53 97.32	0.61 12.84	10 382.40 134.40
Cropland	98.98	5.54	7 492.21	11.39	47.67	1.20	98.98
Grassland Wetlands	0.43	0.10	1.78	3 344.37	0.86	0.03	0.43
Settlements	1.64	0.10	5.72	0.87	2 292.35	1.63	1.64
Other Land	45.95	0.06	38.47	14.75	93.84	995.48	45.95
Total	10 663.80	34 875.27	7 833.76	3 408.70	2 561.57	1 011.79	60 354.90
	10 000.00	1 2.073.27	2017	2 100.70		2 011117	00 00 1170
Forest Land	10 389.81	0.78	1.92	2.64	29.53	0.61	10 425.30
Cropland	129.77	34 863.07	157.92	30.26	98.35	12.84	35 292.21
Grassland	104.27	5.54	7 623.53	11.39	55.29	1.20	7 801.21
Wetlands	0.43	0.10	1.78	3 349.07	0.86	0.03	3 352.27
Settlements	1.64	0.00	5.72	0.87	2 294.85	1.63	2 304.71
Other Land	49.02	0.06	29.98	14.47	98.74	986.92	1 179.20
Total	10 674.95	34 869.55	7 820.85	3 408.70	2 577.62	1 003.23	60 354.90

Category prior to conversion	Forest Land	Cropland	Grassland	Wetlands	Settlements	Other Land	Total
			2018				
Forest Land	10 394.19	0.78	0.53	0.23	9.50	0.62	10 405.85
Cropland	128.35	34 863.07	152.52	24.80	64.17	12.84	35 245.74
Grassland	111.82	64.12	7 397.67	11.39	233.01	1.20	7 819.21
Wetlands	0.49	0.57	1.78	3 366.32	2.29	0.03	3 371.48
Settlements	1.64	0.00	5.72	0.87	2 419.98	1.63	2 429.85
Other Land	49.08	23.43	18.78	3.13	98.72	889.63	1 082.77
Total	10 685.56	34 951.97	7 577.00	3 406.74	2 827.67	905.95	60 354.90

6.2 Forest Land (CRF category 4.A)

6.2.1 Category description

In line with the Forest Code of Ukraine [10], the forest is the type of a natural complex that consists mainly of tree and shrub vegetation with the respective soils, herbaceous vegetation, fauna, microorganisms, and other natural ingredients, which are interconnected in their development, influence each other and the environment.

The Forest Land considered for the calculations include plots with the minimal area of 0.1 hectares, minimum width of 20 meters, minimum crown coverage (or the equivalent of stand density) of 30%, and minimum tree height at maturity - 5 meters. The young natural forests and forest plantations that have not reached 30 % of crown coverage (the equivalent of stand density - 0.3) and/or the height of 5 meters are considered a part of forests temporarily not covered with forest vegetation as a result of human activities or environmental factors, but that will reach the threshold values in the future. Inclusion of the minimum value of the forest width (20 m) is consistent with the definition of forests recommended for reporting to the Food and Agriculture Organization of the United Nations (the FAO) and preparation of Ukraine's report [3].

This category is divided into the subcategories -4.A.1 Forest Land Remaining Forest Land and 4.A.2 Land Converted to Forest Land. The period of transition from the sub-category of converted land to sub-category 4.A.1 is the default -20 years.

Besides, the subcategory Forest Land Remaining Forest Land is divided into managed and unmanaged forests. The work to revise areas of managed and unmanaged forests is ongoing, as part of land-use transition matrix revision and revision of activity data regarding forestry on time series.

Managed forests include all forest land, on which there are anthropogenic activities of forest harvesting, forest planting, and forest maintenance conducted. Thus, managed forests are associated with the mandatory reporting activities in accordance with Article 3.4 of the Kyoto Protocol.

Unmanaged Forest land includes lands defined by the Forest Code of Ukraine as "natural forests", "primary forests" and "quasi-primary forests" [13]. These definitions are presented as following:

- "natural forests" (natural forest ecosystems) forests (forest ecosystems), where locally and temporary anthropogenic influence has occurred, but it did not changed cenotic structure of phytocenosis and thus natural forest ecosystems are able to regenerate (recover) naturally in a short time period to primary forest ecosystems conditions;
- "primary forests" (primary forest ecosystems) ancient forest (natural forest ecosystems) formed naturally and during its development did not have direct anthropogenic influence;

• "quasi-primary forests" – relatively primary forest ecosystems, where insignificant temporary anthropogenic influence occurred, which has not changed natural structure of stands and with its cease natural conditions of ecosystems are fully recovered during short period of time.

These amendments to Forest Code of Ukraine were introduced in May 2017. The Order of Ministry of Ecology and Natural Resources of Ukraine №161 from 18.05.2018 has defined the methodology for recognition of forests to be natural, primary or quasi-primary as defined by Forest Code of Ukraine.

During the preparation of NIR 2020 the data about areas of natural, primary or quasi-primary forests have been received from the Ministry of Defense of Ukraine and the State Agency of Ukraine on Exclusion Zone Management with total area of 1238.9 ha. The State Forest Agency of Ukraine provided information, that under its responsibility there are 20,208.4 ha of such forests. These areas were excluded from the calculation of CSC in Forest land category.

Annually there are 50.0-65.8 kt CO_2 -eq. of GHG removed by the Forest Land category in total (Fig. 6.1). In 2018 Forest Land category is a sink of -50.7 Mt CO_2 -eq., what is lower by 21 % as in 1990 (-64.0 Mt CO_2 -eq.) and by 0.6 % as in 2017 (-51.0 Mt CO_2 -eq.).

Difference in C-removals during the reporting period is due to the felling volumes, emissions from fires, afforestation areas, as well as conversions to the category from other land-uses.

Emissions of greenhouse gases other than CO₂ are associated with uncontrolled fires and soil drainage, as well as nitrogen mineralization due to land conversion (direct and indirect emissions of Nitrogen). No other activities that contribute into emission of gases other than CO₂ are conducted in Ukraine in the forestry sector (fertilizers, controlled fires).

6.2.2 Methodological issues

The total area of forests is taken from the data of the State Service of Ukraine for Geodesy, Cartography and Cadastre (form 16-zem). The mentioned form also contains data on areas actually covered with forest vegetation at particular year.

Calculations in the Forest Land category were carried out for all pools, except for DOM and mineral soil in sub-category 4.A.1 Forest Land remaining Forest Land. The assumption anticipates zero carbon stock change in forest soils and is based on findings of the research held in Ukraine [4]. Acknowledging need to apply Tier 2 method for both DOM and soil pools Ukraine however unable to apply it due to absence of national specific factors. A work to develop national specific factors is included into improvement plan (please see Annex 8.2).

Changes in the carbon amount in biomass were calculated under Tier 2 using national EFs. For DOM, organic and mineral soils, default factors were used for sub-category 4.A.2 Lands converted to Forest Land. Calculations in the category are presented in Annex 3.3.

The key sources of activity data (areas of forests by main forest species, grouped by age and region) for the estimations are reporting form on land use, statistic data from the State Statistic Service of Ukraine, forest inventory data, as well as other data of the State Forest Resources Agency of Ukraine. Should be noticed that national statistical data was corrected for 2014-2018 with use of analytical study results [3].

Forest inventory in Ukraine does not yet cover entire forests of the country. The system of forest inventories left from soviet times, when every forest enterprise should have a development plan (previously for 10 years), written by a special institution based on field measurements of temporary plots. The State Forest Resources Agency of Ukraine maintain the same approach for its enterprises. All the rest of forest enterprises (under responsibility of other agencies and ministries) are encouraged to do the same, but not obliged.

Consequently, the data collected during the development of development plans for enterprises were consolidated in the databases. These databases is used in order to export data on areas, which then are extrapolated to entire area of forest in Ukraine. Currently the data from 1988, 1996 and 2002 inventories were extracted from paper copies of inventory materials. There are electronic databases available for years starting from 2005.

The information from paper copies of forest inventories has other than 10-years subdivision of areas of forests, which is used for data extraction from databases starting from 2005. It is based on age of "maturity" of forests (I class young stands, II class young stands, middle-aged, pre-mature, mature and old stands), commonly used in Ukraine, and depends on forest species, natural zone and protection status of forest plot. So, for example, age of mature pine stand in exploitable forest in flat area of Ukraine will have different age, then mature pine stand in protected area in Carpathian mountains. This creates a necessity to adjust the data for 1988, 1996 and 2002 years. Apparently previous approach to adjust the data resulted in rapid shift of C-gains between 2002 and 2005, recognized by the ERT in L.35. Ukraine is seeking the ways of better adjustment of these data and will perform the recalculations in the following submissions.

Extracted data mentioned above is used for calculation of C-gains, which then is extrapolated to entire area covered by forest vegetation at particular year, as reported in the form 16-zem by the State Service of Ukraine for Geodesy, Cartography and Cadastre.

Estimation of C-losses from biomass is based on data of the State Statistic Service of Ukraine, which collects information from all of forest enterprises, thus does not need to be extrapolated. More details on methodology is provided in the annex 3.3.1.

Estimation of CSC in DOM were based on use of Tier 1 methodology. For Forest land remaining Forest land CSC is equal to zero since inputs to DOM is assumed to be equal to outputs. For Land converted to Forest land equation 2.23 of 2006 IPCC, Volume 4, Chapter 2 and EFs from table 2.2 were used.

The ERT by recommendation L.10 asked to revise methodology and EFs used previously for this pool. Ukraine recognizes the need to develop more accurate methodology and EFs (as mentioned in Annex 8.2). For the time until new methodology and EFs will be developed Tier 1 methodology and default EFs will be used.

To estimate CSC in SOM Tier 1 method and default EFs were used (equation 2.25 of 2006 IPCC Guidelines) for Land converted to Forest Land category. Particularly according to Harmonized World Soil Database⁵ almost all of the soils are high activity clay soils according to IPCC classification (please see Annex 3.3.1). Thus SOC_{ref} for moist cold temperate zone with HAC was applied.

Emissions from forest fires are estimated using Tier 1 method and default EFs. 2006 IPCC methodology was adopted for national circumstances for more accurate and complete use of available national statistics. For more detail on the methodology, see Annex 3.3.1.

During the GHG inventory for 1990-2018, estimation of nitrogen emissions from drainage of Forest Land was held using Tier 1 method and default EFs [1].

In order to estimate N_2O emissions from the mineralization process when converting land to forest, Tier 1 methodology and default EFs were used.

Indirect N_2O emissions from the mineralization process when converting land to forest were estimated. For this purpose, Tier 1 methodology and the default EFs were used.

The summary information regarding methods and emission factors used is presented in Table 6.9.

Table 6.9. Summary information on gases reported, methods and emission factors used for calculations in Forest Land category

CRF category	Gas reported	Method	Emission	Note
	_		factor	
4.A.1 Forest Land remaining				
Forest Land				
- living biomass	CO_2	CS, T2	CS	
- DOM, SOM	CO_2	T1	D	
4.A.2 Land converted to Forest				
Land				
- living biomass, DOM, SOM	CO_2	CS, T1, T2	CS, D	
4(II) Emissions and removals from				
drainage and rewetting and other				

⁵ http://webarchive.iiasa.ac.at/Research/LUC/External-World-soil-database/HTML/index.html

CRF category	Gas reported	Method	Emission	Note
			factor	
management of organic and				
mineral soils	CO_2, N_2O	T1	D	
- drained organic soils				
4(III) Direct N2O Emissions from				
N Mineralization/Immobilization	N_2O	T1	D	
4(IV) Indirect nitrous oxide (N2O)	N_2O	T1	D	
emissions from managed soils				
4(V) Biomass Burning	CO ₂ , CH ₄ , N ₂ O	CS, T1	D	

6.2.3 Uncertainties and time-series consistency

The primary factors that affect the uncertainty in this category are:

- distribution of forest land areas by categories;
- accuracy of biomass growth estimation;
- accuracy of conversion coefficients.

The total uncertainty of emissions/removals for the land-use category Forest Land is 23 %. Data on input data and uncertainty factors is presented in Table 6.10. Most of uncertainties were derived by expert judgment, as well as taken from 2006 IPCC guidelines for default values.

Table 6.10. Uncertainties in the Forest Land category

Data on biomass growth	20 %	Expert
		judgment
The ratio of above-ground and below-ground biomass	15 %	Expert
		judgment
Estimation of the amount of carbon in biomass	2 %	IPCC
Calculated uncertainty of land converted into forest land	50 %	Expert
		judgment
Estimated uncertainty of carbon in the pool of the forest litter of Lands converted	38 %	Expert
to Forest Land		judgment
Estimated uncertainty of carbon in the pool of the mineral soils of Lands con-	29 %	Expert
verted to Forest Land		judgment
Total uncertainty of carbon stored in biomass on Forest Land remaining Forest	9 %	Calculated
Land		
Uncertainty of the carbon EF for organic soils	64.7 %	IPCC
Estimated uncertainty of carbon emissions for organic soils	65 %	Calculated
Total uncertainty of carbon stored in biomass on Lands converted to Forest Land	39 %	Expert
		judgment
Uncertainty of cutting data	10 %	Expert
		judgment
Uncertainty of data on fires	10 %	Expert
		judgment

6.2.4 Category-specific QA/QC procedures

The detailed QA/QC procedures were applied to estimation of GHG emissions and removals.

All the input statistical information is documented and confirmed with official letters from state statistical agencies of Ukraine, archived, and suitable for performing recalculations.

As part of QC procedures, calculations based on national factors were compared with calculations using Tier 1 and default EFs for Forest land remaining forest land. Net biomass CSC resulted in 13 % less C-removals compared to simplified method.

Emissions from fires were also compared with Tier 1 method and default calculations. The comparison resulted in 130 % less emissions than by simplified method. This is mainly caused by use of actual losses of wood compared to default value.

6.2.5 Category-specific recalculations

C-gains by biomass was revised. Particularly, new data with regard to unmanaged forests were incorporated into calculation, resulting in lower removals by biomass growth.

Emissions from disturbances were revised, based on recommendation L.31. Particularly, new correction factor was applied (more information is provided in Annex 3.3.1).

Also the area of afforestation in 2015 was clarified, thus lead to revision of CSC in the Land converted to Forest land category.

The total values of GHG emissions in this category, as well as a comparison with the 2019 submission, are presented in Table 6.11.

Table 6.11. The change in GHG emissions in the Forest Land category for the time series from 1990 to 2017, kt CO₂-eq.

Year	NIR 2019	NIR 2020	Difference, %
1990	-64076	-63951	-0.2
1991	-64289	-64116	-0.3
1992	-62889	-62685	-0.3
1993	-62286	-62104	-0.3
1994	-63832	-63633	-0.3
1995	-64496	-64310	-0.3
1996	-60102	-60019	-0.1
1997	-63066	-62908	-0.3
1998	-65966	-65818	-0.2
1999	-65742	-65767	0.0
2000	-64452	-64270	-0.3
2001	-63984	-64233	0.4
2002	-62553	-62796	0.4
2003	-60016	-60720	1.2
2004	-58473	-58462	0.0
2005	-55665	-56166	0.9
2006	-55852	-55951	0.2
2007	-51291	-52843	3.0
2008	-55187	-55346	0.3
2009	-55090	-55849	1.4
2010	-52144	-54013	3.6
2011	-51708	-53692	3.8
2012	-52317	-52845	1.0
2013	-52372	-52725	0.7
2014	-52214	-52084	-0.2
2015	-50435	-50318	-0.2
2016	-50124	-50008	-0.2
2017	-51112	-50997	-0.2

6.2.6 Category-specific planned improvements

Ukraine recognizes the need to develop country-specific factors for Tier 2 method for the category. The research is included into improvement plan, subject to availability of funding.

6.3 Cropland (CRF category 4.B)

6.3.1 Category description

This category includes two subcategories: 4.B.1 Cropland Remaining Cropland and 4.B.2 Land Converted to Cropland. Just as for the category 4.A Forest Land, the 20-year period of land conversion from the subcategory Land Converted to Cropland to the subcategory Cropland Remaining Cropland was applied [1].

The category 4.B Cropland does not include hayfields and pastures, as they are included into the category 4.C Grassland.

Category 4.B is the most significant source of carbon emissions in the LULUCF sector (Fig. 6.1). On the time series GHG total removals in 1990 (-4.6 Mt CO₂-eq.) switched to total emissions in 2018 (48.2 Mt CO₂-eq.). Emissions has increased in comparison with 2017 by 22 %.

The key drivers for GHG emissions and removals are N-balance in mineral soil during crop grow (as it is calculated using nationally developed methodology), what is influenced mainly by crop structure (area and volumes harvested) and fertilizers applied (figures 6.2 and 6.3), as well as conversions to Cropland category.

6.3.2 Methodological issues

The key sources of AD are statistical reporting forms 16-zem, 29-sg, 9-bsg. To determine the land converted to the Cropland category, data from the land-use change matrix (Table 6.4) and database were used (for Forest Land converted to Cropland). So far, there is no information on spatial distribution of areas of Cropland (neither for arable lands, orchards and fallow lands). This is expected to be changed after land-use matrices revision due to introduction of GIS data.

The data from 29-sg and 9-bsg forms of national statistics was corrected for 2014-2018 years using the results of analytical study for its use in the national inventory [3].

Carbon in this category is absorbed by the biomass of perennial woody vegetation. Estimations of carbon emissions and removals on such lands were made under Tier 1 using the areas from form 16-zem and the default EFs [1]. There is no data available on areas of harvest of orchards or exact harvest volumes. Thus to apply Tier 1 method the area of 1990 was divided by default harvest cycle (30 years) to derive areas of different aged orchards. For C-gains all the area was considered, while to calculate C-losses 30-years old perennial woody stands were taken. For more detailed information please see Annex 3.3.2.

To calculate carbon stock dynamics in pool of mineral soils, the methods of nitrogen flow balance were used based on application of the system of national factors. It is relevant for arable lands only. Ukraine does not perform calculations for fallow lands due to lack of input data. Nevertheless, it is expected, that fallow lands after intensive management will gain Carbon in mineral soil pool, so this assumption does not underestimate emissions.

The description of the nitrogen flow method for mineral soils, please see Annex 3.3.2.

Calculation of carbon emissions from organic soil pool was held based on data of organic soil areas and the emission factors recommended for use in the 2006 IPCC Guidelines [1]. On response to recommendation from the ERT EF for temperate zone was applied.

In Ukraine, burning of crop residues on agricultural lands is officially forbidden [7], so all fires on cropland are considered as wildfires. Estimation of CH₄, N₂O, CO, and NO_x emissions during burning of plant residues was conducted under Tier 1 of 2006 IPCC Guidelines (equation 2.27) using default factors. To estimate NMVOC emissions, the method and emission factors from 2013 EMEP/EEA emission inventory guidebook [8] were used (see Annex 3.3.2).

Information on damaged by fires agricultural land area was received from regional offices of the State Emergency Service of Ukraine and presented in Table 3.3.22, Annex 3.3.2.

In the subcategory of Land converted to Cropland, carbon stock changes were estimated for the pools of living biomass (Forest Land and Grassland converted to Cropland), DOM (Forest Land converted to Cropland) and SOM (for all land-use categories, except Wetlands converted to Cropland, for which no methodological guidance is provided by IPCC, 2006).

CSC from conversions of forests in living biomass is estimated using national factors. Carbon losses from living biomass from conversions of Grassland are estimated using Tier 1 method and default emission factors.

To estimate CSC in SOM Tier 1 method and default EFs were used (equation 2.25 of 2006 IPCC Guidelines) for Land converted to Cropland category. Particularly according to Harmonized World Soil Database⁶ almost all of the soils are high activity clay soils according to IPCC classification(please see Annex 3.3.1). Thus SOC_{ref} for moist cold temperate zone with HAC was applied.

For all converted lands, direct and indirect N₂O emissions from mineralization were estimated using 2006 IPCC equations 11.8 and 11.10, respectively, applying the default EFs.

The summary information regarding methods and emission factors used is presented in Table 6.12.

Table 6.12. Summary information on gases reported, methods and emission factors used for calculations in Cropland category

CRF category	Gas reported	Method	Emission	Note
	-		factor	
4.B.1 Cropland remaining Cropland				
- living biomass, DOM	CO_2	T1	D	T1 for living biomass is used
- SOM	CO ₂	CS, T3	CS	due to unavailability of data and EFs for application of higher tiers
4.B.2 Land converted to Cropland				
- living biomass, DOM, SOM	CO_2	CS, T1	CS, D	
4(II) Emissions and removals from drainage and rewetting and other management of organic and mineral soils				
- drained organic soils	CO ₂	T1	D	
4(III) Direct N2O Emissions from				
N Mineralization/Immobilization	N_2O	T1	D	
4(IV) Indirect nitrous oxide (N2O) emissions from managed soils	N ₂ O	T1	D	
4(V) Biomass Burning	CH ₄ , N ₂ O	CS, T1	D	

6.3.3 Uncertainties and time-series consistency

The key factors that determine the degree of uncertainty of the GHG emission estimations in the land-use category Cropland are accuracy of:

- amount of crop residues, nitrogen stocks in them, their degree of humification and the level of nitrogen consumption by agricultural crops;
- degree of humification of organic fertilizers, nitrogen amounts in them available to agricultural plants;
 - degree of nitrogen consumption by agricultural crops from nitrogen mineral fertilizers;
 - amounts of nitrogen input as a result of symbiotic and non-symbiotic fixation;
- degree of mineralization of agricultural soils, depending on the type of crop cultivated, the amount of nitrogen stocks in the soils, and their grain texture;
 - C:N ratio in the various types of agricultural soils.

The total uncertainty of emissions/sinks for the land-use category Cropland is 38%.

⁶ http://webarchive.iiasa.ac.at/Research/LUC/External-World-soil-database/HTML/index.html

Data on AD and EFs uncertainty are presented in Table 6.13. Uncertainties for default EFs were taken from 2006 IPCC Guidelines. Uncertainties for CS factors were derived from expert judgments.

Table 6.13. Uncertainties in the Cropland category

6 %	Expert judgment
13.5 %	Scientific research [9]
3.0 %	Scientific research [9]
1.9 %	Scientific research [9]
18.1 %	Scientific research [9]
18.7 %	Scientific research [9]
8.1 %	Scientific research [9]
14.1 %	Scientific research [9]
9.9 %	Scientific research [9]
14.0 %	Scientific research [9]
19.4 %	Scientific research [9]
23.0 %	Scientific research [9]
42.9 %	Scientific research [9]
6.1 %	Scientific research [9]
38.5 %	Scientific research [9]
47.2 %	Scientific research [9]
3.1 %	Scientific research [9]
75.2 %	IPCC
90.1 %	IPCC
170 %	Calculated
22.7 %	Calculated
27.5 %	Calculated
	13.5 % 3.0 % 1.9 % 18.1 % 18.7 % 8.1 % 14.1 % 9.9 % 14.0 % 19.4 % 23.0 % 42.9 % 6.1 % 38.5 % 47.2 % 3.1 % 75.2 %

6.3.4 Category-specific QA/QC procedures

For estimation of GHG emissions in the category Cropland, QA/QC procedures were applied. Correctness of the assumptions made for the estimations was confirmed by expert opinions.

All the input statistical information is documented and confirmed with official letters from state statistical agencies of Ukraine, archived, and suitable for performing recalculations.

Tier 1 method calculation was performed as part of verification of the calculations of CSC in SOM. Particularly equation is 11.6 used to compare national and IPCC approaches of estimation of N in crop residues. The results is presented below in table 6.14 by groups of crops (calculations were performed by more detailed separation). The data in the table shows big difference in some of the crop groups (like grains). There are some national circumstances of above-ground residues use, like for feeding or bedding, thus the only factor of F_{remove} may not reflect it, while national methodology does.

Nevertheless, the totals estimated by national methodology are bigger by 33 and 46 percent than Tier 1 for above- and below-ground residues respectively.

Improvement of factors for Cropland category is in high need, so it is included into improvement plan (annex A8.2).

Table 6.14. Comparison of estimation of N-content in crop residues left on fields

	Tier 1 cal	culation	National methodology		Difference	
Crops	N above-	N below-	N above-	N below-	% above-	% below-
	ground, kg	ground, kg	ground, kg	ground, kg	ground	ground
Grains	259530447	285927862	516184871	598007254	50	52
Beans and pulses	3890549	3123080	4300437	18555367	10	83
Industrial crops (incl. sugar beat)	29467582	39625862	1489141	11987623	-1879	-231
Oil crops	248054723	77340563	379756525	287891017	35	73

	Tier 1 cal	culation	National methodology		Difference	
Crops	N above-	N below-	N above-	N below-	% above-	% below-
	ground, kg	ground, kg	ground, kg	ground, kg	ground	ground
Vegetables (incl. potato)	50421045	27720863	78490909	35366393	36	22
Feeding crops	8971565	5605637	1414473	4889886	-534	-15
Grasses for feeding	80242735	126585615	49486078	78585477	-62	-61
Total Cropland	676859097	551704244	1017664070	1025758608	33	46
Total Grassland	5300899	14701161	13762450	10174475	61	-44

It should be noticed that estimation of N in crop residues left on agricultural fields in Agriculture and LULUCF sectors are identical. The values calculated then used in Agriculture for calculation of direct N_2O emissions. In LULUCF the remaining part (after subtraction of direct N_2O emissions) is used in further calculations in Cropland and Grassland category (according to the methodology described in annex 3.3).

For N-input from organic fertilizers actual calculations from Agriculture sector was used. Particularly value of available Nitrogen from MMS was used after subtraction of N losses due to direct emissions, which are reported under Agriculture sector. So with recalculations in Agriculture sector revised values are used then in LULUCF sector. More details with regard to N available from MMS are provided in chapter 5.3.

6.3.5 Category-specific recalculations

Recalculations in Cropland remaining Cropland were performed due to revision of N available from manure after storage (for more details please see chapter 5.3). However, overall impact on the emissions in the category is minor.

Table 6.15. The change in GHG emissions in the Cropland category for the time series from 1990 to 2017, kt CO₂-eq.

Year	NIR 2019	NIR 2020	Difference, %
1990	-4532	-4557	0.55
1991	-7843	-7867	0.31
1992	-5748	-5771	0.41
1993	4099	4076	-0.57
1994	849	826	-2.68
1995	6246	6225	-0.34
1996	6085	6065	-0.32
1997	13493	13476	-0.12
1998	8947	8931	-0.18
1999	9538	9521	-0.17
2000	15360	15346	-0.09
2001	20221	20207	-0.07
2002	20685	20670	-0.07
2003	12671	12657	-0.11
2004	22993	22980	-0.05
2005	23840	23827	-0.05
2006	19814	19800	-0.07
2007	13639	13624	-0.10
2008	31337	31325	-0.04
2009	28256	28244	-0.04
2010	21439	21426	-0.06
2011	37093	37081	-0.03
2012	32288	32275	-0.04
2013	44727	44715	-0.03
2014	46520	46508	-0.03
2015	42935	42924	-0.03
2016	47298	47287	-0.02
2017	39603	39594	-0.02

6.3.6 Category-specific planned improvements

A work to revise and improve factors used in nitrogen-flow in mineral soils under Cropland was included into improvement plan. This work is also connected with need of verification of Tier 3 methodology, applied by Ukraine, what is a matter of availability of funds.

6.4 Grassland (CRF sector 4.C)

6.4.1 Category description

This category includes two subcategories: 4.C.1 Grassland Remaining Grassland and 4.C.2 Land Converted to Grassland. As well as in the previous categories, the 20-year period of land transition to subcategory 4.C.1 was applied. [1] The subcategory Grassland Remaining Grassland is divided into the managed and unmanaged. Ukraine has revised its approach towards definition of managed and unmanaged grasslands and concluded, that there are no unmanaged grasslands.

This category covers agricultural land systematically used for hay mowing, cattle grazing, the areas from which green mass for cattle feeding with silage material was harvested. Moreover, this category includes hayfields and pastures plowed for the purposes of their radical improvement and permanently used under grass forage crops.

The category Grassland is a net sink of GHG emissions. In 2018 there were 0.2 Mt CO_2 -eq. of removals, what is lower than in 1990 by 74 % (0.9 Mt CO_2 -eq. of removals) and by 46 % than in 2017 (0.5 Mt CO_2 -eq. of removals).

GHG emissions and removals in the category is influenced by areas under management for grazing and moving and areas of organic soils, as well as areas of conversions to Grassland category. To a less extent the trend is influenced by fires.

6.4.2 Methodological issues

The data sources for the Grassland category are forms of statistical reporting 16-zem, 29-sg, and 9-bsg. The data from this forms for 2014-2018 were corrected with the results of analytical study [3].

Previously assumed as managed grasslands, the areas of grazing or moving is taken from statistic form 29-sg, yearly prepared by the State Statistic Service of Ukraine. Currently this area, as well as grass harvesting, is used in order to calculate CSC in SOM.

Estimation of CSC in biomass and DOM pools were not performed assuming carbon balance in these pools, what is in line with Tier 1 of 2006 IPCC Guidelines. There are insufficiency of data collection, as well as lack of country-specific factors, to apply Tier 2.

To calculate carbon stock dynamics in the pool of mineral soils, the methods of nitrogen flow balance evaluation were used based on application of the national factors. The calculation methods are similar to those used for the pool of mineral soils in the land-use category Cropland (Annex 3.3.2). The estimation of carbon stock changes in pools of the land-use category Grassland was based on use of data on the areas where grass was directly harvested, the amounts of crop harvested, the yield (based on statistical reporting form 29-sg), as well as data on amounts of organic and nitrogen fertilizers for different crops applied (9-bsg), corrected with use of results of analytical study for 2014-2018 years [3].

The values of the areas that are legally seen within the land-use categories Hayfields and Pastures from statistical reporting form 16-zem exceed the land area from which the crop of hay and green mass was harvested by 60-70 %. Based on the abovementioned, the assumption was made that lands converted to Grassland do not fall under the anthropogenic burden in the category.

To estimate CSC in SOM Tier 1 method and default EFs were used (equation 2.25 of 2006 IPCC Guidelines) for Land converted to Grassland category. Particularly according to Harmonized

World Soil Database⁷ almost all of the soils are high activity clay soils according to IPCC classification(please see Annex 3.3.1). Thus SOC_{ref} for moist cold temperate zone with HAC soils was applied.

Calculation of GHG emissions from organic soils Tier 1 method and default EF from 2006 IPCC Guidelines was applied.

The estimation of emissions of non-CO₂ gases includes an inventory from biomass burning processes on pastures, as well as direct and indirect nitrogen emissions from conversion from other land-use categories.

Information on fires on grasslands was provided by the specialized institute of the State Emergency Service of Ukraine. The data was provided only starting from 2005, as the statistics were not collected before that year. To derive data for 1990-2004 average value of 2005-2013 years was used. The estimation was held under Tier 1 using the default EFs (Annex 3.3.2).

Calculation of direct and indirect emissions of N_2O due to mineralization was held under Tier 1 using the default EFs for Land converted to Grassland. On Grassland remaining Grassland, the emissions do not take place, as there is an increase in carbon stock in the mineral soil pool.

The summary information regarding methods and emission factors used is presented in Table 6.16.

Table 6.16. Summary information on gases reported, methods and emission factors used for calculations in Grassland category

CDE		3.6.1.1	ъ	NT .
CRF category	Gas reported	Method	Emission	Note
			factor	
4.C.1 Grassland remaining				
Grassland				
-biomass, DOM	CO_2	T1	D	T1 for living biomass is used
- SOM	CO_2	CS, T3	CS	due to unavailability of data
				and EFs for application of
				higher tiers
4.C.2 Land converted to Grassland				
- living biomass, DOM, SOM	CO_2	CS, T1	CS, D	
4(II) Emissions and removals from				
drainage and rewetting and other				
management of organic and				
mineral soils				
- drained organic soils	CO_2	T1	D	
4(III) Direct N2O Emissions from				
N Mineralization/Immobilization	N_2O	T1	D	
4(IV) Indirect nitrous oxide (N2O)	N ₂ O	T1	D	
emissions from managed soils				
4(V) Biomass Burning	CO ₂ , CH ₄ , N ₂ O	T1	D	

6.4.3 Uncertainties and time-series consistency

The key factors that influence the degree of uncertainty of the GHG emission estimations in the land-use category 4.C Grassland are the following:

- amount of crop residues, nitrogen stocks in them, their degree of humification and the level of comsumption of the nitrogen by agricultural crops;
- degree of humification of organic fertilizers, nitrogen amounts in them available to agricultural plants;
 - the level of consumption of nitrogen fertilizers by agricultural crops;
- degree of mineralization of agricultural soils, depending on the type of crop cultivated, the amount of nitrogen stocks in the soils, and their grain texture;
 - C:N ratio in the various types of agricultural soils.

 The total uncertainty of emissions/removals for the land-use category 4.C Grassland is 24 %.

⁷ http://webarchive.iiasa.ac.at/Research/LUC/External-World-soil-database/HTML/index.html

Data on input data and uncertainty factors are presented in Table 6.17. Uncertainties for default EFs were taken from 2006 IPCC Guidelines. Uncertainties for CS factors were derived from expert judgments.

Table 6.17. Uncertainties in the Grassland category

		1
Uncertainty of activity data	6 %	Expert judgment
Distribution of harvested areas of agricultural crops by climatic zones	15 %	Scientific research [9]
Nitrogen content in the primary crop production	14.8 %	Scientific research [9]
Nitrogen content in crop residues (above- and below-ground)	3.7 %	Scientific research [9]
Nitrogen consumption by plants from crop residues	6.7 %	Scientific research [9]
Nitrogen inputs into plants from nitrogen mineral fertilizers	28.4 %	Scientific research [9]
Nitrogen inputs into plants from organic fertilizers	14.1 %	Scientific research [9]
Nitrogen inputs into soil from crop residues	13.0 %	Scientific research [9]
Nitrogen inputs into soil from organic fertilizers	17.0 %	Scientific research [9]
Nitrogen inputs into soil from symbiotic fixation	9.9 %	Scientific research [9]
Nitrogen inputs into soil from non-symbiotic fixation	36.0 %	Scientific research [9]
Nitrogen inputs into soil with precipitations	42.9 %	Scientific research [9]
Amount of humus mineralization of soils at crop growing	15.5 %	Scientific research [9]
Consideration of soil type areas of different mechanical composition	17.6 %	Scientific research [9]
Consideration of areas of various types of soils of different mechanical	47.2 %	Scientific research [9]
composition by climatic zones		
Consideration of the C:N ratio for different types of soils	3.1 %	Scientific research [9]
Uncertainty of carbon emissions for organic soils	90 %	IPCC
Combined uncertainty of carbon emissions from forest land converted to	9 %	Expert judgment
grassland		
Methane emission factor from burning on Grassland	39.1 %	Calculated
Nitrous oxide emission factor from burning on Grassland	47.6 %	Calculated

6.4.4 Category-specific QA/QC procedures

For estimation of GHG emissions in the category 4.C Grassland, QA/QC procedures were applied. Correctness of the assumptions made for the estimations was confirmed by specialized experts' opinions.

All the input statistical information is documented and confirmed with official letters from state statistical agencies of Ukraine, archived, and suitable for performing recalculations.

As described in chapter 6.3.4, as a part of verification, estimation of N volumes in residues left to decay on fields using Tier 1 was performed. The result of analysis shows that the national methodology results in less N from below-ground residues by 44 %, but more N from above-ground residues by 61 %.

Improvement of factors for national methodology is in high need, so it is included into improvement plan (annex A8.2).

6.4.5 Category-specific recalculations

Since calculation of CSC in mineral soil pool is performed in conjunction with calculation of CSC in the same pool of Cropland remaining Cropland category, the same reason is recalculations in Grassland category, as in Cropland. However, the influence on total GHG removals is very minor due to low levels of organic fertilizers application to Grasslands, consequently having low impact on CSC in mineral soils.

Table 6.18. The change in GHG emissions in the 4.C Grassland category for the time series from 1990 to 2017

Year	NIR 2019	NIR 2020	Difference, %
1990	-946	-946	0.009
1991	-1084	-1084	0.007

Year	NIR 2019	NIR 2020	Difference, %
1992	-1053	-1053	0.007
1993	-1825	-1825	0.003
1994	-1868	-1868	0.003
1995	-1815	-1815	0.004
1996	-1697	-1697	0.004
1997	-2113	-2113	0.005
1998	-2111	-2111	0.004
1999	-2511	-2511	0.005
2000	-2501	-2501	0.006
2001	-2510	-2510	0.005
2002	-2508	-2508	0.005
2003	-2503	-2503	0.005
2004	-2464	-2464	0.003
2005	-2452	-2452	0.002
2006	-2415	-2415	0.002
2007	-2434	-2434	0.002
2008	-2397	-2397	0.001
2009	-2353	-2353	0.000
2010	-2196	-2196	0.001
2011	-1914	-1914	0.001
2012	-1898	-1898	0.001
2013	-1058	-1058	0.000
2014	-977	-977	0.000
2015	-937	-937	0.000
2016	-741	-741	0.000
2017	-451	-451	-0.007

6.4.6 Category-specific planned improvements

Because the approach of CSC determination in mineral soils on Grassland is identical as on Cropland, general work to revise and improve factors used in nitrogen-flow in mineral soils was included into improvement plan. This work is also connected with need of verification of Tier 3 methodology, applied by Ukraine, what is a matter of availability of funds.

Planned work of revision of land-use matrix is expected to deliver more accurate results regarding land areas converted to Grassland.

6.5 Wetlands (CRF sector 4.D)

6.5.1 Category description

According to requirements of the 2006 IPCC Guidelines [1], this land-use category includes territories of marshes and land under inland water objects. In Ukraine, the land-use category 4.D Wetlands includes land not occupied by forests that is partly, temporarily or permanently flooded with water.

This category includes subcategories 4.D.1 Wetlands Remaining Wetlands and 4.D.2 Land Converted to Wetlands with the transition period of 20 years.

The 2006 IPCC Guidelines also subdivide wetlands into the three types:

- Peat extraction:
- Flooded land:
- Other wetlands.

In the Peat Extraction category, operating peat extraction sites are reported. Other areas of wetlands are reported as Other Wetlands due to lack of statistics that would allow separating flooded lands, according to the IPCC terminology.

6.5.2 Methodological issues

The area of subcategory 4.D.1 Wetlands remaining Wetlands was taken from reporting form 16-zem. The category Peat extraction remaining Peat extraction includes the areas where peat extraction takes place (form 16-zem). The rest of the territory, for the exception of peatlands and that converted into wetlands, was classified as Other Wetlands. Flooded lands are not reported due to lack of national statistics on this land-use type that would be consistent with the 2006 IPCC Guidelines.

The estimation of emissions was held under Tier 1 using the default EFs for subcategory 4.D.1. In order to consider recommendation of ERT 2013 Wetlands Supplement was used for the calculations in this category.

Data on peat extraction volumes were obtained from the State Statistics Service of Ukraine (Table 6.15). Data on imports and exports of non-energy peat in Ukraine is not available. The conservative decision was made, according to which imports equals exports, so the amount of peat used is equal to the amount produced.

Areas of subcategory 4.D.2 were extracted from the land-use change matrix, as well as from the database of activity under Article 3.3 KP (Forest Land converted to Wetlands).

Estimation of the carbon stock change in the land-use category 4.D.2 Land Converted to Peat Extraction was not performed, because there are no statistics on the areas converted to this subcategory. According to data of the State Service of Geodesy, Cartography and Cadastre of Ukraine, the areas of peat extraction have been constantly decreasing throughout the entire time series from 32.1 kha in 1990 to 11.7 kha in 2000, and to 8,9 kha in 2018. At the same time, there is a gradual increase in the total area of the land-use category 4.D Wetlands, according to statistical reporting form 6-zem. It was therefore decided that conversions occur either to Flooded Land or Other Wetlands.

Currently there is no information on what soils conversions occur. Considering that the areas of organic soils in Forest land, Cropland and Grassland is rather stable, assumption was made that these conversions to Wetlands occur on mineral soils. Nevertheless, this might be confirmed as soon as GIS data on land representation be used.

2006 IPCC Guidelines provide a method under Tier 1 for estimation of biomass losses only during conversions to Flooded Lands. Ukraine applied it for the subcategory 4.D.2, and also conservative approach was used that all carbon stock in DOM pool is oxidized during conversions of forests.

Table 6.19. Production of non-agglomerated peat for use in agriculture for non-energy purposes, kt of conditional humidity

Year	Production
1990	14680
1991	11678
1992	5738
1993	2160
1994	799
1995	481
1996	250
1997	66
1998	99
1999	115
2000	88
2001	108
2002	152
2003	164
2004	163
2005	119
2006	159
2007	217
2008	243
2009	242
2010	170

Year	Production
2011	221
2012	210
2013	131
2014	119
2015	79
2016	136
2017	88
2018	146

Amount of N₂O emissions from peat extraction was estimated using default EFs.

On-site and off-site CO₂ emissions were estimated by equation 2.2 from Wetlands Supplement. CH₄ emissions from ditches were estimated using equation 2.6. N₂O emissions were estimated using equation 2.7. EFs for the calculations were taken from Wetlands Supplement.

On the conversions of lands to Wetlands it was assumed that entire C-stocks are lost from living biomass (Forest land and Grassland) and from DOM (Forest land).

GHG emissions from mineralization of nitrogen at conversion (direct and indirect) were estimated under Tier 1 using default coefficients (equation 11.8 of 2006 IPCC Guidelines).

In the current NIR, emissions from peat bogs burning have been estimated. Information on burning of biomass on non-forest organic soils was provided by the Ukrainian Scientific Research Institute of Civil Protection. As well as in the case of fires on Grasslands, the data are only available starting from 2005, and for 1990-2004 it was derived as average value for available data for 2005-2013 years (Table 3.3.23 of Annex 3.3.2).

Tier 1 method of 2006 IPCC Guidelines was used for calculation of GHG emissions from fires. To obtain emission factors, the 2013 Supplement to the 2006 IPCC Guidelines was used (IPCC, 2013). The volumes of the organic matter available for combustion was taken as 100 tons of dry matter in the way as applied for underground forest fires according to national studies [10], and the values from Table 2.7 of 2013 IPCC Supplement were applied for GHG emissions estimations [11].

The summary information regarding methods and emission factors used is presented in Table 6.20.

Table 6.20. Summary information on gases reported, methods and emission factors used for calculations in Wetlands category

calculations in wetlands categor		3.5.1.1	ъ	
CRF category	Gas reported	Method	Emission	Note
			factor	
4.D.1 Wetlands remaining				
Wetlands				
- Peat extraction remaining Peat				
extraction	CO_2	T1	D	
4.D.2 Land converted to Wetlands				
- living biomass, DOM, SOM	CO_2	T1	CS, D	
4(II) Emissions and removals from				
drainage and rewetting and other				
management of organic and				
mineral soils				
- Peat extraction				
 drained organic soils 	CO_2 , CH_4 , N_2O	T1	D	
4(III) Direct N2O Emissions from				
N Mineralization/Immobilization	N_2O	T1	D	
4(IV) Indirect nitrous oxide (N2O)	N ₂ O	T1	D	
emissions from managed soils				
4(V) Biomass Burning	CO ₂ , CH ₄ , N ₂ O	T1	CS, D	

6.5.3 Uncertainties and time-series consistency

The key uncertainty factor in estimation of GHG emissions in the land-use category 4.D Wetlands is accuracy of determining the areas that are part of this land-use category and permanently remain within this category.

Areas of land-use categories are defined according to data of the State Service of Geodesy, Cartography and Cadastre of Ukraine. For territories within the land-use category, the area accuracy is taken to be 10 %. Data on production of non-energy peat was obtained from the State Statistics Service, the uncertainty of which is taken as 5 %.

To estimate emissions from peat extraction, default factors were used as well as its uncertainties. Current inventory also includes emissions from fires on non-forest peat lands. Thus uncertainty of CO_2 emissions is 20 %. The uncertainty of methane emissions from fires is 29 %. The uncertainty of nitrogen emissions from peat lands is 38 %.

The total uncertainty in the 4.D Wetlands category is 18 %.

6.5.4 Category-specific QA/QC procedures

For estimation of GHG emissions in the category 4.D Wetlands QA/QC procedures were applied. All the input statistical information was documented, archived, and accessible for recalculations.

6.5.5 Category-specific recalculations

There were no recalculations in the category.

6.5.6 Category-specific planned improvements

Planned work of revision of land-use matrix is expected to deliver more accurate results regarding land areas of Wetlands.

6.6 Settlements (CRF sector 4.E)

6.6.1 Category description

All land occupied by industrial facilities, residential houses, roads, mines, open development sites, and any other facilities established for various types of human activities, including the areas for their maintenance are included in the land-use category 4.E Settlements.

6.6.2 Methodological issues

This category is divided into subcategories 4.E.1 Settlements Remaining Settlements and 4.E.2 Land Converted to Settlements.

Estimation of carbon stock changes in the land-use category 4.E.1 Settlements remaining Settlements was not performed due to that there are no national values of carbon stock changes in green vegetation on built-up land. Use of the factors suggested in 2006 IPCC Guidelines [1] may lead to significantly inflated results of removals estimation, as they were designed for tree species typical of North America, while in Ukraine the tree species structure in this land-use category is different.

Estimation of CO₂ emissions for the subcategory Forest Land Converted to Settlements is produced in pools of living biomass and dead organic matter in case there are deforestation activities on a basis of instant oxidation.

To estimate CSC in SOM Tier 1 method and default EFs were used (equation 2.25 of 2006 IPCC Guidelines) for Land converted to Settlements category. Particularly according to Harmonized World Soil Database⁸ almost all of the soils are high activity clay soils according to IPCC classification(please see Annex 3.3.1). Thus SOC_{ref} for moist cold temperate zone with HAC soils was applied.

⁸ http://webarchive.iiasa.ac.at/Research/LUC/External-World-soil-database/HTML/index.html

Nitrogen direct and indirect emissions from mineralization at conversion were estimated under Tier 1 using the default EFs (equation 11.8 of the 2006 IPCC Guidelines).

The summary information regarding methods and emission factors used is presented in Table 6.21.

Table 6.21. Summary information on gases reported, methods and emission factors used for calculations in Settlements category

CRF category	Gas reported	Method	Emission	Note
			factor	
4.E.2 Land converted to				
Settlements				
- living biomass, DOM, SOM	CO_2	T1	CS, D	
4(III) Direct N2O Emissions from				
N Mineralization/Immobilization	N_2O	T1	D	
4(IV) Indirect nitrous oxide (N2O)	N ₂ O	T1	D	
emissions from managed soils				

6.6.3 Uncertainties and time-series consistency

Uncertainty level of the category is defined mostly by conversions to Settlements. In 2017 conversions of Cropland and Grassland and Other land occurred. Because of Tier 1 method of CSC calculations for these land-use conversions, total uncertainty level of GHG emissions in the category 4.E Settlements is 64 %.

6.6.4 Category-specific QA/QC procedures

For estimation of GHG emissions in the 4.E Settlements category, general QA/QC procedures were applied. All the input statistical information was documented, archived, and accessible for recalculations.

6.6.5 Category-specific recalculations

There were no recalculations in the category.

6.6.6 Category-specific planned improvements

Planned work of revision of land-use matrix is expected to deliver more accurate results regarding land areas of Settlements.

6.7 Other Land (CRF sector 4.F)

6.7.1 Category description

The category 4.F Other Land includes open land without vegetation or with little vegetation [8] - open land, the surface of which is not or almost not covered with vegetation, namely: rocky sites (land under bare rocks, landslides, pebbles, gravel, sand, including beaches), ravines (linear erosional land form) with the depth of more than 1 m with no or poorly formed soil cover and emersions of rock or lower genetic soil layers on the slopes, other open land (saline etc.).

6.7.2 Methodological issues

For the land-use category 4.F Other Land remaining Other Land the assumption about absence of carbon stock changes was made.

According to the 2006 IPCC Guidelines [1], this land use category is seen as a balancing one to provide a stable final value of the areas in Ukraine along the time series - 60,354.9 thousand km², and includes areas with very low carbon stocks.

Carbon stock changes from conversions of forests, cropland and grassland into other land were estimated. The estimation was made under Tier 1 method, equation 2.25 [1], using the default EFs (Table 2.3, 5.5 and 6.2 [1]). It should be noted that according to 2006 IPCC Guidelines [1], the carbon stock after conversion is equated to zero.

For converted land, direct and indirect N_2O emissions from mineralization of nitrogen at conversion were also estimated. The estimation was made under Tier 1 method using the default EFs (equation 11.8 of 2006 IPCC Guidelines). For the time series, these emissions were estimated and included into the relevant CRF tables.

The summary information regarding methods and emission factors used is presented in Table 6.22.

Table 6.22. Summary information on gases reported, methods and emission factors used for calculations in Other Land category

CRF category	Gas reported	Method	Emission	Note
			factor	
4.F.2 Land converted to Other				
Land				
- living biomass, DOM, SOM	CO_2	T1	CS, D	
4(III) Direct N2O Emissions from				
N Mineralization/Immobilization	N_2O	T1	D	
4(IV) Indirect nitrous oxide (N2O)	N_2O	T1	D	
emissions from managed soils				

6.7.3 Uncertainties and time-series consistency

In 2018 there was conversion of forest land to other land. Uncertainty of GHG emissions of which was estimated as 14 %.

GHG emissions from cropland and grassland conversions to other land were estimated, using Tier 1 method and default EFs with 92 % and 91 % of uncertainties correspondingly. Due to that total uncertainty of 4.F Other Land category is 130 %.

6.7.4 Category-specific QA/QC procedures

For estimation of GHG emissions in the 4.F Other Land category, general QA/QC procedures were applied. All the input statistical information was documented, archived, and accessible for recalculations.

6.7.5 Category-specific recalculations

There were no recalculations in the category.

6.7.6 Category-specific planned improvements

Planned work of revision of land-use matrix is expected to deliver more accurate results regarding land areas of Other land.

6.8 Harvested Wood Products (HWP, CRF sector 4.G)

6.8.1 Category description

Fig. 6.5 shows the dynamics of carbon stock changes in the category of harvested wood products. In the time series from 1990 to 2018.

There are significant changes in timber and wood products flows to and from Ukraine particularly due to prohibition to export industrial roundwood, which had historically significant amounts. Consequently production of sawnwood increased in recent reported years.

6.8.2 Methodological issues

Estimation of carbon stock in the HWP category was made under Tier 1 method using the default EFs. The production approach to estimation of carbon stock changes in the category was applied.

The input information (table 6.23) includes FAO databases and national data provided by the State Statistics Service of Ukraine and the State Forest Resources Agency of Ukraine.

Table 6.23. Activity data for calculations in HWP category

	Sawnwood Production, m3	Wood Panels Production, m3	Paper and Paperboard Production, t
1990	7 441 000		
1991	6 106 000		
1992	4 700 000	1 307 000	228 790
1993	3 882 000	1 036 000	145 290
1994	3 124 000	644 000	78 500
1995	2 917 000	596 000	85 200
1996	2 296 000	413 500	292 890
1997	2 306 000	398 800	264 000
1998	2 258 000	389 000	292 900
1999	2 141 000	434 000	310 900
2000	2 127 000	543 000	411 000
2001	1 995 000	726 000	479 900
2002	1 950 000	932 100	531 600
2003	2 197 000	1 045 000	618 037
2004	2 414 000	1 300 000	722 999
2005	2 409 000	1 509 000	768 010
2006	2 385 000	1 675 000	804 000
2007	2 525 000	2 029 000	937 001
2008	2 266 000	2 029 000	937 001
2009	1 753 000	1 578 000	813 999
2010	1 736 000	1 828 000	857 001
2011	1 888 000	2 081 700	986 998
2012	1 823 000	2 207 290	1 123 060
2013	1 804 000	2 277 690	1 079 350
2014	1 780 900	2 327 690	1 079 350
2015	1 928 954	2 377 690	1 079 350
2016	2 150 842	2 377 690	1 079 350
2017	2 498 003	2 377 690	924 000
2018	3 270 975	2 195 700	966 000

Production of sawnwood is provided by the State Statistic Service of Ukraine. The data regarding production of wood-based panels and paper and paperboard was taken from FAO database. FAO has no information for 1990-1991 years for production of wood-based panels and paper and

paperboard, thus splicing technique was applied using GDP of Ukraine, derived from the data of World Bank.

With regard to recommendation L.41 the data for 1990 and 1991 is very poor. Moreover, since independence of Ukraine the data collection has changed several times so it is difficult to derive consistent time series due to methodological changes. Thus, for this reason the data from international sources like World Bank database is seen to be more consistent on time series. Ukraine will further investigate ways of delivering the data for production of wood-based panels and paper and paperboard in 1990-1991.

GHG inventory in 4.G category was performed with stratification on Sawnwood, Wood-Based Panels and Paper and Paperboard with corresponding AD and EFs [12].

The method and calculation factors (table 6.27) were taken from the KP-Supplement to 2006 IPCC Guidelines.

Table 6.27. Factors used for calculations in HWP category

	Sawnwood	Wood-Based Panels	Paper and Paperboard
Half-life, years	35	25	2
C Conversion factor, Mg C/ m ³ or Mg C/ Mg	0.229	0.269	0.386
Density, Mg(dry oven mass)/ Mg	-	-	0.9

To estimate the final HWP contribution into emissions/removals in the sector, the production approach was applied.

6.8.3 Uncertainties and time-series consistency

The data for HWP calculations was derived from the State Statistic Service of Ukraine, for which 10 % of uncertainty was applied. For FAO data 15 % was applied as for countries with systematic control.

Factors for calculations are considered to have high uncertainty, what is recognized by IPCC. KP Supplement do not provide particular uncertainty values, thus values from 2006 IPCC were used (table 12.6 of Chapter 11 Volume 4): factor of product volume to weight factor -25 %, oven dry weight to carbon factor -10 %, decay rate -50 %.

With use of propagation of errors method combined uncertainty of sawnwood is estimated to be 41 %, wood panels is 41 % and paper and paperboard is 48 %.

6.8.4 Category-specific QA/QC procedures

For estimation of GHG emissions in the 4.G Harvested Wood Products category, general QA/QC procedures were applied. All the input statistical information was documented, archived, and accessible for recalculations.

6.8.5 Category-specific recalculations

There were no recalculations in the category.

6.8.6 Category-specific planned improvements

There are no improvements planned in this category.

7 WASTE (CRF SECTOR 5)

7.1 Sector Overview

tor

In the "Waste" sector, GHG emissions in the following categories are accounted for:

- 5.A Solid Waste Disposal;
- 5.B Biological Treatment of Solid Waste;
- 5.C Incineration and Open Burning of Waste;
- 5.D Wastewater Treatment and Discharge.

Methane emissions in the sector come from decomposition of the organic matter in solid municipal and industrial waste landfills, from treatment of industrial and domestic water, waste incineration and composting. Nitrous oxide emissions are caused by treatment of industrial wastewater, human life wastewater, incineration and composting of waste. Carbon dioxide is accounted for at waste incineration.

Based on findings of the inventory, greenhouse gas emissions in the sector in 2018 amounted to 12,183.56 kt of CO_2 -eq.; including methane - 11,069.54 kt of CO_2 -eq. (442.78 kt); nitrous oxide - 1,108.83 kt of CO_2 -eq. (3.72 kt); and carbon dioxide - 5.19 kt. An increase in compared to the baseline 1990 (11,922.12 kt of CO_2 -eq.) is 2.19 %. An increase in compared to the previous year is 0.09 %. For details on the sector emission trends and emission values, see Tables 7.1, 7.2 and Fig. 7.1.

Table 7.1 GHG emissions in "Waste" sector according to the gases and categories in particular years

Year	CO ₂	CH ₄	N_2O	5.A	5.B	5.C	5.D	Total GHG
rear						kt CO2-eq		
1990	28.68	10184.47	1708.98	6534.85	34.36	33.04	5319.89	11922.12
1995	26.66	10207.35	1306.58	7278.76	23.23	29.65	4208.95	11540.58
2000	34.54	10182.88	1163.25	7376.58	9.71	37.90	3956.48	11380.68
2005	49.50	10703.58	1233.82	7639.24	5.10	54.23	4288.33	11986.90
2010	52.91	11144.84	1214.48	8035.20	3.03	57.60	4269.38	12412.23
2011	45.08	11215.27	1214.64	8060.61	5.49	50.54	4316.40	12475.00
2012	34.69	11127.04	1228.47	8003.23	6.41	37.51	4343.05	12390.19
2013	3.31	11265.82	1238.49	8082.15	7.33	4.07	4414.08	12507.62
2014	11.08	11162.67	1188.97	8094.76	12.37	12.77	4242.82	12362.72
2015	8.35	11057.36	1124.29	8142.40	38.95	9.47	3999.17	12189.99
2016	4.66	11182.41	1118.62	8232.27	34.68	6.39	4032.36	12305.69
2017	5.93	11065.41	1101.42	8183.77	25.62	7.67	3955.70	12172.76
2018	5.19	11069.54	1108.83	8136.75	28.21	7.31	4011.30	12183.56

Table 7.2 Methods and emission factors used in estimations of emissions from "Waste" sec-

Sector categories	Reported GHG	Methods	EF					
A Solid Waste Disposal								
1. Managed waste disposal sites	CH ₄	Tier 3	CS, D					
2. Unmanaged waste disposal sites	CH ₄	Tier 3	CS, D					
3. Uncategorized waste disposal sites	NO	NA	NA					
B. Biological treatment of solid waste								
1. Composting	CH ₄ , N ₂ O	Tier 1	D					
2. Anaerobic digestion at biogas facilities	NO	NA	NA					
C. Incineration and open burning of waste	·							
1. Waste incineration	CO ₂ , N ₂ O, CH ₄	Tier 1, Tier 2	CS, D					
2. Open burning of waste	NE	NA	NA					
D Wastewater Treatment and Discharge								
1. Domestic wastewater	CH ₄ , N ₂ O	Tier 1, Tier 2	CS, D					
2. Industrial wastewater	CH ₄ , N ₂ O	Tier 2	CS, D					

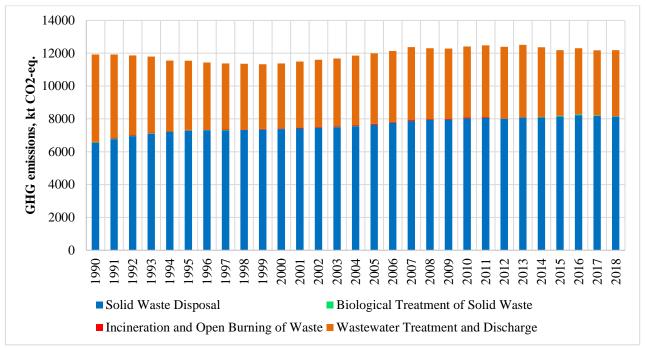


Fig. 7.1. GHG emissions in the "Waste" sector, 1990-2018

Since 1990, emissions from waste management gradually decreased and reached their minimum value in 1999, this period was characterized by a sharp drop in industrial production and, as a result, reduced emissions from treatment of industrial wastewater. In the period of 1999-2007, emissions increased significantly – by 9.3% – due to increased volumes of municipal solid waste (MSW) landfilling, as well as an increase in the volume of industrial wastewater. In 2008, there was a slight reduction in GHG emissions associated with the global economic crisis. In 2013, GHG emissions in the "Waste" sector started to decrease constantly mainly due to the reduction of water consumption for industrial and household needs.

7.2 Solid Waste Disposal (CRF category 5.A)

7.2.1 Category description

Inventory of GHG emissions from solid waste landfills in Ukraine includes methane emissions from MSW landfilling, as well as industrial organic waste in dumping sites and MSW landfills of the country, which could be divided into the three groups in accordance to the classification of 2006 IPCC Guidelines [1]: unmanaged shallow, unmanaged deep, and managed (controlled). Category 5.A is a key one and estimated under Tier 3 using the national emission factors and the default factors according to [1].

Methane emissions from solid waste landfills in 1990 amounted to 261.39 kt, and by 2018 they have increased to 341.14 kt – by 30.51 %. In comparison with the previous year emissions an increased by 0.06 %.

In the period of 1990-1996, there was a significant increase in emissions – by 11.86 %, which was due to modernization of operated MSW dumping sites up to the level of managed ones according to [1]. In 1997-2004, emissions remained at the level of 292.26-302.29 kt. This period is characterized by an increase in volumes of solid waste landfilled and continued modernization of MSW dumping sites, however the slight increase in methane emissions during the period was due to a sharp decrease in biodegradable carbon content in MSW due to reduction of the paper fraction share. By 2010, emissions increased slightly as a result of further increase in the scope of MSW landfilling. In 2011-2018, methane emission fluctuations mainly were caused by landfill gas recovery.

Methane emissions from solid waste disposal for 1990-2018 are shown at figure 7.2.

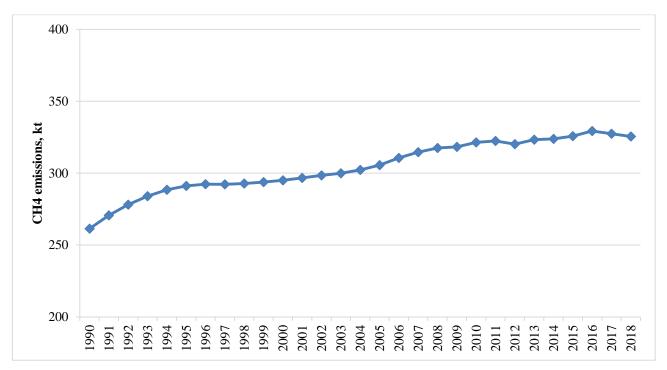


Fig. 7.2. Methane emissions from solid waste disposal, 1990-2018

7.2.2 Methodological issues

7.2.2.1 General principles

Estimation of CH₄ emissions from MSW landfills was performed in accordance with the National Multicomponent Model developed in 2012 and described in the scientific research work "Study on gasification at the largest MSW dumping sites and switching to the three-component national model for estimation of GHG emissions from MSW dumping sites in Ukraine" [2]. In paper [3], the model was improved by means of more detailed assessment of MSW composition and separation of two additional components (leather and rubber, as well as personal care products).

The National Gasification Model is based on the first-order decay method of the third level of detail (formulas 3.A1.1-3.A1.6 [1]), which is based on Ukraine-specific factors determined for each of the seven organic fraction of municipal solid waste [2, 3].

In accordance with the model, annual emissions of methane at landfilling of MSW delivered in the current year and in previous years are determined by the formula:

$$Q(t) = \sum_{j=1}^{m} \sum_{i=1}^{n} A \cdot k_j \cdot MWS_i \cdot MWS_{j,i} \cdot L_{0,j,i} \cdot e^{-k_j \cdot (t-x)}, \qquad (7.1)$$

where: Q(t) - the amount of methane produced in the period t, t;

 k_i - the constant of the rate of methane production for the j-th component, year⁻¹;

A - the normalizing factor correcting the sum, determined by the formula:

$$QA = (1 - e^{-k_j})/k_j (7.2)$$

 MWS_i - the total amount landfilled in year i, t/year;

 $MWS_{j,i}$ - content of component j in MSW in year i, % of the weight;

t - the index of the estimation year;

x - the period in years for which the data are entered;

 $Lo_{j,i}$ - the potential of methane production in year i, t of CH₄/t of MSW, defined by the formula:

$$DOC_i \cdot DOC_F \cdot F \cdot 16/12 \cdot MCF_i , \qquad (7.3)$$

where: DOC_j - the total amount of organic carbon that can decompose biologically, for fraction j, tC/tMSW;

 DOC_F - the proportion of carbon taking part in the decay reactions; F - content of methane in landfill gas, in shares, 16/12 - carbon to methane conversion factor;

 MCF_i - methane correction factor for year i.

Methane emissions into the atmosphere are determined net of methane recovered or burnt in the flare in view of oxidation in the top layer:

$$Q(t)^{em} = [Q(t) - R] \cdot (1 - OX), \qquad (7.4)$$

where: R - collected methane, t; OX - the methane oxidation factor.

The model offers individual calculation for each category of organic waste (DOC_j , k_j), which are grouped according to the decomposition rate and their content of organic carbon. The national model does not account for the impact of activities on withdrawal of secondary material and energy resources from the "body" of dumping sites after MSW landfilling (so-called "landfill mining"). However, no opening of landfills for resource extraction was carried out in Ukraine [4].

7.2.2.2 Activity data

Transition to the multicomponent model led to the need to restore the series of data on the amount of MSW in Ukraine since 1900. To form a coherent set of data on the amount of waste that came to landfills and dumps in 1900-2004, statistical data on urban population in Ukraine (for 1900-1960 – [5], for 1961-2004 – data of the State Statistics of Ukraine⁹) were used, as well as the specific waste accumulation standards for urban population according to reference books [6-11]. The proportion of waste forwarded directly to MSW dumps in the period of 1900-2004 was taken to be 85-90% [10]. Estimation of the mass of landfilled waste also includes the illegal MSW landfills. The share of the mass of landfilled waste consists 10-15% from collected and subsequently landfilled MSW [10].

In view of the fact that in the period of 2005-2006 national statistics in the field of MSW management was in the process of upgrading, the method of linear interpolation based on 2004 and 2007 data was applied to determine the mass of landfilled waste.

Since 2007, data on the weight of waste landfilled is taken directly from statistical reporting form No.1-TPV prepared by the Ministry of Regional Development, Construction, Housing and Communal Services of Ukraine, and further verified with data of regional housing and communal services administrations in the regions of Ukraine.

Data on the amount of industrial organic waste (medical waste, biological, paper and cardboard waste, wood waste, textile waste, animal and vegetable waste, animal waste produced in manufacture of food ingredients and products) transported to MSW dumps and containing organic matter able to decompose under anaerobic conditions for the years 2010-2018 were taken from form No. 1 – waste "Waste Management" with regard to class 4 of hazard waste adopted as an element of mandatory reporting of companies in 2010. Data for the period of 1990-2009 were obtained with the substitution method using as the substitute statistical parameter the gross domestic product in percentage to 1990.

Waste management practice in Ukraine. In 2018, 78 % of population was covered by centralized MSW collection system in Ukraine which including all urban and partly rural areas. 22 % of population was not covered by centralized MSW collection in Ukraine which including to the largest part of rural areas. According to the official responses provided by the regional state administrations, MSW generated at the territories that are not covered by centralized MSW collection system was treated in the following way: self-organized MSW removal (often with the support of local rural authorities) at the containers' sites and landfills, the remaining generated MSW was thrown out at the dumps (illegally). MSW generated at all territories (urban and partly rural) covered by centralized MSW collection system and partly uncovered was temporarily stored in containers. Further, MSW

⁹ http://ukrstat.gov.ua/

stored in containers was transported to incineration facilities, sorting lines or directly to the landfills. In its turn, residue MSW from sorting lines was transported to incineration or composting facilities; the rest one was transported to the landfills.

The dominant method of household waste treatment is its removal and disposal in landfills and dumping grounds. The total amount of MSW landfilled was equal to 11.49 million tons, industrial waste -206.69 kt in 2018.

In 2018, separate garbage collection (waste sorting) of household waste was implemented in 1181 settlements; 26 waste sorting lines operated in 20 settlements; 1 waste incineration plant (WIP) operated in Kyiv and 3 waste incinerators operated in Kharkov. As a result, about 6.2 % of household waste was recycled and utilized, of which 2 % was incinerated, and 4.2 % ended on waste recycling plants and points of recycling raw materials. The rest, about 93.8 %, was located on landfills and dumps. According to official data, more than 26,6 thousand unauthorized dumps are created each year, more than 26 thousand of unauthorized dumps were liquidated in 2018. [12] According to the information provided by the Ministry of Development of Communities and Territories of Ukraine a biogas extraction system was introduced on 19 landfills. Cogeneration units operated on landfills in Vinnytsa; Kovel, Volyn region; Zhytomyr; Uzhhorod; Ivano-Frankivsk; Hlyboke, Borispol district, Kiev region; Rozhivka, Brovarsky district, Kyiv region; Pidhirtsi, Obukhiv district, Kyiv region; Cherkasy etc. [13] According to the information provided by the Energy and Utilities National Regulatory Commission, Ukraine (EUNRCU) there were 20 landfills where such cogeneration units operated. [14]

In Ukraine, industrial waste is classified into four hazardous classes (I–IV hazardous grades of waste). The classification of waste into hazardous classes is based on toxic indicators according to the regulatory documents. According to the form "No.1 - waste" (State Statistics Service of Ukraine) 346790,4 kt industrial waste in Ukraine (I-IV grade of hazard) was formed in 2018, of which 1028,582 kt – incinerated (including with and without energy recovery) (see chapter 7.4.1, 7.4.2.1); 106851.7 kt, including composting (R3 A) (671,6 kt, see chapter 7.3.2.2) – utilized (management of waste for the recycling operations) (R2-R11); 3193.6 kt – prepared for recycling (R12-R12K); 169523.8 kt – removed (management of waste for the disposal operations) (D1, D5, D12); 57886.3 kt – removed other removal methods (D2-D4, D6-D9). Waste management practices in Ukraine for 2018 schematically is shown at Figure 7.3. The entire array of data on the amount and distribution of solid waste by categories is presented in Annexes 3.4.1 and 3.4.2.

In November 2017 the Government (the Cabinet of Ministers of Ukraine) approved the Waste Management National Strategy until 2030 [15], which introduces the European principles of handling all types of waste: solid household, industrial, construction, hazardous, agricultural and the like in Ukraine. The strategy is aimed at introducing a systemic approach to waste management at the state and regional levels, reducing waste generation by increasing the amount of their recycling and reusing. The document reinforces the country's intentions to increase the volume of garbage processing, to create safe landfills for household waste storage. If the strategy is implemented by the year 2030, there will be about 800 processing enterprises in Ukraine. And 250 centers for domestic waste collection will be built in in the 5 thousand residential areas. A network of 50 regional landfills to meet the requirements of 31 EU directive and as well as the introduction of organic household waste composting in private households in both rural areas and suburban areas of cities is also planned to be created. The strategy is aimed at reducing the level of disposal of household waste from 95 % to 30 % and minimizing the total amount of waste to be buried from 50 % to 35 %.

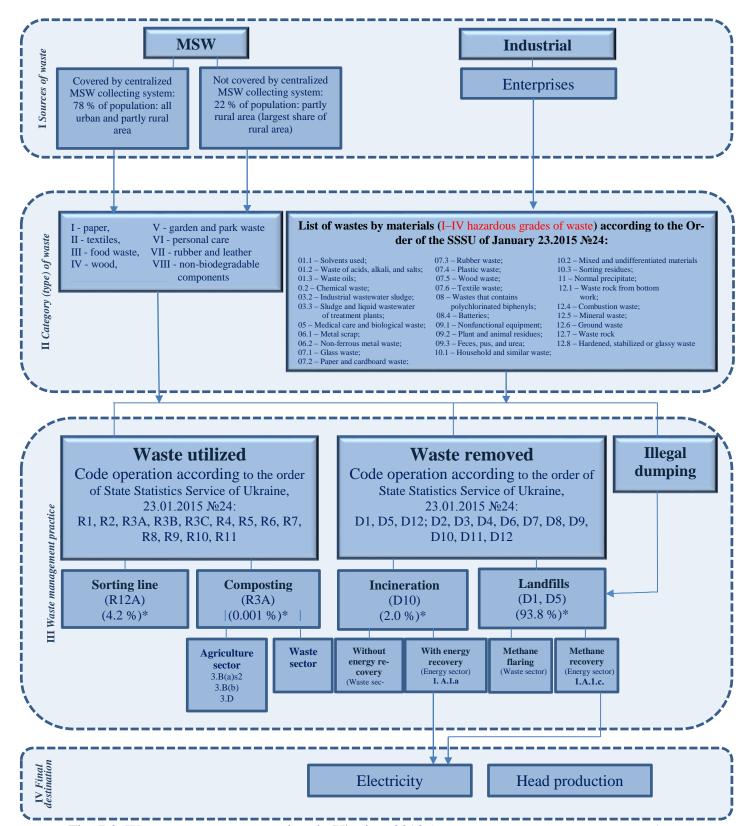


Fig. 7.3. Waste management practices in Ukraine, 2018 (*the percentage is indicate only for MSW)

7.2.2.3 Selection of emission factors

Methane correction factor (MCF). Estimation of the MCF value characteristic of Ukraine was performed based on an expert opinion¹⁰ issued for 1990-2009, which indicates distribution of

¹⁰ Yu. Matveev, senior researcher at the Institute of Engineering Thermophysics of the National Academy of Sciences of Ukraine, deputy director of the Scientific and Technical Center "Biomass", 2011.

MSW flows by different types of landfills and dumps – managed, unmanaged deep, and unmanaged shallow ones.

According to the expert opinion², a substantial portion of MSW landfills in Ukraine are dumps formed spontaneously in the 60-70's in place of clay or sand pits, in ravines or on flat sites of surface in the immediate vicinity of city limits. As a result, dumps located near cities with population of 50 thousand people or more are sites with the depth of 5-10 meters of waste and classified [1] as unmanaged deep landfills (MCF = 0.8). Dumps formed around settlements with population of less than 50 thousand do not reach the depth of 5 meters, and under classification [1] they can be attributed to unmanaged shallow landfills (MCF = 0.4). Besides, there are sites in Ukraine that can claim the status of managed ones (MCF = 1.0). These are engineering constructions, reconstruction of which began in the late '80s (after more stringent standards for operation of landfills were adopted) and was completed in 1990 in the following cities: Kyiv, Kharkiv, Dnipropetrovsk, Luhansk, Cherkasy, Chernivtsi, Ivano-Frankivsk, Lutsk, Yalta.

Thus, waste generated in cities with population of less than 50 thousand people were attributed to unmanaged shallow landfills, above - to unmanaged deep, in the above large cities - to managed deep ones started from the 1990. For the period of 2010-2015, MSW distribution by type (excluding industrial waste and unofficially dumped) of dumps was taken to be the same as for 2009. This approach is valid due to the fact that since 2010 activities on commissioning of new landfills have been virtually been suspended, which, in turn, is caused by the stricter rules for construction of new landfills adopted in 2010.

For detailed data on distribution of flows of solid waste by landfill types in 1990-2018, see Table 7.3, on the amount of landfilled waste by different types of landfills in 1990-2018 – Annex 3, Table A3.4.1.

Table 7.3. Distribution of MSW flows by their landfilling sites

Year	Unmanaged shal- low*	Unmanaged deep*	Managed*	MCFav
1990	0.370	0.616	0.014	0.655
1991	0.371	0.601	0.028	0.657
1992	0.371	0.587	0.042	0.660
1993	0.372	0.571	0.056	0.662
1994	0.375	0.554	0.071	0.664
1995	0.375	0.540	0.085	0.667
1996	0.375	0.525	0.100	0.670
1997	0.375	0.510	0.114	0.673
1998	0.375	0.496	0.129	0.676
1999	0.375	0.482	0.143	0.679
2000	0.375	0.468	0.157	0.682
2001	0.374	0.455	0.172	0.685
2002	0.373	0.441	0.186	0.688
2003	0.372	0.428	0.200	0.691
2004	0.371	0.415	0.214	0.694
2005	0.371	0.400	0.228	0.697
2006	0.373	0.398	0.229	0.696
2007	0.369	0.401	0.229	0.698
2008	0.368	0.401	0.231	0.699
2009	0.370	0.398	0.233	0.699
2010	0.368	0.400	0.232	0.699
2011	0.370	0.396	0.233	0.699
2012	0.373	0.391	0.235	0.698
2013	0.376	0.386	0.237	0.697
2014	0.375	0.389	0.236	0.697
2015	0.371	0.396	0.234	0.698
2016	0.377	0.385	0.237	0.697
2017	0.377	0.385	0.238	0.697
2018	0.371	0.395	0.234	0.698

^{* –} MSW shares disposed in dumps and landfills of different types

MSW composition (MWS_j) , the content of biodegradable carbon (DOC_j) , and the constant rate of methane production k_j . Paper [3] explores content of seven biodegradable components in MSW: paper and cardboard (I), textiles (II), food waste (III), wood (IV), garden and park waste (V), personal care products (VI), rubber and leather (VII) for the period of 1990-2013. It should be noted that the paper's [3] output includes exploration of MSW composition in 22 cities of Ukraine conducted in 2008-2013.

The MSW composition in Ukraine as a whole was calculated based on the amount of MSW landfilled in the regions, and missing source data - based on assumptions coordinated with experts in the field of MSW management:

- unsorted organic components contain up to 15% of gardens and up to 25% of food waste;
- the component "bone, leather, and rubber" by 1/3 consists of bones (in the absence of direct measurement data);
- the share of personal care products is determined as the sum of imports and production minus exports of this commodity group in the reporting year;
- MSW composition in the regions is determined as the arithmetic mean of data in cities located in this region;
- in the regions where the studies have not been conducted, data on the morphological composition are determined as the average of the data in the neighboring regions.

The MSW composition in 2014-2018 was adopted based on the data for 2013.

The model uses default *DOC* values for all the components to 2006 IPCC Guidelines [1].

In 2012, the field and laboratory experiments on DOC determination in food waste were carried out [16]. The results have shown that DOC for food waste probably may be much lower than the IPCC 2006 default value but taking into account the singularity and non-systematic character of the study an additional activity is needed to develop national coefficient.

The methane production rate constant k_j is taken by default for the temperate climate zone according to [1]. The share of actually decomposed organic carbon (DOC_F). The DOC_F value is the default one [1] and equal to 0.5.

Methane content in landfill gas (F). The F value is the default one [1] and equal to 0.5.

The delay time (t_0). The value of t_0 is 6 months [2].

Methane oxidation factor (OX). In Ukraine, there is no evidence documenting the degree of methane oxidation in landfills, so the default value of 0 [2] was used.

Table 7.4 shows k_j and DOC_j data for MSW components used for inventory of methane emissions from MSW dumps and landfills.

Table 7.4. *DOC* and *k* values for biodegradable MSW components

#	Component	The constant rate of methane production (k), year -1	Biodegradable carbon (DOC)
I	Paper and paperboard	0.048	0.40
II	Textile	0.048	0.24
III	Food waste	0.110	0.15
IV	Timber	0.024	0.43
V	Garden and park waste	0.070	0.20
VI	Personal care products	0.048	0.24
VII	Rubber and leather	0.048	0.39

For the more detailed composition of MSW in 1900-2018, see Fig. 7.4 and 7.5, as well as Table A3.4.2.

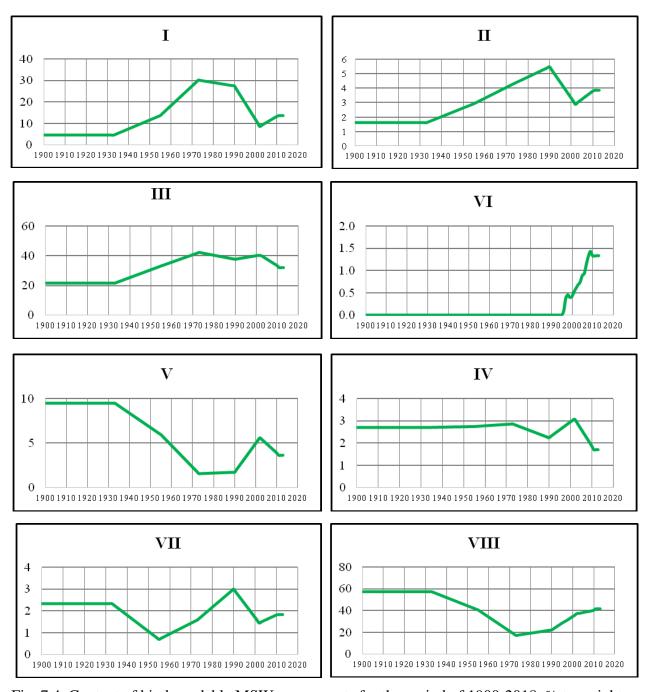


Fig. 7.4. Content of biodegradable MSW components for the period of 1900-2018, % to weight. For the meaning of I-VII, see Table 7.4

7.2.2.4 Methane utilization at MSW dumps

Utilization of methane from MSW dumps in Ukraine started in 2003. By this year, as part of a demonstration project of Ekolins program at the municipal MSW landfill of Luhansk the companies SCS Engineers (USA) and SEC "Biomass" (Ukraine) had performed work to install the landfill gas collection system consisting of three vertical holes. Landfill gas was collected and burned in the open flare during 2003, 2004, and 2006.

Since the beginning of the commitment period under Kyoto Protocol (2008), Ukraine commissioned industrial degassing systems at MSW landfills, which were built in the framework of joint implementation projects under flexible financial mechanisms of Kyoto Protocol.

In recent years, such methane collection and utilization systems are becoming more widespread in Ukraine. Thus, while in 2008 there were only two such operating systems, in 2011 only "Alternative Environmental Protection Energy Systems and Technologies" company, Ltd commissioned the biogas collection systems at the landfills of the cities of Kremenchuk, Vynnytsya, and Zaporizhya.

In 2012, electricity was generated from landfill gas on the industrial scale for the first time in Ukraine. "LNK" company, Ltd put into operation a biogas collection system with subsequent electricity generation at the MSW landfill in Kyiv in 2012, in Boryspil − in 2013, in the Brovary − in 2014. In 2017 in Cherkasy region, the Caterpillar CG132-12 gas piston power generating facility with an electrical power of 600 kW was commissioned. "LNK" company, Ltd is a leader in the field of decontamination of MSW landfills in Ukraine. At present, "LNK" company, Ltd put into operation seven degassing complexes: Obukhiv, Kyiv region − 2 modules (total power 2,126 kW); Boryspil, Kyiv region − 1 module (total power 1063 kW); Zhytomyr, Zhytomyr region − 1 module (total power 1063 kW); Mykolaev, Mykolaev region − 1 module (total power 1063 kW); Cherkasy, Cherkasy region − 1 module (total power 600 kW). To monitor the chemical composition of biogas, the company uses Geotech portable gasanalyzers made in Britain, Biogas 2000, Biogas 5000, GA 5000. All devices are certified according to international standards ISO 9001: 2015, SIR A 01 ATEX 092, British standart, UKAS №4533. Electric power measurement is carried out by meters as ZMD405CR44, ZMD405CT44 "Landis + Gyr (Pty) company, Ltd", Switzerland, have certificate G3-PLC, ITU G.9903.

Since 2012, the main objective of biogas recycling from solid waste has not been the reduction of greenhouse gas emissions, but generation of electricity which is sold at a "green" tariff. At the state level, a number of legislative acts aimed at the development of the biogas industry have been adopted, with a "green" tariff set for the sale of electricity produced by the biogas plant. Accordingly, utilization of methane at landfills is carried out mainly for the purpose of electricity production. The production and sale of electric energy from biogas is subject to licensing in a compulsory manner. The license for electricity production, as well as the "green" tariff for each specific station, is approved by the Energy and Utilities National Regulatory Commission, Ukraine (EUNRCU). The official site of the Commission provides information on companies (subjects) and their facilities (objects) of alternative energy, which have a "green" tariff, including companies-producers of electricity from biogas.

Moreover, the amount of utilized (recovered) methane from the MSW landfills is fixed in the form No. 4-MTP (provided by the State Statistics Agency) as a component of the total amount of fuel consumption for conversion into heat and electric energy. And it is taken into account in the "Energy" sector in the category 1.A.1.c. It cannot be deducted due to absence of additional information. According to the Guidelines [1], if the recovered gas is used for energy, then the resulting greenhouse gas emissions should be reported under the "Energy" sector.

The amount of recycled methane in MSW dumps in Ukraine for the period of 2003-2018 is shown in Figure 7.5. Since 2008, this figure had been rising annually – from 0.15 tons to 13.37 tons in 2014. However, since 2012, the amount of flared methane has been gradually decreasing, apart from the recovered methane, which has been increasing. A sharp reduction of flared methane was observed from 2016 due to the change of biogas utilization goal, namely electricity production and its sale at a green tariff. According to EUNRCU data there were 6 companies producing electricity from biogas and 14 units on the landfills in Ukraine in 2017. [15] And 9 companies producing electricity from biogas and 20 units on the landfills in Ukraine in 2018. Not all companies provided requested data, thus information only on 17 objects was obtained for 2018. According to collected data 15.67 kt of landfill methane was utilized (only recovered) in 2018.

The volumes of utilized methane were calculated based on data of MSW landfill operators on the monthly volume of landfill gas utilization, its density, and the content of methane with the one-digit distribution of reclaimed landfill gas into volumes burned in the flare or recovered with electricity production under the formula:

$$R^{Fl,Rec} = V_R \cdot \rho_{LG} \cdot \gamma_m \cdot 10^{-6} , \qquad (7.5)$$

where: $R^{Fl,Rec}$ is the mass of methane burned in the flare/recovered, thousand tons; V_R - volume of landfill gas burnt in the flare/recovered, m³;

 ρ_{LG} - landfill gas density, kg/m³; γ_m - methane content in landfill gas, % to weight.

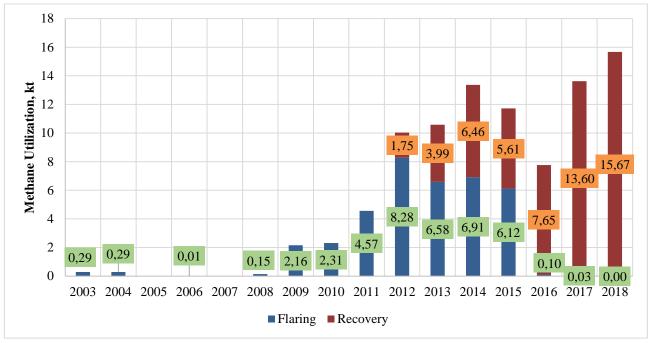


Fig. 7.5. Methane utilization at MSW landfills in Ukraine, 2003-2018

7.2.2.5 Carbon stored at MSW dumps

The carbon that is long stored in MSW dumps, which is part of paper, cardboard, wood and garden and park waste, in accordance with section 3.4 of [1] is accounted for as information in the "Waste" sector and estimated for different types of dumps according to the formula:

$$DOCm LS_T = W_T \cdot DOC \cdot (1 - DOC_F) \cdot MCF, \qquad (7.6)$$

where: $DOCm LS_T$ is carbon in the composition of paper, cardboard, wood, and garden and park waste disposed in the MSW dump in the reporting year, thousand tons.

 W_T - the weight of paper, cardboard, wood, and garden and park waste disposed in the MSW dump in the reporting year, thousand tons;

DOC - the total amount of organic carbon contained in paper, cardboard, wood and garden and park waste, tC/tMSW (the specified ingredients);

 DOC_F - the fraction of carbon taking part in decay reactions;

MCF - methane correction factor for different types of dumps.

When assessing the amount of carbon stored for a long time in MSW dumps, data on disposal of waste since 1900 were used. Data on the weight of landfilled components are presented in Annex 3.4, on categories of different types of dumps – in Table 7.3, on *DOC* content in MSW components – in Table 7.4.

Fig. 7.6 presents results of the estimations for the period of 1990-2018.

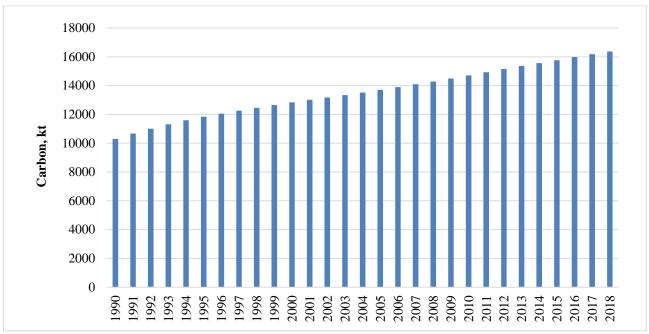


Fig. 7.6. Accumulated long-term storage carbon at MSW dumps, 1990-2018

7.2.3 Uncertainties and time-series consistency

The range of uncertainty estimates for activity data and emission factors was analyzed in paper [14] in accordance with [1]. See Table 7.5.

Table 7.5. The range of uncertainty estimates

Downworker	Estimated	Estimated uncertainty		
Parameter	"_"	"+"		
Activity data	1			
Mass of MSW dumped				
Managed landfills	10	10		
Unmanaged landfills	30	30		
Uncertainty of activity data				
Managed landfills	10	10		
Unmanaged landfills	30	30		
Emission factors				
Waste composition	10	10		
Biodegradable carbon (DOC)	20	20		
The share of actually decomposed organic carbon (DOC _F).	20	20		
Methane correction factor (MCF)				
Managed landfills	10	0		
Unmanaged shallow landfills	30	30		
Unmanaged deep landfills	20	20		
Methane content in landfill gas (F)	5	5		
Methane recovery (R)	3	3		
Oxidation factor, OX	Not included in	nto the analysis		
The constant rate of methane generation (k)	20	20		
Uncertainty of CH ₄ emission factors for managed landfills	37.87	36.52		
Uncertainty of CH ₄ emission factors for unmanaged shallow landfills	47.27	47.27		
Uncertainty of CH ₄ emission factors for unmanaged deep landfills	41.64	41.64		
The standard uncertainty of CH ₄ emissions for managed landfills	39.17	37.87		
The standard uncertainty of CH ₄ emissions for unmanaged shallow landfills	55.98	55.98		
The standard uncertainty of CH ₄ emissions for unmanaged deep landfills	51.32	51.32		

7.2.4 Category-specific QA/QC procedures

For estimation of emissions in the category, general quality control and assurance procedures were applied. Since methane emissions from MSW landfills is a key category, expert estimates of emissions were used for QA/QC, and the following procedures:

- ✓ comparison of activity data from different sources;
- ✓ comparison of emission along the time series and analysis of activity data trends;
- ✓ comparison of activity data, emission factors, and estimation results with inventory reports of other countries.

The national multi-component model for calculating methane emissions from MSW disposal sites in Ukraine was discussed with national experts in the field, as well as with representatives of the international research community from 24 countries at the Seventh International Conference "Energy from Biomass", September 2011. Moreover, the results of GHG emission estimations for the period of 1990-2010 in the category, as well as raw data, the methods of their processing, and emission factors were presented at the 9th International Conference "Cooperation for Waste Issues", March 2012.

7.2.5 Category-specific recalculations

In this sub-category, recalculations were carried out only for 2017. When summation the methane recovery data, a double count was detected – twice the sums of methane utilized at the land-fill in Vinnitsa were summed up in 2017. In current report fixed mistakes were correct. Results of recalculation are provided in Table 7.6.

Table 7.6. Recalculations in subcategory 5.A "Solid Waste Disposal"

Year	Inventory Report, 2019 sub- ar mission, kt			Inventory	Report, 2020 sion, kt	submis-	Difference, %			
	CO_2	CH_4	N_2O	CO_2	CH_4	N_2O	CO_2	CH_4	N_2O	
2017	-	325.690	-	-	327.351	-	-	0.51	-	

7.2.6 Category-specific planned improvements

In this sub-category, no improvements are planned.

7.3 Biological Treatment of Solid Waste (CRF category 5.B)

7.3.1 Category description

In this category, CH_4 and N_2O emissions from composting of waste in Ukraine are estimated. The category accounts for emissions from composting of all types of waste (including industrial, household, and the like) for the exception of waste, treatment of which should be taken into account in accordance with [1] in the "Agriculture" sector, namely: excrements of farm animals. GHG inventory was held under Tier 1 using the default emission factors based on the raw data provided by the Statistics of Agriculture and the Environment Department of the State Statistics Service of Ukraine.

GHG emissions in this category in the reporting 2018 amounted to 28.21 kt of CO_2 -eq., including: 0.60 kt of CH_4 and 0.04 kt of N_2O , the decrease with respect to 1990 (34.36 kt of CO_2 -eq.) is 17.9 % and increase with respect to previous year is 10.1 % (see Fig. 7.7).

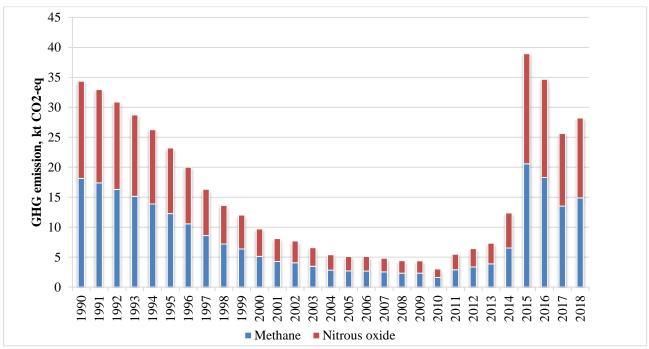


Fig. 7.7. GHG emissions from waste composting in Ukraine, 1990-2018

Since 1990, emissions have been steadily dropping, and by 2010 reduced 11.3 times. This trend is due to a decrease of production in the agricultural sector and, as a consequence, a reduction of the resource base for production of compost. Since 2010, GHG emissions in the category began to increase due to modernization of individual agricultural enterprises. Significant GHG emissions increase in 2015 compared to the previous year was caused by the increase of composting agricultural waste amount in food processing industry. Emissions reduction in 2016-2017 compared to 2015 was caused by the decrease on composting waste amount (category III-VII) (see table 7.7). An increase of composting waste amount was led to growth in emissions in 2018.

7.3.2 Methodological issues

7.3.2.1 General principles

According to [1], in the process of waste composting most of *DOC* in the waste material is converted to CO₂. CH₄ is formed in anaerobic compost sites, but in most cases methane is oxidized in the same sites of compost. CH₄ emissions getting into the atmosphere that are subject to estimation range from less than one percent to a few percent of the total carbon content in the material [17-19]. Composting may also result in emissions of N₂O. The range of estimated emission ranges from 0.5 percent to 5 percent of the total nitrogen content of the material [20].

According to [1], CO₂ emissions from composting of biogenic waste components (garden and park, communal, agricultural ones, etc.) are not accounted for.

Emissions of CH₄ and N₂O can be estimated with equations (7.7) and (7.8):

$$Q_{CH_4} = M \cdot EF_{CH_4} \cdot 10^{-3} - R, \tag{7.7}$$

where: Q_{CH_4} is the total amount of CH₄ emissions in the reporting year, thousand tons;

M - the mass of organic waste undergoing composting, thousand tons;

EF - the emission factor for composting of waste, g of CH₄/kg of composted waste;

R - the total amount of recovered CH₄ for the reporting year, thousand tons of CH₄;

$$Q_{N_2O} = M \cdot EF_{N_2O} \cdot 10^{-3}, \tag{7.8}$$

where: Q_{N_2O} is the total amount of N₂O emissions in the reporting year, thousand tons;

M - the mass of organic waste undergoing composting, thousand tons; EF_{N_2O} - the emission factor for composting of waste, g of N₂O/ kg of composted waste.

7.3.2.2 Activity data

As of 2015, accounting of waste composting in Ukraine was conducted in accordance with two reporting forms:

- "No.1 TPV" (Ministry of Regional Development of Ukraine).
- "No.1 waste" (State Statistics Service of Ukraine).

Form "No.1 - waste" includes information on all the waste that is composted in Ukraine, data on the type of waste is submitted directly from the enterprises. Form "No.1 - TPV" includes information about MSW composting, which fully and in greater detail are also shown in "No.1 - waste". Therefore, a more reliable source of data on the weight and type of composted waste (at the level) of enterprises is form "No.1 - waste", according to which the collection is held every year since 2010.

To estimate the volume of composted waste for GHG inventory, the entire set of primary source data at the enterprise level for the period of 2010-2017 was analyzed and processed.

The analysis of primary data on waste composting has shown the existing information on enterprises level for 2012 is not full and doesn't reflect the trend. In this connection, interpolation on waste composting was performed for 2012 based on the data for 2011 and 2013.

At *stage I*, a number of obvious errors related to filling form "No.1 - waste" directly by enterprises were ruled out.

At *stage II*, the data were aggregated with DK 005-96 classification (the state waste classifier) by waste types, as recommended in [1].

At *stage III*, the missing time series for 1990-2009 on composting of waste in Ukraine was restored.

According to results of *stage I*, the mass of composted waste in Ukraine in 2010 amounted to 147.4 kt (74 enterprises), in 2011 - 196.0 kt (91 enterprises), in 2012 - 310.6 kt, in 2013 - 357.7 kt (114 enterprises), in 2014 - 683.7 kt (118 companies), in 2015 – 669.3 kt (123 companies), in 2016 – 724.9 kt, in 2017 – 775.2 kt (153 companies): 2018 – 680 kt.

Based on results of *stage II*, the source data were grouped as 7 categories: bird droppings (I); feces, pus, and urea (II); crop residues (straw, etc.) (III); other vegetable oils and animal (IV); household and similar waste (V), wood waste (VI), other waste (VII). This classification meets GHG inventory principles in accordance with [1], as to avoid double counting emissions from composting of waste categories I-II should be accounted for in the "Agriculture" sector.

Waste composting data on Table 7.7 presents data on waste composting in Ukraine based on results of *stage II* of raw data processing.

Table 7.7. Waste composting in Ukraine, 2010-2018, tons

Cate- gory	Bird drop- pings	Feces, pus, and urea	Plant residues (straw, etc.)	Other vege- table and an- imal resi- dues	House- hold and similar waste	Wood waste	Other waste	
Desig- nation	I	II	III	IV	V	VI	VII	
DKV code	0124.2.6.03	0121.2.6.03	1583.1.1.02, 0111.3.1.01, 0111.2.9.02, 1561.2.9.04, 0112.2.9.01, 0112.3.1.02	0111.2.6.02, 1590.2.9.01, 0111.1.1.01, 0113.1.1.01, 1910.2.9.03	5200.3.1.03, 1589.3.1.05	,	1583.2.9.03 9030.2.9.04 7720.3.1.02 1590.2.9.15 Other	Total: I-VII / III-VII
2010	42107.8	89322.8	3375.7	2301.2	313.8	188.7	9836.1	147446.2 / 16015.6
2011*	62604.3	104411.3	3734.1	3353.4	9993.8	483.7	11412.0	195992.6 / 28976.9
2012*	43307.2	233425.7	2351.9	8553.4	6825.0	248.8	15852.7	310564.8 / 33831,9

Cate- gory	Bird drop- pings	Feces, pus, and urea	Plant residues (straw, etc.)	Other vege- table and an- imal resi- dues	House- hold and similar waste	Wood waste	Other waste	
Desig- nation	I	II	III	IV	V	VI	VII	
DKV code	0124.2.6.03	0121.2.6.03	1583.1.1.02, 0111.3.1.01, 0111.2.9.02, 1561.2.9.04, 0112.2.9.01, 0112.3.1.02	0111.2.6.02, 1590.2.9.01, 0111.1.1.01, 0113.1.1.01, 1910.2.9.03	5200.3.1.03, 1589.3.1.05	2000.2.2.17, 7760.3.1.03, 0113.2.9.01, 2000.2.2.16	1583.2.9.03 9030.2.9.04 , 7720.3.1.02 , 1590.2.9.15 , Other	Total: I-VII / III-VII
2013	60473.5	258515.7	969.8	13753.4	3656.2	13.9	20293.5	357676.1 / 38686.8
2014*	256610.3	361819.1	369.2	59944.5	17.2	2874.4	2089.7	683724.7 / 65295.3
2015*	15888.1	447706.9	4937.4	154700.4	3.6	6593.9	39422.4	669252.8 / 205657.7
2016*	35946.7	505833.5	746.2	27868.9	36.4	11336.6	143091.6	724859.9 / 183079.7
2017*	38454.9	601447.8	801.3	94915.6	14.1	7364.8	32160.8	775159.3 / 135256.7
2018*	21611.5	509877.9	247.3	106884.7	14.2	8567.6	33215.8	680419.1 / 148929.7

^{*}Data of the State Statistic Service of Ukraine, corrected using analytical study

According to results of *phase III*, the time series of waste composting in Ukraine for categories I-VII for 1990-2009 was restored.

When assessing data for all categories of waste, the following assumptions were proposed:

- The weight of composted category I waste is directly proportional to the amount of litter produced during the reporting year, which in turn is estimated based on the bird population.
- The weight of composted category II waste is directly proportional to the amount of feces, pus, and urea produced during the reporting year, which in turn is estimated based on the cattle and pig population.
- The share of composted waste of categories III, IV, VI, and VII in the total weight of composted waste is constant.
- The weight composted waste of category V is directly proportional to the amount of MSW generated and dumped during the reporting year.
- When restoring the time series for 1990-2009, the basic values were set as average values of the indicators in the period of 2010-2013.

Table 7.8. SW composting in Ukraine, 1990-2009

	Solid Waste Category									
Year					t					
	I	II	III	IV	V	VI	VII	I+II	III+IV+V+VI+VII	
1990	67674.9	1645666.6	19536.8	52368.1	248.5	1751.4	107491.8	1713341.5	181396.6	
1991	64241.7	1579629.8	18744.7	50244.9	242.5	1680.4	103133.6	1643871.5	174046.1	
1992	57211.1	1483067.4	17563.5	47078.9	236.4	1574.5	96635.0	1540278.5	163088.3	
1993	46221.6	1385276.4	16323.3	43754.3	229.9	1463.3	89810.9	1431498.0	151581.6	
1994	36236.3	1272650.1	14925.3	40007.0	221.9	1338.0	82119.1	1308886.4	138611.1	
1995	28614.5	1129195.6	13202.7	35389.7	212.6	1183.6	72641.6	1157810.1	122630.2	
1996	21244.0	975620.4	11367.7	30470.9	203.0	1019.1	62545.0	996864.5	105605.6	
1997	15664.8	797254.1	9270.6	24849.7	213.3	831.1	51007.0	812918.9	86171.6	
1998	14936.4	664080.8	7744.1	20757.9	223.5	694.2	42608.1	679017.2	72027.9	
1999	14423.3	584453.9	6830.5	18309.1	233.5	612.3	37581.6	598877.1	63567.1	
2000	12976.8	469484.5	5503.4	14751.7	243.1	493.3	30279.6	482461.3	51271.1	
2001	14678.1	386921.9	4581.6	12280.8	252.3	410.7	25207.8	401600.0	42733.1	
2002	18705.1	362683.6	4351.2	11663.4	261.2	390.1	23940.5	381388.6	40606.4	
2003	20146.5	305498.2	3715.8	9960.1	271.0	333.1	20444.4	325644.7	34724.4	
2004	21833.9	244701.5	3042.0	8154.0	281.2	272.7	16737.1	266535.4	28487.0	
2005	27518.6	223966.3	2870.7	7695.0	310.6	257.3	15794.9	251484.9	26928.6	
2006	32568.5	218867.2	2870.1	7693.3	304.4	257.3	15791.4	251435.8	26916.5	
2007	35573.0	201757.3	2709.2	7262.0	298.2	242.9	14906.2	237330.2	25418.5	
2008	39166.7	178668.9	2487.0	6666.3	297.8	222.9	13683.3	217835.6	23357.3	
2009	43817.1	172770.4	2472.9	6628.5	310.8	221.7	13605.8	216587.5	23239.7	

7.3.2.3 Selection of emission factors

Research on development of composting of organic waste components started back in the Soviet Union, in the late 1920's. Nevertheless, to this day no high-tech waste composting system has been established in Ukraine, and composting is held mainly in semi-haphazard compost pits.

Thus, there is no information on Ukraine-specific GHG emission factors for waste composting, so the values of emission factors were taken by default for the wet substance: 4g of CH_4/kg of waste and 0.3 g of N_2O/kg of waste; and they are presented in Table 7.9, which corresponds to Table 4.1 of 2006 IPCC Guidelines [1].

Table 7.9. CH₄ and N₂O emission factors for composting

Emission	n factors	Emission	n factors	Notes
Cl	H_4	N_2	2O	
based on dry	based on dry based on wet		based on wet	Assumptions for com-
substance	substance substance		substance	posted waste:
g of CH ₄ /k	g of waste	g of N ₂ O/k	g of waste	25-50% of DOC in dry mat-
10	10 4		0.3	ter, 2% of N in dry sub-
(0.08-20) $(0.03-8)$		(0.2-1.6)	(0.06-0.6)	stance, moisture - 60%.

7.3.3 Uncertainties and time-series consistency

Ranges of uncertainty indicators were calculated in accordance with 2006 IPCC Guidelines [1] and are presented in Table 7.10.

Table 7.11. Uncertainty ranges

	Desig- nation	Default data	Rai	nge	C+	Estimated uncertainty		
Parameter			Bottom	Upper	Standard uncertainty	Bottom	Upper	
			limit	limit		limit, -	limit, -	
	Activity data							
Mass of com-	М				±100 %	30.56 %	30.56 %	
posted waste	IVI				±100 %	30.30 %	30.30 %	
	Emission factors							
Methane	EF _{CH4}	4	0.03	8	±100 %	100	100	
Nitrous oxide	EF _{N20}	0.3	0.06	0.6	±100 %	100	100	
Standard uncertainty of emissions								
Methane 104.57 10-4								
Nitrous oxide 104.57 104.57								

7.3.4 Category-specific QA/QC procedures

Analysis of various sources of input data on waste composting in Ukraine was held, and work to increase reliability of source data by their processing and classification in accordance with [1] was conducted.

Together with the relevant experts of the State Statistics Service of Ukraine verification of activity data on waste composting was provided.

7.3.5 Category-specific recalculations

In this sub-category, no recalculations were held.

7.3.6 Category-specific planned improvements

In this category, no improvements are planned.

7.4 Incineration and Open Burning of Waste (CRF category 5.C)

7.4.1 Category description

CO₂, CH₄ and N₂O emission from incineration and open burning of waste is separated to biogenic and non-biogenic emission based on the fraction of fossil and biogenic carbon in the combusted waste material.

 CO_2 emissions from combustion of biomass materials are biogenic emissions and are not included in national total emission estimates. CO_2 emissions from oxidation during incineration of carbon in fossil origin waste are considered net emissions and are reported under Waste sector. N_2O and CH_4 emissions include both biogenic and non-biogenic sources of emission.

CH₄, N₂O, and CO₂ emissions from combustion of waste are estimated in line with [1]:

- CH₄ and N₂O from waste incineration without energy recovery under Tier 1;
- CO₂ (carbon of fossil origin) from waste incineration without energy recovery Tier 1; for the exception of emissions from MSW combustion, where the methodological approach of Tier 2 was used for the calculations.

 CO_2 , CH_4 , N_2O emissions from waste incineration without energy recovery in 1990-2018 is presented in Figure 7.8 and Table 7.12

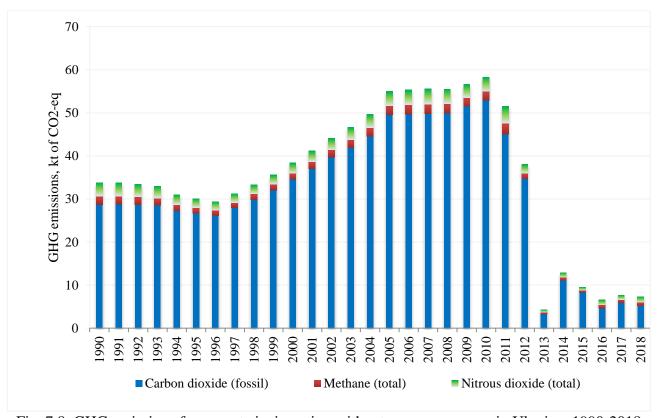


Fig. 7.8. GHG emissions from waste incineration without energy recovery in Ukraine, 1990-2018

Origine, 1990 2010												
	1990	2000	2005	2010	2011	2012	2013	2014	2015	2016	2017	2018
Waste incinerated with energy recovery, kt (Energy sector)	952.2	550.7	903.8	840.3	800.6	1082.9	883.1	873.5	1086.2	1035.3	1008.5	1696.8
Waste incinerated without energy recovery, kt (Waste sector), kt	201.2	156.4	221.1	218.1	253.9	133.0	35.6	75.04	49.8	72.1	60.21	87.82
CO ₂ (fossil), kt CO ₂	28.68	34.54	49.50	52.91	45.08	34.69	3.31	11.08	8.35	4.66	5.93	5.19
CO ₂ (bio), kt CO ₂	146.0	93.68	129.04	150.73	160.31	66.53	20.93	63.16	40.52	49.76	46.74	59.21
Total CH ₄ (total), kt CH ₄	0.067	0.052	0.073	0.072	0.084	0.044	0.012	0.026	0.017	0.027	0.027	0.032
Total N ₂ O (total),	0.011	0.007	0.009	0.010	0.011	0.006	0.002	0.003	0.002	0.004	0.004	0.004

Table 7.12. The amount of waste incinerated and GHG emissions from waste incineration in Ukraine, 1990-2018

GHG emissions from waste incineration without energy recovery in 2018 amounted to 7.31 kt of CO_2 -eq., including: $CH_4 - 0.033$ kt (0.818 kt of CO_2 -eq.), $N_2O - 0.004$ kt (1.30 kt of CO_2 -eq.), $CO_2 - 5.19$ kt. From 1990 to 2018 the emissions decreased by 77.9 %.

Fig. 7.8 shows that from 1990-1996, GHG emissions in this category decreased by 1.2 times, which is due to a decrease in industrial production and MSW generation. From 1997 and to 2007, GHG emissions were steadily increasing and reached 58.11 kt of CO₂-eq.The key factor in the GHG emission trends in 1997-2005 is a sharp increase in plastic content of MSW (from 9.4% to 12.0%), which is the main source of CO₂ in the category. Besides, this period is characterized by a significant growth in industrial production and an increase in MSW. In 2005-2010, annual changes in GHG emissions were insignificant (there was a decline in industrial production, but an increase in MSW generation). Reduction of GHG emissions in 2011 was due to the closure of one of the two operating waste incineration plants (WIP) in Dnipropetrovsk at that time. The dramatic reduction of GHG emissions in 2013 was due to the fact that the only one operating WIP (Kyiv) was subject to reconstruction in that year. Nowadays incinerating waste without energy recovery facilities needs special authorization documents.

In Ukraine, thermal treatment of waste outside specially designated equipped areas is prohibited by law, so there is no official statistics on open burning of municipal waste by population. Thus, no emissions were estimated for the category "Open burning of waste" (CRF 5.C.2). Moreover to prevent underestimation of the CO_2 emissions the regional authorities were officially questioned about the existing situation with MSW treatment in private sector, as well as the lead experts were interviewed.

In order to reveal the facts of unauthorized open burning of waste by the population expert meetings with relevant specialists from all regional administrations were held. According to the results of the expert meetings, single cases of open burning were uncovered only in the Vinnytsia and Chernihiv regions. To estimate the maximum possible amount of GHG emissions from the burning of waste by the population of Vinnytsia and Chernihiv regions an expert assessment was conducted.

The conservative assessment includes the following assumptions:

- MSW generation per person for the territory where there is no centralized waste collection is equal to those MSW that are generated on the territory covered by centralized collection;
- the volume of generated MSW in areas not covered by a centralized collection was burnt and it was not included in the official statistics on the treatment of solid waste in the country;
- the composition of the generated MSW in rural areas uncovered by centralized collection corresponds to the composition of solid waste in Ukraine.

The open burned MSW volumes were determined by the formula 5.7 of chapter 5 Guidelines, 2006 on the basis of available population data from the State Statistics Service for 2014 and the Ministry of Regional Development, Construction and Housing and Communal Services of Ukraine.

Detailed data is provided in Table. 7.13. The volumes of theoretically possible MSW combustion were 68.5 thousand tons.

Table 7.13. Waste managemen	t in the	Vinnytsia and	Chernihiy	oblasts 2014
Table 7.13. Waste managemen	t m mc	v mm v tora and	CHCHIIII	OUIasis. ZUIT

Parameter	Vinnytsia	Chernihiv		
Population, person	1618262	1066826		
The amount of MSW collected, tons	216926	236501.2		
The share of population covered by a centralized collection, %	83.7	90.0		

Detailed information on the composition of the MSW and the amount of possible combustion is given in Table 7.14.

Table 7.14. Waste composition and waste amount which can be burnt in Vinnytsia and Chernihiv regions, 2014

Waste composition	Share, %	Possible burning waste, kt
Paper	13.7	9.4
Textiles	3.9	2.7
food waste	31.8	21.8
Wood	1.8	1.2
garden and park waste	3.6	2.5
personal care	1.4	0.9
rubber and leather	1.9	1.3
Plastic	12.9	8.9
Glass	12.2	8.4
ferrous metals	2.0	1.3
non-ferrous metals	0.4	0.3
hazardous waste	0.5	0.4
other organics	13.9	9.5

Volumes of maximum possible carbon combustion of fossil origin were defined as the amount of fossil carbon content in each component based on humidity, carbon content and fraction of fossil carbon in the MSW components in accordance with the IPCC Guidelines 2006 (Chapter 2, Table. 2.4). The volumes of maximum possible fossil carbon combustion from open burning of solid waste amounted to 7.33 kt.

The maximum possible CO_2 emissions can be determined by the amount of burnt fossil carbon. They amounted to 27.87 kt. According to the Guidelines, 2006, CH_4 specific emissions amounted to 6,500 g/ton of MSW, and $N_2O - 0.15$ g/kg of MSW in a dry condition. Thus, CH_4 emissions amounted to 0.445 kt, and N_2O emissions - 0.00758 kt. Total maximum possible GHG emissions from open burning of solid waste equals 40.27 kt of CO_2 -eq.

Analysis of the collected information has shown that the theoretically possible maximum of CO₂ emissions from open burning is lower than 0.05 % of total GHG emissions in Ukraine, so the corresponding emissions are insignificant and reported as "NE" in the CRF tables.

Therefore, the category includes emissions from incineration of solid municipal, medical, and industrial waste at incinerators, as well as at stationary and mobile specialized sites. Emissions from thermal processes with energy recovery, in accordance with the Guidelines [1], are included in the "Energy" sector.

7.4.2 Methodological issues

7.4.2.1 General principles

Estimation of GHG emissions from waste incineration in the "Waste" sector is performed in accordance with the equations [1]:

$$Q_{CO_2} = MSW \cdot \sum_{i} (WF_i \cdot dm_j \cdot CF_j \cdot FCF_j \cdot OF_j) \cdot 44/12, \tag{7.9}$$

where: Q_{CO_2} is CO₂ emissions over the reporting year, kt/year;

MSW - the total amount of solid waste in the wet weight subject to incineration, tons/year;

 WF_i - the proportion of the waste type/component of component j in MSW (in the wet weight, subject to incineration);

 dm_i - dry matter content in component j in MSW subject to incineration;

 CF_i - carbon fraction of dry matter of component j;

 FCF_i - the share of fossil carbon in the total amount of component j;

44/12 - the conversion factor from C to CO₂;

j - MSW components subject to incineration, such as paper/cardboard, textiles, food waste, garden and park waste, plastic, etc.

$$Q_{CH_4} = MSW \cdot \sum_{i} (IW_i \cdot EF_i) \cdot 10^{-6}, \tag{7.10}$$

where: Q_{CH_4} is CH₄ emissions over the reporting year, kt/year; IW_j - amount of solid waste of type i (wet matter) subject to incineration or open burning, kt;

 EF_i - CH₄ emission component factor, kg of CH₄/kt of waste;

10⁻⁶ - conversion factor kg to kt;

i - waste category subject to incineration; MSW - municipal solid waste, CW - clinical waste, SS - sewage sludge, other (if relevant, specified).

Emissions of N_2O can be estimated using equation (7.11), similarly to equation (7.10):

$$Q_{N_2O} = MSW \cdot \sum_i (IW_i \cdot EF_i) \cdot 10^{-6}, \tag{7.11}$$

where: Q_{N_2O} is N₂O emissions over the reporting year, kt/year.

7.4.2.2 Activity data

Since 2015, accounting of waste incineration volumes in Ukraine has been conducted in accordance with two reporting forms:

- "No.1 TPV" (Ministry of Regional Development of Ukraine).
- "No.1 waste" (State Statistics Service of Ukraine).

Form "No.1 – waste" includes information on all the waste that is incinerated in Ukraine, data on the type of waste are submitted directly from the enterprises. Form "No.1 – TPV" includes information about MSW incineration, which fully and in greater detail are also shown in "No.1 – waste". Therefore, a more reliable source of data on the weight and type of incinerated waste at the level of enterprises is form "No.1 – waste".

Data collection by the State Statistics Committee of Ukraine in accordance with form "No.1 - waste" is held annually since 2010. According to data of the State Statistics Committee of Ukraine, data on incineration of waste without energy generation are presented in Table 7.15.

For the necessary and sufficient aggregation of waste categories for the period of 1990-2015 (based on the characteristics of GHG inventory), the entire set of primary source data was analyzed and processed, as well as the analytical study [29] and the method of restoring the missing time series data for 1990-2009 was proposed.

At stage I, data were grouped into 3 categories and 7 subcategories: municipal solid and similar waste (I), industrial waste (II) (disaggregated by sub-categories: paper and cardboard (IIa), rubber (IIb), plastic (IIc), wood (IId), textiles (IIe), plant and animal residues (IIf) and other (IIg)), as well as clinical waste (III).

Table 7.15. Waste incineration without energy generation in Ukraine in 2010-2018

					Year			2010-2010	
Component*	2010	2011	2012	2013	2014**	2015**	2016**	2017**	2018**
Solvents used	0.3	0.0	0.3	0.4	8.6	38.8	75.3	28.7	571.5
Waste of acids, alkali, and salts	5435.4	5366.1	7159.5	7912.8	4922.8	2072.8	4866.8	4146.5	4732.7
Waste oils	325.9	147.2	477.0	54.4	152.2	3152.5	3164.9	625.4	762.6
Used chemical catalysts	7.1	1.5	5.9	0.0	0.0	0	0.0	0.0	0.0
Used chemical products	584.8	740.5	560.2	1439.6	2196.7	349.7	385.9	931.8	1909.0
Chemical deposits and residues	28314.3	44805.5	19997.5	3466.5	0.0	0	0.0	0	0
Residue of in- dustrial efflu- ents	52.9	7.6	12.7	10.7	331.8	1022.1	2326.9	2632.4	1068.0
Medical care and biological waste	405.6	45.0	265.6	75.9	500.0	445.0	1135.9	1483.3	1009.6
Metal scrap	4.2	0.5	0.0	0.2	18.5	0	0.0	55.0	131.6
Glass waste	1.7	1.0	0.0	1.2	1.3	2.0	1.5	18.1	42.1
Paper and cardboard waste	463.1	484.0	69.0	81.6	143.6	105.2	199.7	250.9	590.4
Rubber waste	20.1	124.0	114.4	57.8	53.2	27.7	74.7	135.8	173.3
Plastic waste	172.2	31.0	11.6	87.7	2708.2	2110.0	520.2	971.7	369.8
Wood waste	49847.1	49011.8	10888.3	9407.8	27880.9	17887.2	17701.3	18327.8	18697.6
Textile waste	192.7	110.7	108.9	33.1	81.1	30.7	176.7	190.2	1245.2
Plant and ani- mal residues	5090.3	51040.7	11593.7	6722.8	29497.8	19002.0	34970.4	27868.9	46964.8
Wastes that contains poly- chlorinated bi- phenyls	103.0	0.3	10.2	0.0	0.0	0.0	0.0	90.8	95.4
Nonfunctional equipment	86.7	1390.9	78.2	19.0	9.3	8.8	17.8	36.8	14.2
Household and similar waste	126119.2	98897.9	78565.5	2911.0	3746.8	2110.3	2010.2	1168.3	978.2
Mixed and undifferentiated materials	294.3	1415.1	1802.0	2510.6	2267.9	1149.6	563.8	918.9	5387.7
Sorting residues	31.4	34.0	378.7	183.3	0.0	0	0.0	0.0	0.0
Normal precipitate	214.8	14.9	8.0	0.0	0.0	3.0	0.0	0.0	0.1
Waste rock from bottom reinforcement work	0.0	0.0	0.0	0.0	0.0	0	0.0	0.0	0.0
Mineral waste	279.6	202.8	892.7	526.3	241.4	231.4	145.5	45.7	924.8
Hardened, sta- bilized or	45.5	5.6	37.9	58.9	186.1	10.6	43.5	95.8	2184.5
glassy waste	45.5	3.0	31.7	30.7	100.1	10.0		75.0	2101.5

^{*}List of wastes by materials according to the order 23.01.2015 №24
**Data of the State Statistic Service of Ukraine, corrected using analytical study

Results of *stage I* of raw data processing are shown in Table 7.16.

Table 7.16. MSW incineration without energy generation in Ukraine in line with the suggested waste classification, t, 2010-2018

Compo-	Desig-	-				Year				
nent	nation	2010	2011	2012	2013	2014*	2015*	2016*	2017*	2018*
Munici- pal solid and sim- ilar waste	I	126119.2	98897.9	78565.5	2911.0	3746.8	2110.3	2010.2	1168.3	978.2
Indus- trial	II	91567.4	154935.7	54206.7	32574.7	70685.9	47204.0	64069.5	57354.9	85865.3
paper and cardboard	a	463.1	484.0	69.0	81.6	143.4	105.2	199.7	250.9	590.4
rubber	b	20.1	124.0	114.4	57.8	53.1	27.7	74.7	135.8	173.3
plastic	С	172.2	31.0	11.6	87.7	2704.4	2110.0	520.2	971.7	369.8
wood	d	49847.1	49011.8	10888.3	9407.8	27880.9	17887.2	17701.3	18327.8	18697.6
textile	e	192.7	110.7	108.9	33.1	81.2	30.7	176.7	190.2	1245.2
plant and animal residues	f	5090.3	51040.7	11593.7	6722.8	29497.8	19002,0	34970.4	27868.9	46964.8
other	g	35781.9	54133.5	31420.8	16183.9	10325.1	8041.1	10426.6	9609.6	17824.2
Clinical waste	III	405.6	45.0	265.6	75.9	500.0	445.0	1135.9	1483.3	1009.6

^{*}Data of the State Statistic Service of Ukraine, corrected using analytical study

Based on results of *stage II*, the time series for waste incineration with/without generation(s) of energy in Ukraine for the categories for the period of 1990-2009 was restored.

When assessing data for all categories of waste, the following assumptions were proposed:

- The change in the weight of incinerated Category I for the period of 1990-2009 depends on MSW generation and dumping.
- The change in the weight of incinerated Category II for the period of 1990-2009 depends on the industrial production index.
- The change in the weight of incinerated Category III for the period of 1990-2009 depends on the country's population.
 - The structure of the incinerated Category II for the period of 1990-2009 is a constant.
- To restore the 1990-2009 time series the average value of incinerated waste for 2010-2013 was multiplied by each of the above indicators.

Estimation of the weight of waste incinerated without electricity production in Ukraine for the period of 1990-2009 is shown in Table 7.17.

Table 7.17. Waste incineration without energy generation in Ukraine in 1990-2009

		. Waste III				Vaste cate					MSW dumping	Plastic content of	Industrial produc-
Year						T					thousand	MSW, % of wet weight	tion index, % to the previous year
	I	II:	a	b	С	d	e	f	g	III	tons	weight	previous year
1990	99886.0	101114.7	302.3	124.0	126.1	34136.0	147.7	20356.5	45922.2	224.5	9872.9	6.9	99.9
1991	97476.7	96261.2	287.8	118.0	120.0	32497.4	140.6	19379.4	43717.9	224.9	9634.7	7.2	95.2
1992	95018.6	90100.5	269.4	110.5	112.3	30417.6	131.6	18139.1	40920.0	225.4	9391.8	7.6	93.6
1993	92425.9	82892.4	247.8	101.6	103.3	27984.2	121.1	16688.0	37646.4	226.2	9135.5	8.0	92.0
1994	89187.5	60262.8	180.2	73.9	75.1	20344.5	88.0	12132.1	27368.9	225.7	8815.4	8.4	72.7
1995	85446.3	53031.3	158.6	65.0	66.1	17903.2	77.5	10676.3	24084.6	224.0	8445.6	8.7	88.0
1996	81591.9	50326.7	150.5	61.7	62.7	16990.1	73.5	10131.8	22856.3	222.1	8064.7	9.1	94.9
1997	85723.5	50175.7	150.0	61.5	62.6	16939.1	73.3	10101.4	22787.8	220.0	8473.0	9.4	99.7
1998	89852.5	49673.9	148.5	60.9	61.9	16769.7	72.6	10000.4	22559.9	218.1	8881.1	9.7	99.0
1999	93863.3	51660.9	154.5	63.3	64.4	17440.5	75.5	10400.4	23462.3	216.2	9277.6	10.1	104.0
2000	97722.0	58480.1	174.8	71.7	72.9	19742.7	85.4	11773.3	26559.3	214.0	9659.0	10.5	113.2
2001	101402.5	66784.3	199.7	81.9	83.3	22546.1	97.6	13445.1	30330.7	211.8	10022.8	10.8	114.2
2002	105000.8	71459.2	213.7	87.6	89.1	24124.4	104.4	14386.2	32453.9	209.8	10378.4	11.3	107.0
2003	108931.3	82749.8	247.4	101.5	103.2	27936.0	120.9	16659.2	37581.6	207.9	10766.9	11.3	115.8
2004	113015.0	93093.5	278.3	114.1	116.1	31428.0	136.0	18741.6	42279.3	206.2	11170.6	11.5	112.5
2005	124868.4	95979.4	287.0	117.7	119.7	32402.3	140.2	19322.6	43589.9	204.7	12342.2	11.7	103.1
2006	122362.0	101930.1	304.8	125.0	127.1	34411.2	148.9	20520.6	46292.5	203.2	12094.4	11.9	106.2
2007	119855.7	109167.2	326.4	133.9	136.1	36854.4	159.5	21977.6	49579.3	202.0	11846.7	12.0	107.1
2008	119722.5	103708.8	310.1	127.2	129.3	35011.7	151.5	20878.7	47100.3	200.8	11833.5	12.1	95.0
2009	124935.3	82344.8	246.2	101.0	102.7	27799.3	120.3	16577.7	37397.6	199.8	12348.8	12.3	79.4

7.4.2.3 Selection of emission factors

Only one waste incineration plant (Energia Incineration Plant) operates in Ukraine in Kiev. Type of furnace is a rotary stoker furnace and the plant was constructed by CKD Dukla, a Czech company with a licensing agreement with a company in Dusseldorf in Germany.

For CH₄ and N_2O , emission factors depend on the treatment practice and the combustion technology. It was found out that the type of waste incineration at the Energia Incineration Plant is continuous. In this case according to the 2006 IPCC Guidelines (vol. 5, section 5.4.2) for continuous incineration of MSW and industrial waste, it is good practice to apply the CH₄ emission factors provided in Volume 2, Chapter 2, Stationary Combustion in Table 2.2. Thus the average values for methane emissions factor for all types of waste (MSW, industrial and clinical) – 30 kg CH₄/TJ and for nitrogen oxide emissions factor for all types of waste (MSW, industrial and clinical) – 4 kg N_2O /TJ. The net calorific values (NCV) of 11.6 TJ/Gg and 10 TJ/Gg were taken for biogenic and nonbiogenic waste respectively.

The values of dry matter content in the component *j*, fraction of carbon in the dry matter, fraction of fossil carbon in the total carbon of component *j* were taken by default in Section 5.2.3, table 2.4 of 2006 IPCC Guidelines (vol. 5) (see Table 7.18). The composition of MSW in Ukraine and fraction of component *j* in the MSW is presented in Section 7.2.

Table 7.18. Default dry matter content, total carbon content and fossil carbon fraction of

different MSW components

					Municip	oal solid aı	nd similar	waste I				
MSW component	paper and paper board	textile	food	wood	garde n and park	person al care product s	rubber and leather	plasti cs	glass	metal	hazar dous	other non- organ
Dry matter content	90	80	40	85	40	40	84	100	100	100	90	90
Fraction of carbon in the dry matter	46	50	38	50	49	70	67	75	0	0	3	3
Fraction of fossil carbon in the total carbon	1	20	0	0	0	10	20	100	0	0	100	100

DOC and fossil carbon content in industrial waste for the components were taken by default in Section 5.2.3, Table 2.5 of 2006 IPCC Guidelines (vol. 5) and for the clinical waste – from Table 2.6 of 2006 IPCC Guidelines (vol. 5) (see Table 7.19). Moreover in the current report the component of industrial waste (the plant and animal residues (*f*), which is 20-50 % (for different years) from the value of total industrial waste) was separated from the category of "Other" (*g*). For this component DOC and fossil carbon content were taken by default. And they were similar to food waste ones.

Table 7.19. Default DOC and fossil carbon content in industrial and clinical waste

			Clinical waste					
	a	b	c	d	e	f	g	III
DOC	40	39	0	43	24	15	1	15
Fossil carbon	1	17	80	0	16	0	3	25
Total carbon	41	56	80	43	40	15	4	40

7.4.3 Uncertainties and time-series consistency

Uncertainty ranges were estimated in accordance with [1] and presented in Table 7.20.

Table 7.20. Uncertainty estimation ranges

	Estimated	uncertainty
	"_"	"+"
Activit	y data	
Mass of incinerated	31.03	31.03
Emission	n factors	
Waste composition	10	10
Dry matter content in waste	10	10
Share of fossil carbon	15	15
Oxidation factor	5	5
Carbon fraction in dry matter	15	15
Uncertainty of CH ₄ emission factors	100	100
Uncertainty of N ₂ O emission factors	100	100
Standard uncertainty of CO ₂ emissions	40.47	40.47
Standard uncertainty of N ₂ O emissions	104.70	104.70
Standard uncertainty of CH ₄ emissions	104.70	104.70

7.4.4 Category-specific QA/QC procedures

Analysis of various sources of input data on waste incineration in Ukraine was held, and work to increase reliability of source data by their processing and classification in accordance with [1] was conducted.

7.4.5 Category-specific recalculations

In this sub-category, recalculations were carried out because of the use of other CH₄ and N₂O emission factors depending on type and technology of incineration, that is 30 kg CH₄/TJ and 4 kg N₂O/TJ respectively instead of 118.5 kg of CH₄/Gg of waste, for nitrous oxide - 100 g of N₂O/t of industrial/clinical waste, and 55, 100 g of N₂O/t of MSW. In additional, in the current report the component of industrial waste (the plant and animal residues (f), which is 20-50 % (for different years) from the value of total industrial waste) was separated from the category of "Other" (g). As a result of recalculations, CO₂ emissions decreased by 1-34 %, CH₄ emissions increased by 2-3 times and N₂O emissions decreased by 38-54 %. Results of recalculation are provided in Table 7.21.

Table 7.21. Recalculation in subcategory 5.C.1 "Waste incineration"

X 7		y Report, 2		Inventory	Report, 202	20 submis-	I	Difference, %	, 0	
Year		mission, kt			sion, kt			GO GTT 11 0		
	CO_2	CH ₄	N ₂ O	CO_2	CH ₄	N ₂ O	CO_2	CH ₄	N ₂ O	
1990	30.92	0.024	0.016	28.68	0.067	0.009	-7.24	182.16	-42.60	
1991	30.89	0.023	0.015	28.76	0.065	0.009	-6.90	181.97	-42.43	
1992	30.71	0.022	0.014	28.71	0.062	0.008	-6.50	181.80	-42.12	
1993	30.36	0.021	0.013	28.52	0.059	0.008	-6.05	181.63	-41.69	
1994	28.60	0.018	0.011	27.26	0.050	0.007	-4.67	181.61	-39.20	
1995	27.83	0.016	0.010	26.66	0.046	0.006	-4.22	181.41	-38.48	
1996	27.26	0.016	0.010	26.14	0.044	0.006	-4.09	181.16	-38.48	
1997	29.02	0.016	0.010	27.91	0.045	0.006	-3.83	180.93	-38.06	
1998	30.96	0.017	0.010	29.86	0.046	0.006	-3.55	180.64	-37.61	
1999	33.23	0.017	0.010	32.08	0.048	0.006	-3.44	180.30	-37.64	
2000	35.84	0.019	0.011	34.54	0.052	0.007	-3.61	179.97	-38.46	
2001	38.52	0.020	0.012	37.04	0.056	0.007	-3.84	179.69	-39.38	
2002	41.31	0.021	0.013	39.72	0.058	0.008	-3.83	179.32	-39.75	
2003	43.76	0.023	0.014	41.93	0.064	0.008	-4.19	179.27	-40.74	
2004	46.61	0.024	0.016	44.55	0.068	0.009	-4.42	179.14	-41.47	
2005	51.63	0.026	0.016	49.50	0.073	0.010	-4.12	178.95	-40.90	
2006	51.95	0.027	0.017	49.69	0.074	0.010	-4.35	178.83	-41.63	

Year		y Report, 2 mission, kt		Inventory	Report, 202	20 submis-	Difference, %			
1001	CO ₂	CH ₄	N ₂ O	CO_2	CH ₄	N ₂ O	CO_2	CH ₄	N ₂ O	
1990	30.92	0.024	0.016	28.68	0.067	0.009	-7.24	182.16	-42.60	
2007	52.21	0.027	0.018	49.79	0.076	0.010	-4.63	178.76	-42.40	
2008	52.23	0.027	0.017	49.94	0.074	0.010	-4.40	178.64	-42.00	
2009	53.33	0.025	0.015	51.51	0.068	0.009	-3.42	178.30	-39.69	
2010	53.47	0.026	0.016	52.91	0.072	0.010	-1.05	180.27	-40.14	
2011	50.70	0.030	0.021	45.08	0.084	0.011	-11.07	180.29	-46.30	
2012	35.96	0.016	0.010	34.69	0.044	0.006	-3.55	176.93	-40.41	
2013	4.05	0.004	0.003	3.31	0.012	0.002	-18.27	178.08	-54.38	
2014	14.35	0.009	0.007	11.08	0.026	0.003	-22.74	193.70	-52.53	
2015	10.44	0.006	0.005	8.35	0.017	0.002	-20.02	194.33	-52.59	
2016	8.98	0.009	0.007	4.66	0.027	0.004	-48.12	211.94	-50.09	
2017	9.02	0.007	0.006	5.93	0.027	0.004	-34.26	277.59	-39.82	
2018	-	-	-	5.19	0.033	0.004	-	-	-	

7.4.6 Category-specific planned improvements

In this category, no improvements are planned.

7.5 Wastewater Treatment and Discharge (CRF category 5.D)

7.5.1 Category description

This category accounts for GHG emissions from the following emission sources:

- Treatment and discharge of domestic sewage for methane under Tier 2 applying national and default factors, for nitrous oxide emissions under Tier 1 with default factors.
 - Industrial sewage treatment and discharge under Tier 2.

In 2018 GHG emissions in this category amounted to $4{,}011.30$ kt CO_2 -eq (31.90 % of total GHG emissions in the "Waste" sector), having decreased compared to 1990 (5,319.89 kt CO_2 -eq) by 24.60 % and an increase by 1.41 % compared to 2017.

GHG emissions from treatment of industrial sewage amounted to 832.10 kt CO_2 -eq (20.74 % of the category), of methane from domestic sewage -2,140.00 kt of CO_2 -eq (53.35 % of the category), and of nitrous oxide from human life activity sewage -1,039.20 kt CO_2 -eq (25.91 % of the category). Dynamics of GHG emissions at wastewater treatment is presented in Fig. 7.9.

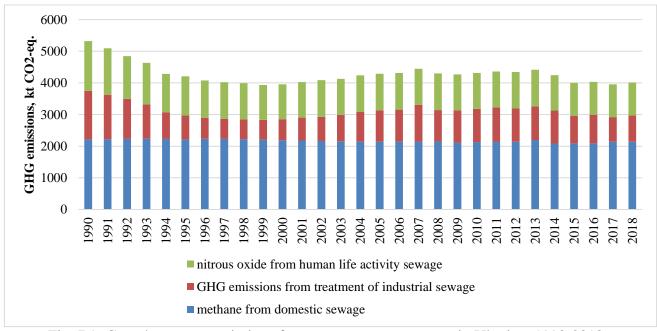


Fig. 7.9. Greenhouse gas emissions from waste water treatment in Ukraine, 1990-2018

7.5.2 Methane emissions from domestic wastewater treatment (CRF sub-category **5.D.1.1**)

7.5.2.1 Category description

Methane emissions from treatment of domestic sewage amounted to 2,140.00 kt CO₂-eq (85.60 kt CH₄) in 2018. The reduction in emissions relative to 1990 (2,213.51 kt CO₂-eq) constituted 3.32 %, compared to 2017 – increasing by 0.02 % (Fig. 7.10).

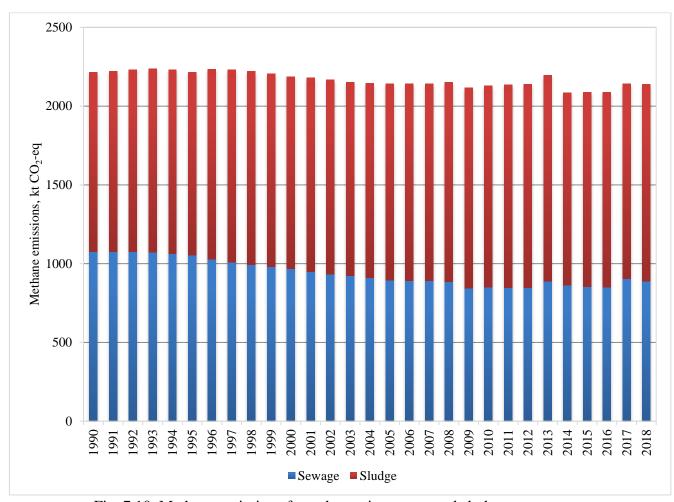


Fig. 7.10. Methane emissions from domestic sewage and sludge treatment in Ukraine, 1990-2018

In general, the annual fluctuation in GHG emissions in this sub-category is the smallest compared with the other emission sources in the "Waste" sector. Gradual reduction of GHG emissions from 1990 to 2018 is mainly due to decrease on population of Ukraine.

Structure of domestic wastewater drainage system in Ukraine is presented in the Figure 7.11.

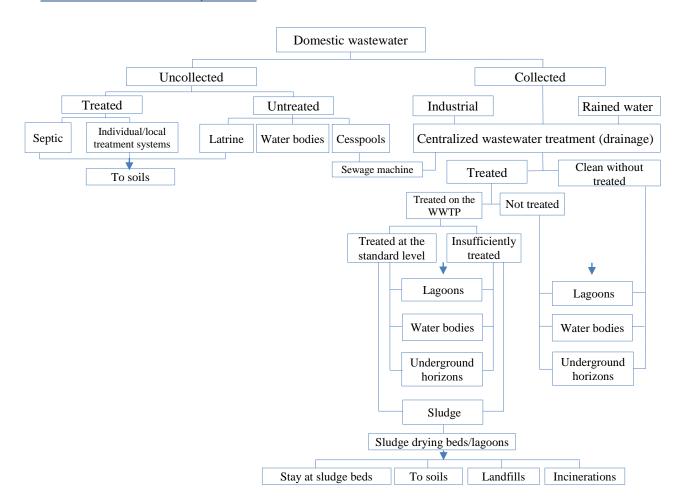


Fig. 7.11. Structure of domestic wastewater drainage system in Ukraine

7.5.2.2 Methodological issues

7.5.2.2.1 General principles

Estimation of methane emissions from domestic wastewater treatment was executed in line with the procedure set out in the research work "Research in methane and nitrous oxide emissions from waste water treatment and development of methods to determine national emission factors" [20].

Methane emissions from domestic wastewater treatment were determined under formula [20].

$$E_{CH4} = 365 \times \sum_{k} P \times q_{BOD} \times F_k \times B_0, \tag{7.12}$$

where P – population, persons;

 $q_{BOD} = 50$ - generation of BOD_5 per capita daily, g/pers./day;

 F_k – biodegrable part of BOD that produce methane for different BOD flows (tabl. 7.24);

 $B_0 = 0.6$ - maximum methane production capacity, kg of CH₄/kg of BOD [1].

7.5.2.2.2 Activity data

Generalization of data on the use of water in Ukraine is done by the State Water Agency of Ukraine and reflected in statistical reporting form No. 2-TP (water management). Structure of the statistical form No. 2-TP on discharges of return water include: the list of industries; volumes of wastewater treated by different types of treatment (mechanical, biological, physico-chemical) at central WWTP and then discharged into water bodies (surface and underground), irrigation fields or other

systems; the volume of wastewater discharged by treatment category: not treated water; insufficiently treated water; water treated at the standard level.

Classification of treated wastewater into "not treated", "insufficiently treated" and "treated at the standard level" is based on a comparison of the actual quantity of discharged pollutants and maximum permissible concentration/norms:

- contaminated wastewater: **not treated** water and **insufficiently treated** water. Such water contains various pollutants and it is discharged into natural water bodies or other systems without treatment or the degree of their treatment does not correspond to maximum permissible concentration/norms:
- wastewater **normatively clean without being treated**. Discharging such waters into water bodies does not lead to deterioration of water quality standards.
- wastewater treated at the standard level at the treatment plants in biological, physicochemical and mechanical ways. Discharging such waters after treatment into water bodies does not lead to deterioration of water quality standards.

Domestic wastewater in Ukraine is mainly treated by two ways: collected/centralized treatment systems (aerobic wastewater treatment plants) and not collected/decentralized (septic tanks, cesspools, latrines). Urban wastewater is largely treated in the first way, rural wastewater – mainly in the second one. The degree of application of domestic sewage treatment and discharge systems in Ukraine is presented in the Table 7.22.

Aeration stations operate according to the classical scheme of sewage treatment, developed in the Soviet Union and used almost in all countries of the former Soviet Union. It includes mechanical (screens, sandblasters and radial primary sedimentation tanks) and biological treatment (aeration tanks and secondary sedimentation tanks). Methods of biological treatment of wastewater from nitrogen and phosphorus compounds are not common practice in Ukraine.

Sewage sludge is recyclable to reduce its volume and disinfect it. Sludge treatment is done in special facilities – methane tanks and aerobic stabilizers. Anaerobic sludge digestion in methane tanks is practiced in Ukraine only at Bortnychi Sewage Treatment Plant. Then, sludge is pumped to the sludge-drying beds for further drying under natural or artificial conditions.

Due to the absence of any technologies for the efficient utilization of sludge (they were not foreseen by the projects in the 1950s), the sludge fields/sludge-drying beds are the only way to their processing, dewatering and utilization. More detailed information on sludge-drying beds is presented in section 7.5.2.2.3.

The population and the proportion of population having access to sewerage were determined based on data of the State Statistics Service of Ukraine. The degree of application of sewage treatment or discharge systems (see Table 7.22) was determined based on data of the State Water Agency of Ukraine reflected in statistical form No. 2-TP (water management).

Generation of BOD_5 per capita daily was taken as 50 g/pers./day as the national factor on the basis of [24] with regard to the current state sanitary regulations [25]. BOD flows are presented in Table 7.23.

Table 7.22. The degree of application of domestic sewage treatment and discharge systems in Ukraine, 1990-2018

			(Collected domestic	waste water, %	,			
			Central	ized systems		D	ecentralized syst	tems	
Year	Total	Total	Treated at the standard level	Insufficiently treated	Not treated	Total	Septic tanks	Cesspools	Latrines, %
1990	45.72	34.06	8.24	22.60	3.22	11.66	0.11	11.55	54.28
1991	45.94	34.22	8.51	22.53	3.18	11.72	0.12	11.60	54.06
1992	46.18	34.40	8.80	22.47	3.14	11.78	0.13	11.65	53.82
1993	46.47	34.62	9.11	22.41	3.09	11.85	0.14	11.71	53.53
1994	46.61	34.72	9.41	22.27	3.04	11.89	0.16	11.73	53.39
1995	46.79	34.85	9.74	22.14	2.98	11.93	0.17	11.76	53.21
1996	49.08	36.56	10.25	23.23	3.08	12.52	0.21	12.31	50.92
1997	49.94	37.20	10.72	23.42	3.06	12.74	0.23	12.51	50.06
1998	50.57	37.67	11.17	23.49	3.01	12.90	0.24	12.66	49.43
1999	50.89	37.91	11.57	23.39	2.94	12.98	0.26	12.72	49.11
2000	51.25	38.18	12.02	23.29	2.86	13.07	0.28	12.80	48.75
2001	52.11	38.82	12.62	23.40	2.81	13.29	0.31	12.99	47.89
2002	52.65	39.22	13.18	23.32	2.72	13.43	0.34	13.09	47.35
2003	52.85	39.37	13.70	23.07	2.61	13.48	0.37	13.11	47.15
2004	53.39	39.77	14.34	22.93	2.50	13.62	0.40	13.22	46.61
2005	54.32	40.47	15.62	22.38	2.46	13.86	0.47	13.39	45.68
2006	54.55	40.63	15.90	22.68	2.04	13.91	0.65	13.26	45.45
2007	55.28	41.18	16.40	22.60	2.18	14.10	0.82	13.28	44.72
2008	56.23	41.89	18.52	21.48	1.90	14.34	1.19	13.15	43.77
2009	57.29	42.68	27.54	13.49	1.65	14.61	1.63	12.99	42.71
2010	58.08	43.26	28.85	12.95	1.46	14.81	2.01	12.80	41.92
2011	58.85	43.84	30.86	11.69	1.29	15.01	2.34	12.67	41.15
2012	59.74	44.51	32.52	10.27	1.71	15.24	2.62	12.61	40.26
2013	60.17	44.82	26.84	16.78	1.19	15.35	2.84	12.51	39.83
2014	57.20	42.61	33.27	8.38	0.96	14.59	2.94	11.65	42.80
2015	58.80	43.80	35.01	7.19	1.61	15.00	3.14	11.86	41.20
2016	59.20	44.10	35.56	7.06	1.48	15.10	3.24	11.86	40.80
2017	58.90	43.88	25.79	16.62	1.47	15.02	3.18	11.85	41.10
2018	60.00	44.70	27.01	16.13	1.55	15.30	3.19	12.11	40.00

Table 7.23. Amount of BOD₅ in domestic waste water treated in any way in Ukraine, 1990-2018

	C 7.23. Alliot									
			Centraliz	zed systems		De	centralized sys	stems	Latrines,	Total,
	Total	Total	Treated at the standard level	Insufficiently treated	Not treated	Total	Septic tanks	Cesspools	thousand tons of BOD ₅ /day	thousand tons of BOD ₅ /day
1990	1.1863	0.8837	0.2139	0.5864	0.0835	0.3026	0.0029	0.2997	1.4083	2.5946
1991	1.1944	0.8897	0.2213	0.5858	0.0826	0.3046	0.0030	0.3016	1.4057	2.6000
1992	1.2042	0.8971	0.2295	0.5859	0.0818	0.3072	0.0033	0.3038	1.4033	2.6075
1993	1.2124	0.9032	0.2378	0.5847	0.0807	0.3092	0.0038	0.3055	1.3965	2.6090
1994	1.2101	0.9014	0.2444	0.5782	0.0788	0.3086	0.0041	0.3045	1.3860	2.5961
1995	1.2050	0.8977	0.2508	0.5702	0.0767	0.3074	0.0045	0.3029	1.3706	2.5756
1996	1.2528	0.9333	0.2615	0.5931	0.0786	0.3195	0.0054	0.3142	1.3000	2.5529
1997	1.2633	0.9411	0.2711	0.5926	0.0773	0.3222	0.0057	0.3165	1.2665	2.5297
1998	1.2680	0.9446	0.2800	0.5891	0.0755	0.3234	0.0061	0.3174	1.2392	2.5072
1999	1.2640	0.9416	0.2875	0.5810	0.0730	0.3224	0.0064	0.3160	1.2197	2.4837
2000	1.2602	0.9388	0.2956	0.5727	0.0704	0.3214	0.0068	0.3146	1.1987	2.4588
2001	1.2680	0.9446	0.3071	0.5693	0.0683	0.3234	0.0075	0.3160	1.1652	2.4331
2002	1.2690	0.9454	0.3177	0.5621	0.0656	0.3237	0.0081	0.3156	1.1411	2.4101
2003	1.2635	0.9412	0.3275	0.5515	0.0624	0.3223	0.0088	0.3135	1.1272	2.3906
2004	1.2666	0.9435	0.3403	0.5439	0.0593	0.3231	0.0095	0.3135	1.1060	2.3726
2005	1.2795	0.9531	0.3679	0.5272	0.0580	0.3263	0.0110	0.3153	1.0758	2.3553
2006	1.2761	0.9506	0.3720	0.5307	0.0477	0.3255	0.0152	0.3103	1.0633	2.3394
2007	1.2856	0.9577	0.3814	0.5256	0.0507	0.3279	0.0190	0.3089	1.0399	2.3255
2008	1.3005	0.9688	0.4284	0.4968	0.0439	0.3317	0.0275	0.3042	1.0124	2.3129
2009	1.3193	0.9828	0.6341	0.3106	0.0379	0.3365	0.0374	0.2991	0.9834	2.3027
2010	1.3320	0.9923	0.6616	0.2971	0.0335	0.3397	0.0461	0.2936	0.9615	2.2935
2011	1.3448	1.0018	0.7052	0.2671	0.0294	0.3430	0.0534	0.2896	0.9405	2.2853
2012	1.3620	1.0146	0.7413	0.2340	0.0389	0.3474	0.0598	0.2876	0.9177	2.2797
2013	1.3684	1.0194	0.6104	0.3817	0.0270	0.3490	0.0645	0.2845	0.9060	2.2745
2014	1.2862	0.9582	0.7482	0.1885	0.0216	0.3281	0.0661	0.2619	0.9624	2.2486
2015	1.3174	0.9814	0.7844	0.1611	0.0361	0.3360	0.0704	0.2656	0.9231	2.2405
2016	1.3218	0.9847	0.7939	0.1577	0.0330	0.3371	0.0724	0.2647	0.9110	2.2327
2017	1.3100	0.9759	0.5736	0.3696	0.0327	0.3341	0.0706	0.2635	0.9141	2.2242
2018	1.3281	0.9894	0.5979	0.3571	0.0343	0.3388	0.0707	0.2680	0.8854	2.2136

7.5.2.2.3 Selection of emission factors

The maximum methane production capacity by default was taken to be 0.6 kg of CH₄/kg of BOD [1].

Methane conversion rates, *MCF*, for different type of domestic wastewater treatment are defined in accordance with [1, 24] and presented in Table 7.24. According to the research [24], it's assumed that all aeration stations are well-managed and non-overloaded, taking into account the general statistics on incomplete utilization of the capacity of the treatment facilities in Ukraine. Therefore, the MCF value is 0 for the share of domestic wastewater, which is treated at the standard level. The MCF value is 0.05 for the part of the domestic wastewater classified as insufficiently treated. Insufficient treating is mainly due to the excess of the maximum permissible discharge of pollutants from treatment plants by the content of ammonium nitrogen, nitrites, nitrates and phosphates. In fact, the biological treatment facilities were designed over 60 years ago and designed to remove mainly organic pollution from wastewater by their technological purpose. Removing nitrogen and phosphorus compounds was not required in the process calculations. Thus, today there is a problem on wastewater treatment from these compounds in Ukraine. However, based on the fact that these compounds do not produce methane, the MCF value for insufficiently treated wastewater was taken 0.05, slightly more than for the wastewater treated at the standard level.

In order to estimate methane emissions from wastewater discharge into open reservoirs (seas, rivers, lakes) the MCF value was taken by default 0.1 according to 2006 IPCC Guidelines (vol. 5, chapter 6, table 6.3). In order to account methane emissions from septic system the MCF value was taken by default 0.5 according to 2006 IPCC Guidelines (vol. 5, chapter 6, table 6.3). In the absence of reliable data on the types of latrines in Ukraine the MCF value was taken by default 0.1 according to 2006 IPCC Guidelines (vol. 5, chapter 6, table 6.3).

When estimating BOD flows, the efficiency E_{BOD} of their removal while was considered in accordance with [26]. The conversion factor MCF and biodegradable part of BOD for each types/methods of domestic sewage treatment see in Table 7.24.

Biodegradable parts $(F_{k,ww})$ of sewage BOD of different BOD flows were calculated based on the formulas [24]:

$$F_{tr} = E_{BOD.tr} \times MCF_{tr} + (100 - E_{BOD.tr}) \times MCF_{w},$$

$$F_{ins.tr} = E_{BOD.ins.tr} \times MCF_{ins.tr} + (100 - E_{BOD.ins.tr}) \times MCF_{w},$$

$$F_{not.tr} = MCF_{w},$$

$$F_{sept} = MCF_{sept},$$

$$F_{cessp} = (F_{tr} + F_{ins.tr})/2, \tag{7.17}$$

$$F_{latr} = MCF_{latr}, (7.18)$$

where $E_{BOD.tr} = 0.9164$ – efficiency of BOD removal for treated wastewater [24]; $E_{BOD.ins.tr} = 0.84$ – efficiency of BOD removal for insufficiently treated wastewater [24]; $MCF_{tr}, MCF_{ins.tr}, MCF_{sept}, MCF_{latr}$ – conversion factor MCF for different BOD flows (tabl. 7.24);

 $MCF_w = 0.1 - \text{conversion factor MCF for water reservoirs [1]}.$

Biodegradable parts ($F_{k,sl}$) of sludge BOD of different BOD flows were calculated based on the formulas [24]:

$$F_{sl.tr} = (E_{BOD.tr} - F_{aer.tr}) \times MCF_{sl}, \tag{7.19}$$

$$F_{sl.ins.tr} = (E_{BOD.ins.tr} - F_{aer.ins.tr} - MCF_{ins.tr}) \times MCF_{sl}, \tag{7.20}$$

$$F_{sl.cessp} = (F_{sl.tr} + F_{sl,ins.tr})/2, \tag{7.21}$$

where $F_{aer.tr} = 0.3$ – biomass growth rate under aerobic treatment (expert estimation) [24];

 $F_{aer.ins.tr} = 0.15$ – full sludge BOD removal under aerobic treatment (expert estimation) [24]; $MCF_{sl} = 0.299$ – especial conversion factor MCF for sludge-drying beds for Ukraine [24].

Table 7.24. The conversion factor MCF and biodegradable part of BOD for each of the methods of domestic sewage treatment

	Ce	entralized systems		Decentralia	zed systems		
Treatment system	Treated at the standard level	Insufficiently treated	Not treated	Septic tanks	Cesspools	Latrines	Sludge-dry- ing beds
MCF	0	0.05	0.1	0.5	0.1	0.1	0.299
Biodegradable part of sewage BOD ($F_{k,ww}$)	0.0083	0.0580	0.1	0.5	0.0332	0.1	-
Biodegradable part of sludge BOD $F_{k,sl}$	0.1844	0.1914	0	0	0.1879	0	-

The dominant practice of sludge treatment in Ukraine is their dehydration/drying on sludge fields /sludge-drying beds. Ukraine uses almost one method of sludge disposal – storage (> 95%). This is due to the fact that the quality of domestic sewage sludge does not correspond to standards of the heavy metals content.

The *sludge-drying beds* are the constructed sites, either on a natural or artificial basis, on which the sludge is dried. The construction of sludge-drying beds is determined depending on the hydrogeological and climatic conditions, terrain. The size of the sludge-drying beds is governing by current building codes [12]. Depth of sludge discharge is assumed to be 0.7-1.0 m [12]. The sludge discharged on the sludge cards is mainly dried by the evaporation of water. Part of the water is filtered through drainage or soil (natural foundation). The dried sludge is scooped up by a bulldozer or scraper, loaded into cars and taken for further disposal. However, from 1980-90, the transportation of dried sludge from sludge-drying beds was prohibited due to the high content of heavy metals, which made it impossible to use in agriculture as organic and mineral fertilizers. Thus, during the last 20-30 years, the dried sludge from the sludge fields was not transported, as a result the sludge fields actually turned into sludge storage. Excess sludge is stored on the sludge fields by embanking dams (especially true for big cities) or by attracting new territories (land). In some cases, the dried sludge is removed on the MSW landfills. Very insignificant sludge quantities are used in agriculture as organic and mineral fertilizers. And also insignificant sludge quantities are incinerated.

In the register of waste disposal sites, sludge-drying beds are marked/defined as waste disposal sites under different codes, for example, D5 (dumping into specially equipped landfills); D2 (soil treatment (biochemical decomposition of liquid or sludge wastes in the soil, etc.); D1 (dumping (landfill, etc.); D4 (placement of liquid or sludge waste in ditches, lagoons, ponds, etc.)

To determine the national methane emission factor (MCF_{UA}) for sludge-drying beds, the developed methodology takes into account two main factors – the air temperature and the depth of sludge-drying beds. Due to the lack of reliable data on the depths of sludge-drying beds, the value of 1 m to 5 m was accepted. The average monthly temperatures for each month of the year were different for each region of Ukraine. Thus, MCF_{UA} was adopted of 0.299 [24].

7.5.2.3 Uncertainties and time-series consistency

The uncertainty estimation ranges for households and the maximum methane production capacity were default ones [1], for MCF - calculated on the basis of [1], for the rest of the parameters - based on expert estimations [24] (Table 7.25).

Table 7.25. Uncertainty estimation ranges

Parameter	Uncertaint	y range, %
Farameter	-	+
Emission factors		
Maximum methane producing capacity, kg CH ₄ /kg of BOD	30	30
MCF depending on the technology	21.52	21.52
Uncertainty of emission factors	36.92	36.92
Activity data		
Population, persons	5	5
BOD per capita, g/day/person	0	2.6
Proportion of population having access to sewerage	10	10
Degree of application of sewage treatment or discharge systems	10	10
Efficiency of contaminant removal by the wastewater treatment method	10	10
Uncertainty of activity data	18.03	18.21
Uncertainty of CH ₄ emission	41	.1

7.5.2.4 Category-specific QA/QC procedures

General and detailed quality control and assurance procedures were applied:

- assessment of comparability of the *MCF* values used in the inventory with the values applied in other countries;
 - comparison of emission along the time series and analysis of trends;
- comparison of activity data, emission factors, and estimation results with inventory reports of other countries.

7.5.2.5 Category-specific recalculations

In this sub-category, recalculations were carried out due to the use of the average available population for the inventory year instead of the values of population on January 1 of the next inventory year. In addition, the values of insufficiently and not treated wastewater volumes were corrected for 2014, 2016 and 2017. As a result of recalculations, methane emissions changes by 0,07-2 %. Results of recalculation are provided in Table 7.26.

Table 7.26. Recalculations in sub-category 5.D.1.1 "Methane emissions from domestic wastewater treatment"

	Inventor	ry Report, 2	019 sub-	Inventory	Report, 202	20 submis-	1	Difference, %		
Year		mission, kt			sion, kt		J			
	CO_2	CH ₄	N ₂ O	CO_2	CH ₄	N_2O	CO_2	CH ₄	N ₂ O	
1990	-	88.48	-	-	88.54	-	-	0.07	-	
1991	-	88.80	-	-	88.86	-	-	0.07	-	
1992	-	89.17	-	-	89.27	-	-	0.12	-	
1993	-	89.59	-	-	89.52	-	-	-0.08	-	
1994	-	89.37	-	-	89.16	-	-	-0.24	-	
1995	-	88.81	-	-	88.57	-	-	-0.27	-	
1996	-	89.68	-	-	89.42	-	-	-0.29	-	
1997	-	89.42	-	-	89.18	-	-	-0.27	-	
1998	-	89.05	-	-	88.81	-	-	-0.28	-	
1999	-	88.44	-	-	88.17	-	-	-0.30	-	
2000	-	87.80	-	-	87.52	-	-	-0.32	-	
2001	-	87.46	-	-	87.18	-	-	-0.33	-	
2002	-	86.97	-	-	86.69	-	-	-0.32	-	
2003	-	86.34	-	-	86.13	-	-	-0.24	-	
2004	-	86.00	-	-	85.81	-	-	-0.22	-	
2005	-	85.81	-	-	85.62	-	-	-0.22	-	
2006	-	85.85	-	-	85.70	-	-	-0.18	-	
2007	-	85.87	-	-	85.72	-	-	-0.17	-	
2008	-	86.21	-	-	86.08	-	-	-0.15	-	
2009	-	84.77	-	-	84.67	-	-	-0.12	-	

Year		y Report, 2 mission, kt		Inventory	Report, 202 sion, kt	20 submis-	Difference, %			
	CO_2	CH ₄	N ₂ O	CO_2	CH ₄	N_2O	CO_2	CH ₄	N_2O	
2010	-	85.47	-	-	85.21	-	-	-0.30	-	
2011	-	85.87	-	-	85.46	-	-	-0.47	-	
2012	-	85.89	-	-	85.49	-	-	-0.47	-	
2013	-	88.36	-	-	87.88	-	-	-0.55	-	
2014	-	84.61	-	-	83.40	-	-	-1.43	-	
2015	-	84.18	-	-	83.48	-	-	-0.83	-	
2016	-	84.96	-	-	83.54	-	-	-1.68	-	
2017	-	87.43	ı	-	85.62	-	ī	-2.07	-	
2018	-	-	-	-	88.54	-	ī	-	-	

7.5.2.6 Category-specific planned improvements

In this sub-category, no improvements are planned.

7.5.3 Nitrous Oxide Emissions from Human Waste Water (CRF category 5.D.1.2)

7.5.3.1 Category description

Nitrous oxide emissions from sewage of domestic wastewater amounted to 1039.20 kt CO₂-eq. in 2018 (3.49 kt), and their reduction with respect to 1990 (1,570.15 kt CO₂-eq.) is 33.81 %.

In 2018, consumption (gross) of protein per capita per day was 82.63 g/person/day (actual consumption), including: of vegetable origin -41.45 g/person/day, of animal origin -41.18 g/person/day. Information on emissions in the category for the period of 1990-2018 is shown in Fig. 7.12.

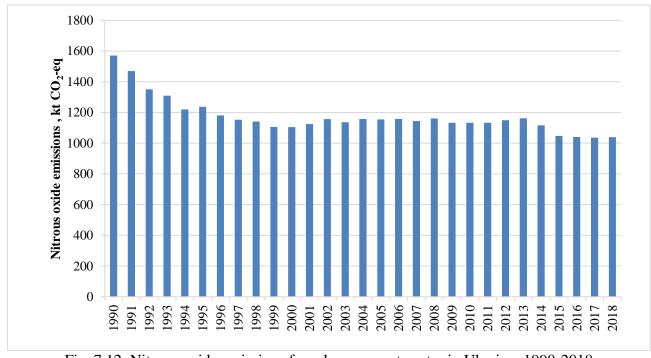


Fig. 7.12. Nitrous oxide emissions from human wastewater in Ukraine, 1990-2018

Fig. 7.12 shows that in the period of 1990-2000, there was the trend of emission reduction, which is due, first, with a reduction in the country's population, and second, to a reduction in consumption of animal products characterized by high content of protein. Since 2001, nitrous oxide emissions stabilized and changed insignificantly. The reduction in emissions in 2015 by 5.8 % compared to 2014 is due, primarily, to a sharp decline in purchasing power of population and, as a result, replacement of animal products with food of plant origin.

7.5.3.2 Methodological issues

7.5.3.2.1 General principles

Nitrous oxide emissions was divided on: indirect N_2O emissions and direct N_2O emissions. GHG emissions were calculated based on the formulas:

$$N_2 O_i = N_{effluent} \times E_{f.effluent} \times 44/28, \tag{7.22}$$

$$N_2 O_d = P \times T_{plant} \times F_{ind-comm} \times E_{f,plant} \times 10^{-8}, \tag{7.23}$$

where $N_{effluent} = P_{Protein} \times F_{npr} \times F_{non-con} \times F_{ind-com} - N_{Sludge}$ – total annual amount of nitrogen in the wastewater effluent, ktN;

 $P_{Protein}$ – aggregated value of total protein consumption in Ukraine estimated under food balance and decreasing rate of non-eaten part of food according to food waste statistics, kt;

 $F_{npr} = 0.16$ – fraction of nitrogen in protein, kgN/kg;

 $F_{non-con} = 1.1$ – factor for non-consumed protein added to the wastewater (Ukraine is a country with low GDP per capita, chapter 6.3.1.3);

 $F_{ind-com} = 1$ – factor for industrial and commercial co-discharged protein into the sewer system (took into account in 5.D.2. and has no influence on estimates);

 $N_{Sludge} = 0$ – nitrogen removed with sludge, ktN;

 $E_{f.effluent} = 0.01 - \text{emission factor for effluent}, \text{kg N}_2\text{O-N/kg-N};$

P – population of Ukraine, thousand persons;

 T_{plant} – degree of utilization of modern centralized WWT plants (based on CH₄ emission estimation for 5.D.1 and relates to the centralized well treated WW), %;

 $F_{ind-comm} = 1$ – fraction of industrial and commercial co-discharged protein (took into account in 5.D.2. and has no influence on estimates);

 $E_{f.plant} = 3.2 - \text{emission factor, g N}_2\text{O/per/year.}$

Estimation of indirect and direct N_2O emissions in Ukraine in 1990-2018 is shown in Table 7.27.

Table 7.27. Indirect and direct N₂O emissions in Ukraine in 1990-2018

Year	Protein consumed (eaten), kt	Total annual amount of nitro- gen in the wastewater efflu- ent, ktN	Indirect N ₂ O emis- sions, kt	Popula- tion, thou- sand per.	Degree of utiliza- tion of central- ized WWT plants, %	Direct N ₂ O emis- sions, kt
1990	1910.05	336.17	5.28	51891.40	8.25	0.01
1991	1787.76	314.65	4.94	52000.50	8.52	0.01
1992	1644.11	289.36	4.55	52150.40	8.82	0.01
1993	1593.23	280.41	4.41	52179.20	9.10	0.02
1994	1484.64	261.30	4.11	52114.40	9.38	0.02
1995	1507.06	265.24	4.17	51512.80	9.70	0.02
1996	1439.22	253.30	3.98	51057.80	10.20	0.02
1997	1405.08	247.29	3.89	50594.60	10.67	0.02
2001	1370.87	241.27	3.79	48662.40	12.55	0.02
2002	1410.95	248.33	3.90	48202.47	13.11	0.02
2003	1385.98	243.93	3.83	47812.95	13.64	0.02
2004	1412.78	248.65	3.91	47451.63	14.29	0.02
2005	1409.22	248.02	3.90	47105.17	15.56	0.02
2006	1413.84	248.84	3.91	46787.79	15.86	0.02
2011	1390.29	244.69	3.85	45706.09	30.93	0.05

Year	Protein consumed (eaten), kt	Total annual amount of nitro- gen in the wastewater efflu- ent, ktN	Indirect N ₂ O emis- sions, kt	Popula- tion, thou- sand per.	Degree of utiliza- tion of central- ized WWT plants, %	Direct N ₂ O emis- sions, kt
2012	1412.31	248.57	3.91	45593.34	32.39	0.05
2013	1424.54	250.72	3.94	45489.65	26.80	0.04
2014	1371.73	241.42	3.79	43001.21	33.27	0.05
2015	1289.54	226.96	3.57	42844.91	35.01	0.05
2016	1279.89	225.26	3.54	42672.53	34.83	0.05
2017	1270.47	223.60	3.51	42485.47	25.49	0.04
2018	1274.83	224.37	3.53	42269.80	27.01	0.04

7.5.3.2.2 Activity data

Product consumption data are taken from the Statistical Bulletin "Balance sheets and consumption of the main types of food products by the population of Ukraine" annually published by the State Statistics Service of Ukraine. Food consumption is estimated according to the concepts and methodological approaches of the UN Food and Agriculture Organization (FAO) and is calculated as the difference of the production volume, stock changes at the end of the year, import and export amount, and use for non-food purposes.

Consumption of certain food product groups in Ukraine in 1990-2018 is shown in Table 7.28.

Table 7.28. Consumption of main food-stuffs of the population on Ukraine, 1990-2018 1990 1995 2000 2005 2010 2012 2013 2014* 2015* 2016* 2017* 2018* Food products thousand tons Animal origin Meat and meat products, including 2002.0 2384.0 2478.0 3536.7 1611.0 1843.9 2550.0 2400.4 2246.1 2263.8 2264.9 sub-products and

2303.5 raw fat Milk and dairy 12548.5 9788.8 10625.1 9363.0 10050.0 9581.1 9825.1 9222.4 19363.4 9273.4 8765.6 8621.9 products 13279.6 14137.9 8824.9 8142.1 11207.0 14019.6 14075.8 13738.6 12386.7 11766.9 11962.0 11995.7 Eggs (1 pc.) Fish and fish prod-907.0 187.5 676.5 667.0 662.5 378.6 423.1 412.5 498.9 474.6 513.0 ucts Vegetable origin 6376.4 6385.6 5913.8 6073.8 6153.4 6081.5 Potato 6799.8 6660.2 6393.9 6160.6 6061.3 6283.8 Vegetables and 5318.8 4978.8 5002.0 5662.5 6581.3 7452.2 7430.5 7225.8 7103.0 7203.1 7002.9 7148.6 melon food crops Grain products 7314.3 6616.6 6141.0 5817.2 5105.9 4989.9 4933.2 4812.8 4559.7 4443.8 4420.5 4341.8 Fruits, berries, and grape (without pro-2459.6 1720.9 1439.1 1749.6 2203.2 2432.3 2560.1 2320.1 2246.3 2185.1 2319.1 2522.7 cessing as wine)

1704.0

680.0

1713.4

1686.0

1606.1

577.8

1575.2

541.4

1460.9

512.9

1331.4

512.3

1300.4

516.9

1809.0

1794.6

635.0

7.5.3.2.3 Selection of emission factors

1627.1

423.1

2592.8

600.6

Sugar

Oils

Protein content in l food product, k_l , is taken on the basis of laboratory studies of the Ukrainian Research Institute of Nutrition, the averaged data on the findings of which were provided by the State Statistics Service of Ukraine. Thus, k_l for meat products is 13.7 %, dairy – 2.8 %, eggs –

^{461.4} *Data of the State Statistic Service of Ukraine, corrected using analytical study

0.54 %, fish products -8.5 %, potatoes -1.4 %, vegetables -1.3 %, flour products -10.9 %, fruit and berries -0.83 %.

The proportion of nitrogen in protein F_{NPR} is 0.16 kg of N/kg of protein [1], the nitrous oxide emission factor from discharge of DWW $EF_{CTOK} - 0.01 \text{ N}_2\text{O-N/kg}$ of N [1].

The $F_{NON-CONI}$ factor (f. 7.13) takes into account the fact that after acquisition of food products by population not all of them are used as food, as part of them following pre-treatment or when spoiled goes to landfills as waste food.

Paper [16] explores the composition of food waste as an MSW component, that also are well correlated with historical data [10,17], the mass of dumped food waste and the ratio of the weight of individual components of food products removed to landfills to their gross consumption are estimated.

 $F_{NON-CONI}$ for certain types of products can be estimated using formula [16]:

$$F_{NON\ CON_l} = MWS \cdot MWS_i \cdot B_l / P_{\text{вал}_l} \cdot 10^3, \tag{7.24}$$

where MWS is the mass of MSW dumped in Ukraine, t/year;

 MWS_j – food waste content in the MSW composition, fraction;

 B_l – the content of component 1 in the composition of food waste;

 $P_{\theta a \pi i}$ – gross consumption of the l type of food product by population, kg/year.

According to [16], the proportion of dumped food components that were not actually eaten, and nitrogen in their composition was not to discharged into DWW is the following: for meat products -7.6%, dairy -1.3%, bread -2.6%, potatoes -10.6%, fruit and vegetables -17.6%, fish products -8.4%.

7.5.3.3 Uncertainties and time-series consistency

Ranges of uncertainty estimates for all the parameters were taken by default [1] and are presented in Table 7.29.

Estimated uncertainty Parameter **Emission factors** Emission factor, kg of N₂O-N/kg of N 50 Proportion of nitrogen in protein, kg of N/kg of protein 3.61 3.61 Loss of food products factor, fraction 5 5 Uncertainty of emission factors 50.38 50.38 Activity data 5 5 Population, pers. 5 5 Food consumption, thousand tons Uncertainty of activity data 7.07 7.07 50.63 Standard uncertainty of N2O emissions 50.78

Table 7.29. Uncertainty estimation ranges

7.5.3.4 Category-specific QA/QC procedures

General quality control and assurance procedures were applied - comparison of emissions along the time series and trend analysis, as well as comparison of activity data, emission factors, and estimation results with inventory reports of other countries.

Together with leading specialists of the Department of Statistics of Agriculture and the Environment of the State Statistics Service of Ukraine, a comparative analysis of state statistics on protein consumption by the population of Ukraine with FAO data.

Comparison of data of the State Statistics Service of Ukraine with statistics of the Food and Agriculture Organization of the United Nations (FAO)¹¹ over the comparable time series of 1992-

¹¹ http://faostat3.fao.org/faostat-gateway/go/to/download/FB/FB/E

2011 demonstrated data divergence within the range of 0.1-5.2 %. Detailed information is presented in Fig. 7.13.

The difference of data is seen as acceptable, taking into account the estimation range of GHG emission uncertainties in this category, and is due to the fact that the FAO statistics take into account the protein content for a more extensive classification of food product groups.

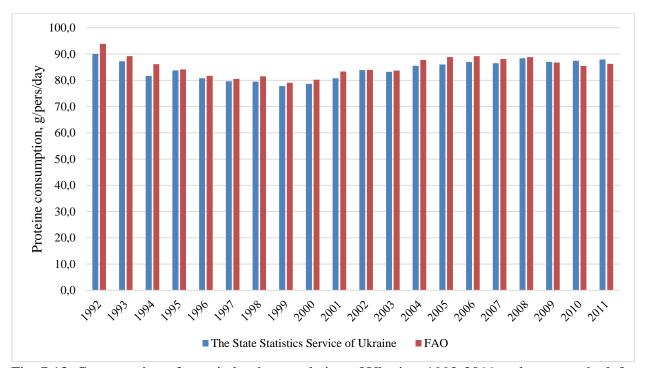


Fig. 7.13. Consumption of protein by the population of Ukraine, 1992-2011: columns on the left - the State Statistics Service of Ukraine, on the right – FAO

7.5.3.5 Category-specific recalculations

In this sub-category, no recalculations were held.

7.5.3.6 Category-specific planned improvements

In this sub-category, no improvements are planned.

7.5.4 Industrial Wastewater Treatment and Discharge (CRF category 5.D.2)

7.5.4.1 Category description

The section accounts for emissions of methane and nitrous oxide resulting from treatment of industrial wastewater.

Based on estimations of the current inventory, in 2018 GHG emissions from treatment of industrial wastewater amounted to 832.10 kt CO_2 -eq, the decrease with respect to 1990 (1,536.23 kt CO_2 -eq) is 45.83 % and an increase in comparison with 2017 is 6.80 % (see Fig. 7.14). Of these, methane emissions – 777.08 kt CO_2 -eq (31.08 kt), nitrous oxide – 55.02 kt CO_2 -eq (0.184 kt).

Due to armed aggression by the Russian Federation against Ukraine, including temporarily occupied by the Russian Federation territory of the Autonomous Republic of Crimea, the city of Sevastopol and certain districts in Donetsk and Luhansk regions, the decrease of GHG emissions in the subcategory was equal to 17.1 % in 2015 and 13.5 % in 2016 compared to 2014, certain influence on the trend had significant increase in water use tariffs also.

For details on GHG emissions at industrial wastewater treatment, see Fig. 7.14.

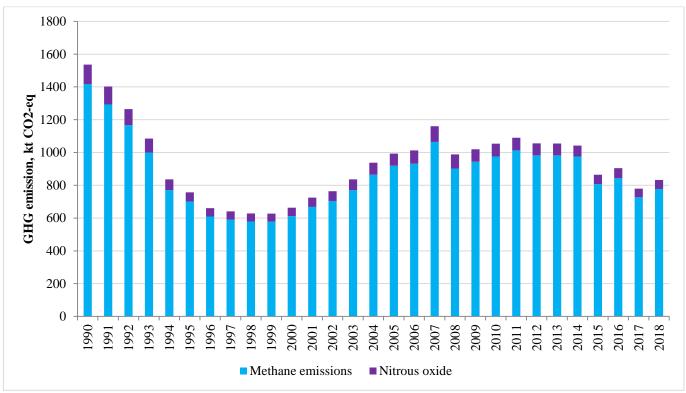


Fig. 7.14. GHG emissions from industrial sewage treatment in Ukraine, 1990-2018

Trends of GHG emissions from treatment of industrial wastewater, in general, are correlated with the growth of industrial production in the country. It should be noted that the increase in emissions in 2007 by 14.55 % in relation to 2006 was due to a sharp increase in the volume of wastewater generation in the sectors of heavy and chemical industries, as well as in the energy sector supporting their energy needs.

In 2018, 15.65 % of methane emissions were caused directly by wastewater treatment, and 84.35 % – by treatment of their sludge. Methane emissions from sewage directly, as well as from their sludge are shown in Fig. 7.15.

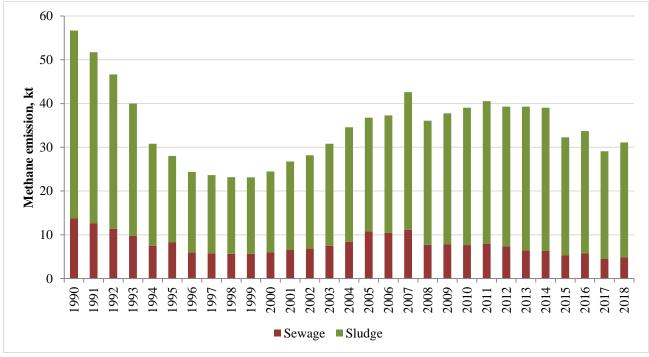


Fig. 7.15. Methane emissions from industrial sewage and sludge treatment in Ukraine, 1990-2018

GHG emissions from wastewater treatment by industry are presented in Fig. 7.16. In 2018, the largest contribution was made by food, pulp and paper, meat and dairy industries -340.11, 155.48, and 114.53 kt CO_2 -eq., respectively.

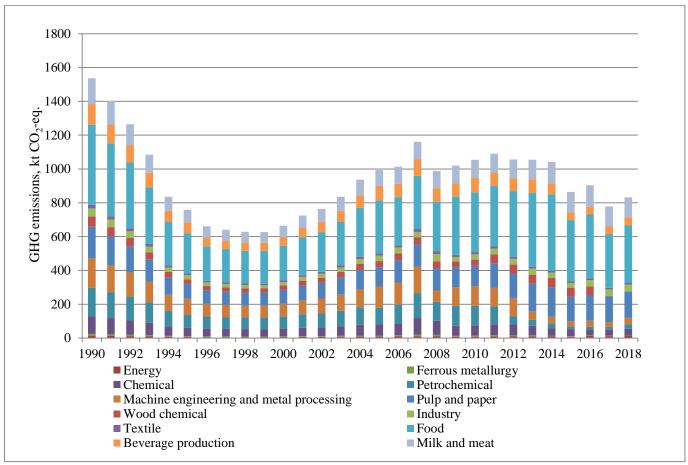


Fig. 7.16. GHG emissions from industrial sewage treatment by industries in Ukraine, 1990-2018

7.5.4.2 Methodological issues

7.5.4.2.1 General principles

Industrial wastewater is treated by two ways: in the same way as domestic wastewater collected by the centralized sewer system or treated on site at local industrial treatment plants and then released into water bodies. Besides, to avoid high discharge fees or to meet regulatory standards, many large industrial facilities pre-treat their wastewater before releasing it into the sewage system.

Since the industrial wastewater released into domestic sewer systems the regularities of the decomposition of organic matter and the removal of sludge are common and corresponding coefficients are the same.

In some cases, before discharging the wastewater into water bodies, biological pre-treatment or additional treatment of industrial wastewater is applied, including treatment in bio-pounds, filtration fields, etc. In such cases, the removal of contaminants occurs in conditions close to the natural ones and is less intense than the aeration at the central treatment plants.

Estimation of methane and nitrous oxide emissions from treatment of industrial waste water was made in accordance with the procedure set out in the research paper: "Study of methane and nitrous oxide emissions from waste water treatment and development of methods to determine national emission factors", 2012 [24].

Methane emissions from industrial sewage treatment were determined under formula [24]:

$$E_{CH4,j} = \sum_{k} M_{COD,j} \times F_{anaer,j,k} \times B_0, \tag{7.25}$$

where $M_{COD,j}$ – total amount of organic component (COD) in the j type industry wastewater, kt;

 $F_{anaer,j,k}$ - biodegradable part of COD from the j type industry that produce methane by treating wastewater/sludge of different treatment methods k (aeration plants, bio-pounds (additional treatment), physico-chemical treatment, mechanical treatment, open ponds), %;

 $B_0 = 0.25$ – maximum methane production capacity, kg of CH₄/kg of COD [1]. The total amount of organic component (COD) in wastewater were determined by formula [24]:

$$M_{COD,i} = P_i \times C_{COD,i} \times q_i, \tag{7.26}$$

where P_i – release of *i* type products, accounting units; data of the State Statistics Service of Ukraine;

 $C_{COD,i}$ – concentration of COD in industrial wastewater, resulting from manufacturing i type products, mg/l; taken from tables of consolidated standards;

 q_i – average annual wastewater volume discharged by an industrial enterprise from manufacturing i type products, m³ per accounting units; taken from tables of consolidated standards.

Based on data of the State Agency for Water Resources of Ukraine (State Water Agency) on discharge of pollutants into surface water bodies from statistical form No. 2-TP (water management), industries with the largest amounts of chemical oxygen demand (COD) and total nitrogen were identified: energy, ferrous metallurgy, chemical industry, petrochemical industry, mechanical engineering industry and metal processing, pulp and paper industry, resin industry, construction materials industry, textile industry, food industry, beverage industry, meat-and-milk, and fishing industries.

7.5.4.2.2 Activity data

Generation of organic pollutants getting into industrial waste water was calculated on the basis of data of the State Statistics Service of Ukraine on the degree of key commodity group production and consolidated water consumption and sewage standards [25] taking into account the analytical study [29]. The average annual quantity of wastewater generated per unit of output was taken from tables of consolidated standards.

The concentration of COD and total nitrogen in industrial wastewater (the general discharge) resulting from production of the i type of products were taken based on data on the composition of wastewater. Data on consolidated standards are taken into account, since most of industrial production of Ukraine was formed back in Soviet times.

The total amount of wastewater by industries, as well as COD formation and nitrogen in them along the time series of 1990-2018 are shown in Tables 7.31-7.34.

7.5.4.2.3 Selection of emission factors

Distribution of COD flows (see Table 7.34) of industrial waste water depending on the method of their treatment k was determined based on data of the State Water Agency of Ukraine on discharges of pollutants into surface water bodies in statistical form No. 2-TP (water management).

Biodegradable parts of COD in wastewater from the *i* type industry treated by different treatment methods k were calculated based on the formulas [24]:

$$F_{ww,anaer,j} = \sum_{k} (F_{COD,tr,j,k} + F_{COD,uns\,tr,j,k} \times \varphi_{uns.tr}) \times E_{COD,k} \times MCF_{k}, \tag{7.27}$$

Biodegradable parts of COD that produce methane by treating/dehydration sludge were calculated based on the formulas [24]:

$$F_{sl,anaer,j} = \sum_{k} (F_{COD,tr,j,k} + F_{COD,uns\,tr,j,k} \times \varphi_{uns,tr}) \times E_{COD,k} \times (1 - F_{aer,k}) \times MCF_{UA},$$
(7.28)

where $F_{COD,tr,j,k}$ – biodegradable parts of COD in wastewater classified as treated at the standard level being treated by each of the methods k, from the j type industry, %;

 $F_{COD,uns\ tr,j,k}$ – biodegradable parts of COD in wastewater classified as insufficiently treated being treated by each of the methods k, from the j type industry, %;

 $\varphi_{uns.tr}$ – degree of wastewater treatment classified as insufficiently treated for each of the methods k, %; accounts for 80 % (except for wastewater, which are additional treated, where such an indicator is 100 %);

 $E_{COD,k}$ – efficiency of COD removal for each of the treatment methods k, %, [24], (table 7.30);

 $F_{aer,k}$ – the part of COD in wastewater, which is degradable in oxic/aerobic conditions by each of the treatment methods k, %; for the part of COD flow biologically treated at wastewater treatment plants it equals 30 %; for bio-ponds and others it is not taken into account, because the system does not sludge treated; for physical, chemical and mechanical treatment it is assumed to be zero;

 MCF_k – conversion factor MCF for different COD flows (table 7.30);

 MCF_{sl} – 0,299 – especial conversion factor MCF for sludge-drying beds for Ukraine [24].

MCF, the COD and nitrogen removal efficiency (see Table 7.30) for each of the methods of industrial wastewater treatment were selected on the basis of the procedure [27], taking into account sanitary rules and standards of surface water protection from pollution [28].

Table 7.30. The methane conversion factor MCF and COD and nitrogen removal efficiency
for each of the methods of industrial sewage treatment

The method of indi		MCF	COD removal efficiency, %	Nitrogen re- moval efficiency, %
Aeration plants	Wastewater	0	83.9	19.6
Bio-pounds (additional or pre-treatment)	Wastewater	0.05	3.0	2.7
Physico-chemical treatment	Wastewater	0.0	80.0	57.0
Mechanical treatment	Wastewater	0.05	34.0	0.0
Open ponds	Wastewater	0.1	-	-
Sludge drying beds	Sludge	0,299	-	-

In determining nitrous oxide emissions from wastewater, only indirect emissions from nitrogen compounds discharged with wastewater into water bodies are accounted for. Direct nitrous oxide emissions from wastewater treatment with nitrodenitrification methods are not accounted for, since application of such methods in wastewater treatment is not a common practice in Ukraine.

Distribution of nitrogen flows from industrial waste water depending on the treatment method (see Table 7.35) was held based on data of the State Water Agency of Ukraine on discharges of pollutants into surface water bodies in statistical form No. 2-TP (water management).

Determination of the total weight of nitrous oxide emitted as a result of nitrogen discharge in composition of industrial waste water into open reservoirs was performed based on data on the degree of nitrogen removal from treatment systems according to [26]. The N_2O emission factor at wastewater discharge is by default 0.005 kg of N_2O -N/kg of N in accordance with [1].

Table 7.31. Volume of industrial wastewater by industries

T. 1						Volume o	f sewage, mi	illion m ³					
Industry	1990	1995	2000	2005	2010	2011	2012	2013	2014*	2015*	2016*	2017*	2018*
Energy	423.2	202.3	182.8	265.3	260.7	305.6	296.8	308.5	284.8	247.4	392.8	339.9	374.9
Ferrous metallurgy	241.3	115.4	104.3	151.3	148.7	162.6	159.3	147.2	104.4	82.9	102.6	81.6	87.0
Chemical	205.9	98.4	88.9	129.1	122.6	157.5	149.4	125.0	102.2	82.6	58.8	60.4	67.7
Petrochemical	133.1	63.6	57.5	83.4	87.9	78.2	50.7	40.0	32.7	25.3	26.6	25.6	29.0
Machine engineer- ing and metal pro- cessing	1153.4	551.3	498.3	723.2	733.4	723.9	671.7	352.7	312.0	258.6	313.0	248.1	289.7
Pulp and paper	485.6	232.1	209.8	304.5	334.5	346.4	368.9	396.2	431.4	362.4	445.8	436.9	443.9
Wood chemical	32.2	15.4	13.9	20.2	20.9	25.2	25.5	22.9	23.4	22.9	26.5	25.3	28.4
Industry	894.0	427.3	386.2	560.5	591.0	656.1	712.8	908.9	733.6	563.7	759.3	765.2	871.7
Textile	18.7	8.9	8.1	11.7	11.7	11.7	11.5	11.4	11.3	11.6	13.3	11.3	12.5
Food	229.8	109.9	99.3	144.1	164.1	164.8	166.0	157.6	162.2	135.7	163.1	149.6	167.3
Beverage production	116.4	55.6	50.3	73.0	77.4	70.5	70.4	73.9	65.3	48.4	53.5	50.4	57.8
Milk and meat	70.5	33.7	30.4	44.2	49.3	49.4	51.0	53.4	55.8	54.0	65.7	57.3	60.4
Fish	5.5	2.7	2.4	3.5	3.6	3.1	3.2	3.8	2.6	1.9	2.2	1.6	1.8
Total	4009.6	1916.6	1732.2	2514.0	2605.8	2755.2	2737.3	2601.5	2321.7	1897.5	2423.2	2253.4	2492.0

^{*}Data corrected using analytical study

Table 7.32. COD generation in industrial wastewater

To 1 and						COL	generation	, kt					
Industry	1990	1995	2000	2005	2010	2011	2012	2013	2014	2015	2016	2017	2018
Energy	22.5	10.8	9.7	14.1	13.0	18.1	17.4	19.0	18.7	16.5	27.7	28.3	28.8
Ferrous metallurgy	10.9	5.2	4.7	6.8	6.7	7.3	7.2	6.6	4.7	3.6	4.0	3.4	3.4
Chemical	83.9	40.1	36.2	52.6	49.4	52.6	51.1	43.3	35.6	30.4	25.1	26.2	29.7
Petrochemical	155.7	74.4	67.3	97.6	100.7	88.2	41.3	31.3	24.6	13.3	14.1	14.2	23.1
Machine engineer- ing and metal pro- cessing	303.2	144.9	131.0	190.1	189.0	183.1	173.6	86.2	73.0	59.8	63.7	52.9	61.0
Pulp and paper	192.0	91.8	82.9	120.4	132.9	136.8	145.1	155.3	168.1	136.4	143.6	143.8	146.3
Wood chemical	74.9	35.8	32.3	46.9	48.7	58.9	59.6	53.3	54.6	52.0	53.2	54.6	57.6
Industry	99.2	47.4	42.9	62.2	66.4	70.1	72.0	75.1	63.8	49.5	58.3	62.5	66.2
Textile	23.2	11.1	10.0	14.5	13.7	13.1	11.5	11.7	11.6	11.0	11.1	9.8	10.3
Food	1000.2	478.1	432.1	627.1	716.9	711.9	706.7	694.8	679.8	556.2	583.4	533.1	562.2
Beverage production	115.5	55.2	49.9	72.4	79.1	70.3	69.1	70.9	61.6	45.8	44.9	45,3	50.3
Milk and meat	145.6	69.6	62.9	91.3	101.5	100.8	103.7	108.5	113.4	114.0	114.0	107,4	108.2
Fish	9.8	4.7	4.2	6.2	6.4	5.5	5.8	6.9	4.9	3.5	3.5	2.7	2.9
Total	2236.5	1069.0	966.2	1402.3	1524.3	1516.8	1464.1	1363.1	1314.4	1084.7	1146.5	1084.3	1150.1

Table 7.33. Nitrogen generation in industrial wastewater

To deserting						Nitrog	en generatio	on, kt					
Industry	1990	1995	2000	2005	2010	2011	2012	2013	2014	2015	2016	2017	2018
Energy	1.7	0.8	0.8	1.1	1.0	1.4	1.3	1.4	1.4	1.2	2.0	2.1	2.1
Ferrous metallurgy	1.7	0.8	0.7	1.1	1.0	1.1	1.1	1.0	0.7	0.6	0.6	0.5	0.5
Chemical	11.5	5.5	5.0	7.2	6.2	6.2	5.9	5.2	4.2	4.7	4.0	3.4	4.1
Petrochemical	2.8	1.4	1.2	1.8	1.8	1.6	1.0	0.7	0.5	0.4	0.5	0.5	0.5
Machine engineer- ing and metal pro- cessing	2.3	1.1	1.0	1.4	1.5	1.4	1.3	0.7	0.6	0.5	0.5	0.5	0.5
Pulp and paper*	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Wood chemical	0.9	0.4	0.4	0.6	0.6	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7
Industry*	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Textile	0.6	0.3	0.3	0.4	0.4	0.3	0.3	0.2	0.2	0.2	0.2	0.2	0.2
Food	14.0	6.7	6.0	8.8	9.9	10.0	9.9	10.1	9.5	8.2	8.5	6.8	7.0
Beverage produc- tion	13.5	6.4	5.8	8.4	8.9	7.8	7.7	8.4	7.1	4.7	4.5	4.5	5.0
Milk and meat	8.6	4.1	3.7	5.4	6.1	6.2	6.3	6.7	6.9	6.7	7.2	6.8	6.6
Fish	0.2	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.0	0.1
Total	57.9	27.7	25.0	36.3	37.5	37.0	35.7	35.2	32.0	27.9	28.9	26.0	27.4

^{* -} nitrogen generation volume less than 0.1 thousand tons

Table 7.34. COD content in industrial wastewater depending on the method of its treatment, 2018

		Wa	ste water COD,	%			Sludge (COD, %	
Industry	Aeration plants	Bio-pounds	Physico- chemical treatment	Mechanical treatment	Open ponds	Aeration plants	Bio-pounds	Physico- chemical treatment	Mechanical treatment
Energy	0.65	0.00	0.01	0.36	98.98	56.63	0.00	1.10	42.27
Ferrous metallurgy	0.75	0.00	0.00	15.74	83.51	3.41	0.00	0.00	96.59
Chemical	72.21	0.15	0.38	2.81	21.45	94.52	0.00	0.68	4.80
Petrochemical	66.41	0.13	18.66	0.10	14.71	71.26	0.00	28.60	0.14
Machine engineering and metal processing	8.27	0.02	2.68	38.95	50.09	12.73	0.00	5.88	81.38
Pulp and paper	78.70	0.15	0.66	3.45	17.03	93.32	0.00	1.13	5.55
Wood chemical	0.00	0.00	0.00	0.00	100.00	0.00	0.00	0.00	0.00
Construction materials	16.07	0.03	0.00	14.21	69.68	45.46	0.00	0.00	54.54
Textile	73.82	0.17	0.00	2.08	23.93	96.31	0.00	0.00	3.69
Food	73.40	0.15	0.00	2.30	24.16	95.92	0.00	0.00	4.08
Beverage production	80.97	0.15	0.00	2.07	16.81	96.65	0.00	0.00	3.35
Milk and meat	80.49	0.16	0.00	1.02	18.33	98.31	0.00	0.00	1.69
Fish	86.01	0.16	0.00	0.00	13.82	100.00	0.00	0.00	0.00

Table 7.35. Nitrogen content in industrial wastewater, 2018, %

		Т	reatment method		
Industry	Aeration plants	Aggregators, ir- rigation fields	Physico-chemi- cal treatment	Mechanical treatment	Open ponds
Energy	0.25	0.02	0.00	0.42	99.32
Ferrous metallurgy	0.58	0.04	0.00	37.08	62.30
Chemical	79.01	5.03	0.22	9.08	6.66
Petrochemical	78.00	4.97	12.29	0.35	4.39
Machine engineering and metal processing	4.05	0.26	0.74	58.64	36.32
Pulp and paper	0.00	0.00	0.00	0.00	0.00
Wood chemical	0.00	0.00	0.00	0.00	0.00
Construction materials	11.38	0.72	0.00	30.89	57.01
Textile	86.93	5.54	0.00	7.54	0.00
Food	39.97	2.55	0.00	3.84	53.64
Beverage production	54.87	3.49	0.00	4.30	37.34
Milk and meat	78.43	5.00	0.00	3.05	13.52
Fish	94.01	5.99	0.00	0.00	0.00

7.5.4.3 Uncertainties and time-series consistency

Ranges of uncertainty estimates for the maximum methane production capacity B_0 and the N₂O emission factor (EF) are taken by default [1], for the other parameters – in accordance with [24], and they are presented in Table 7.36.

Table 7.36. Uncertainty estimation ranges

Parameter	Uncertain	ty range, %
Farameter	-	+
Emission factors		
B ₀ , kg of CH ₄ /kg of COD	30	30
MCF for CH ₄	27.81	27.81
EF, kg of N ₂ O-N/kg of N	50	50
Uncertainty of CH ₄ emission factors	40.91	40.91
Uncertainty of N ₂ O emission factors	50.00	50.00
Activity data		
Volume of waste water, m ³	8,49	8,49
COD generated, kg/m ³	10	10
Nitrogen generated, kg/m ³	10	10
Production volumes for individual commodity groups	5	5
Specific sewage standards at production of certain commodity groups	15	15
Efficiency of contaminant removal by wastewater treatment method	10	10
Uncertainty of activity data (CH ₄)	22.85	22.85
Uncertainty of activity data (N ₂ O)	22.85	22.85
Standard uncertainty of CH ₄ emissions	46	5.86
Standard uncertainty of N ₂ O emissions	54	l.9 7

7.5.4.4 Category-specific QA/QC procedures

For estimation of emissions in the sub-category, the general ad detailed quality control procedures were applied:

- assessment of comparability of the MCF values used in the inventory with the values applied in other countries;
- comparison of emission along the time series and analysis of trends.

7.5.4.5 Category-specific recalculations

In this sub-category, recalculations were made due to the specification of data on fuel consumption in the industrial sector of which the volume of industrial wastewater generation for territories, not covered by the official national statistics are determined for 2014-2017. Besides, certain errors were found when entering activity data, namely release of i type products (P_i) of the j type industry in 2016-2017. As a result of recalculations, methane emissions changes by 0.0-5 %. Results of recalculation are provided in Table 7.37.

Table 7.37. Recalculations in subcategory 5.D.2 "Industrial Wastewater Treatment and Discharge"

Year	Inventory Report, 2019 sub- mission, kt			Inventory	Report, 202 sion, kt	20 submis-	Difference, %		
	CO_2	CH ₄	N_2O	CO_2	CH ₄	N_2O	CO_2	CH ₄	N_2O
2014	-	39.09	0.2208	-	39.03	0.2208	-	-0.14	0.00
2015	-	32.28	0.1929	-	32.28	0.1929	-	0.004	0.00
2016	-	33.64	0.2056	-	33.71	0.2056	-	0.20	0.00
2017	-	28.92	0.1750	-	29.08	0.1750	-	-4.99	0.00
2018	-	-	-	-	31.08	0.1846	-	-	

7.5.4.6 Category-specific planned improvements

In this sub-category, no improvements are planned.

8 OTHER (CRF SECTOR 7)

Ukraine does not estimate emissions in this sector.

9 INDIRECT CO2 AND NITROUS OXIDE EMISSIONS

For the purpose of paragraph 29 of decision 24/CP.19, Ukraine has elected to report indirect nitrous oxide emissions.

The calculation of indirect nitrous oxide emissions from Energy and IPPU sectors was performed in accordance with 2006 IPCC Guidelines [1] (Chapter 7.3, Volume 1) for all categories of these sectors where NO_x emissions are allocated, using default emission factors.

The basic data on the results of indirect nitrous oxide emissions calculated for the whole time series see in table below.

	INDIRE EMISSION	INDIRECT EMISSIONS (kt)		
Year	N ₂ O	N ₂ O		
	ENERGY	IPPU	Total	
1990	11.597	0.196	11.794	
1991	10.020	0.172	10.193	
1992	8.812	0.152	8.965	
1993	7.450	0.125	7.575	
1994	6.333	0.101	6.434	
1995	5.883	0.085	5.969	
1996	5.416	0.096	5.512	
1997	4.931	0.105	5.037	
1998	4.629	0.092	4.721	
1999	4.325	0.099	4.424	
2000	3.989	0.107	4.097	
2001	4.019	0.108	4.128	
2002	4.023	0.122	4.145	
2003	4.110	0.127	4.237	
2004	4.182	0.118	4.300	
2005	4.149	0.135	4.284	
2006	4.459	0.136	4.595	
2007	4.228	0.164	4.389	
2008	4.216	0.151	4.367	
2009	3.514	0.103	3.617	
2010	3.572	0.129	3.701	
2011	3.713	0.159	3.872	
2012	3.549	0.158	3.707	
2013	3.560	0.128	3.688	
2014	3.114	0.109	3.223	
2015	2.600	0.085	2.685	
2016	2.680	0.095	2.775	
2017	2.664	0.075	2.739	
2018	2.749	0.073	2.822	

Indirect CO₂ emissions was not estimated.

10 RECALCULATIONS AND IMPROVEMENTS

Recalculations in current NIR were performed in the IPPU, Agriculture, LULUCF and Waste sectors. The results of review of GHG emissions and removals are presented in table 10.1.

Table 10.1. Recalculation of total GHG emissions in comparison with 2019 submission

	NIR 2019 (including	NIR 2020 (including	Changes,	NIR 2019 (excluding	NIR 2020 (excluding	Changes,
	LULUCF), kt CO2-eq.	LULUCF), kt CO2-eq.	%	LULUCF), kt CO2-eq.	LULUCF), kt CO2-eq.	%
1990	879 311.15	886 583.81	0.8	938 603.07	945 775.47	0.8
1991	788 788.30	795 803.27	0.9	852 383.81	859 250.92	0.8
1992	736 853.27	743 629.54	0.9	797 505.05	804 100.73	0.8
1993	653 679.97	660 298.74	1.0	707 343.88	713 803.58	0.9
1994	542 861.61	548 641.25	1.1	601 634.18	607 237.71	0.9
1995	505 075.60	510 631.04	1.1	558 897.72	564 288.01	1.0
1996	463 559.58	468 619.79	1.1	512 482.35	517 478.39	1.0
1997	451 271.68	456 458.63	1.1	496 742.70	501 788.24	1.0
1998	427 851.16	432 769.24	1.1	478 324.97	483 111.35	1.0
1999	394 779.08	399 233.97	1.1	447 312.01	451 808.80	1.0
2000	379 880.51	384 537.96	1.2	425 535.74	430 026.37	1.1
2001	403 282.49	407 592.74	1.1	443 633.17	448 206.17	1.0
2002	390 219.96	394 549.38	1.1	428 806.35	433 393.64	1.1
2003	393 932.31	397 645.88	0.9	438 331.62	442 763.44	1.0
2004	408 018.56	412 771.35	1.2	440 910.47	445 664.70	1.1
2005	410 741.46	414 958.78	1.0	440 084.61	444 814.49	1.1
2006	424 037.09	428 724.54	1.1	457 685.30	462 486.13	1.0
2007	425 446.86	428 707.88	0.8	461 191.60	466 018.82	1.0
2008	427 985.39	432 908.35	1.2	448 600.96	453 694.34	1.1
2009	364 793.74	369 100.33	1.2	388 280.19	393 357.76	1.3
2010	375 758.24	379 035.59	0.9	405 103.28	410 261.80	1.3
2011	412 734.96	416 308.40	0.9	426 079.81	431 649.56	1.3
2012	396 562.35	401 501.20	1.2	415 232.24	420 711.48	1.3
2013	400 703.27	406 269.56	1.4	406 506.77	412 438.36	1.5
2014	356 350.21	362 289.03	1.7	360 266.92	366 087.24	1.6
2015	310 489.87	316 102.75	1.8	316 771.06	322 278.03	1.7
2016	333 283.57	339 112.67	1.7	335 115.70	340 838.20	1.7
2017	310 271.40	315 974.35	1.8	320 625.82	326 223.41	1.7

In IPPU sector recalculations were performed in: 2.A.3 Glass Production emissions for 2017 was made due to adjustment of the data of CaCO₃ and MgCO₃ content in dolomite content in furnace charge according to the data obtained from enterprises; 2.A.4.a Ceramics Production for 2017 due to adjustment of the data of ceramics production according to the data obtained from enterprises; 2.B.5 Carbide Production and Use for 2015 – 2017 due to adjustment of the data of carbide production according to the data obtained from enterprises; 2.C.1 Iron and Steel production CO₂ emissions for 2015 – 2017 due to correction of the data of carbon content in pig iron, coke and coal, as well as pig iron, metal scrap, limestone and dolomite consumption for steel production according to the data obtained from enterprises-producers; 2.F.1.b Transport refrigeration for 2015 - 2017 due to adjustment of the data of export, import and usage of HFC and HFC-containing equipment according to the data obtained from enterprises; 2.F.4 Aerosols for 2016 - 2017 due to adjustment of the data of export, import and usage of HFC according to the data obtained from enterprises; 2.G.1 Electrical equipment for 2015 - 2017 due to availability of more accurate data on the amount of the imported SF₆, in accordance with data obtained from enterprises.

During the NIR preparation recalculations in Agriculture sector have occurred in 3.A Enteric fermentation, 3.B Manure management, 3.D Agricultural soils categories and 3.H Urea Application (see Chapters 5.2.5, 5.3.5, 5.5.5 and 5.9.5). There are several reasons for recalculations in these categories:

- mules and asses, camels and poultry livestock clarification;
- fodder consumption data specification;
- clarification of swine factor of manure that excreted by animals in dry matter;
- harvested area clarification;
- clarification of inorganic N fertilizers quantity;

- clarification of applied urea quantity;
- ❖ quality control measures of calculated data in 3.D.2.2 Nitrogen Leaching and Run-off.

Recalculations in LULUCF sector were performed in Forest land category due to revision of unmanaged forests area, influencing C-removals by living biomass, as well as revision of C-losses due to dicturbances. Revision of N-input with manure was also revised due to revision of N-available in manure after storage, calculated in the Agriculture sector.

In Waste sector recalculations were made in next sub-categories:

- 5.A. "Solid Waste Disposal". The recalculations were made only for 2017. When summation the methane recovery data, a double count was detected twice the sums of methane utilized at the landfill in Vinnitsa were summed up in 2017. In current report fixed mistakes were correct.
- 5.C.1 "Waste incineration". The recalculations were made because of the use of other CH₄ and N₂O emission factors depending on type and technology of incineration. See section 7.4.5 for more information.
- 5.D.1.1 "Methane emissions from domestic wastewater treatment". The recalculations were made due to the use of the average available population for the inventory year instead of the values of population on January 1 of the next inventory year.

As a result of recalculations, emissions decreased by 0.01-0.7 %.

11 KP-LULUCF

11.1 General information

By the purpose and location, forests in Ukraine has, basically, the water protection, safety, hygiene, health, recreational, aesthetic, educational, and other functions, and are the source of meeting society's needs for forest resources [13].

Forests and forestry in Ukraine are characterized have own specifics in comparison with other European countries:

- relatively low average level of forest cover of the country's territory (15.9 %);
- forest vegetation in different climatic zones (Polissya (woodlands), Forest-steppe, Steppe, Ukrainian Carpathians and Crimea Mountains), which are characterized by significant differences in the types of forest growing conditions, forest management and utilization of forest resources methods;
- high environmental importance of forests and a high share of forests (47 %) with restriction for forest management
- a significant part of protected forests (15.7 % of the total forest area of the State Forest Resources Agency of Ukraine, as of 01.01.2015);
- the historically formed situation with subordination of state forests to numerous permanent forest users (forests are given for permanent use to enterprises, institutions and organizations of several dozen governmental agencies and ministries);
- significant portion of forests grow in the area polluted with radiation (150 thousand hectares);
- about half of Ukraine's forests are created artificially and require intensive care.

In Ukraine, the key areas and sources to ensure balanced development of forestry were stipulated in the National Target Programme Forests of Ukraine for the period of 2010-2015 [14]. Increase of afforestation areas in this period is caused by state support to forestry enterprises. After the Programme was finished there were no policies in the field of afforestation stimulation. Thus the area of activity has declined.

As can be seen from Fig. 11.1, the State Forest Resources Agency of Ukraine, which is in charge of 73 % of forests of Ukraine, is the central executive authority in the field of forestry and hunting [15].

The State Forest Resources Agency of Ukraine is the main state authority in forest and hunting management. Among other the key tasks of the Agency are:

- implementation of state policy in forest and hunting management as well as conservation, protection, management, regeneration of forest resources and game, improving the efficiency of forest and hunting management;
 - coordinate the functioning of the state forestry enterprises;
- development and organization of implementation of national, international, and regional programs in the field of protection, productivity enhancement, management, and restoration of hunting fauna, development of hunting management, and organization of forest management planning;
 - maintain the State forest cadaster;
 - performs forest monitoring;
- organizes the issuance of special permissions for use of forest resources in accordance with approved rules and procedures.

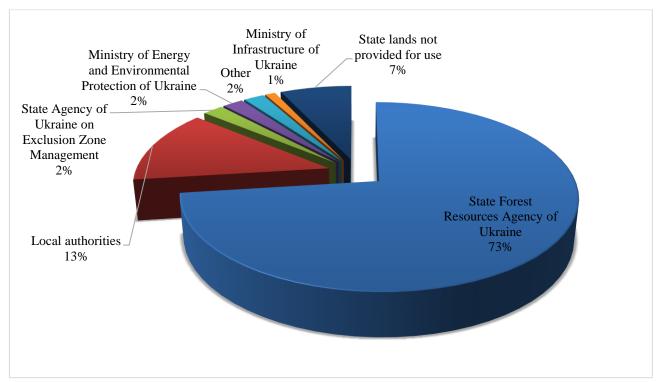


Fig. 11.1. Distribution of Ukrainian forests by permanent users.

11.1.1 Definition of the forest

As part of reporting regarding anthropogenic activities under Articles 3.3 and 3.4 KP, Ukraine accepted the following definition: "forests - forest plots with the minimal area of 0.1 hectares, minimum width of 20 meters, minimum crown coverage (or the equivalent of volume) 30 % and minimum tree height at maturity – 5.0 meters". This definition is consistent with the definition of forests recommended for reporting to the Food and Agriculture Organization of the United Nations (FAO) and is used when submitting Ukraine's reports on the Global Forest Resources Assessment [3].

Ukraine agreed with the State Forest Resources Agency of Ukraine following definitions of natural and planted forests:

- "Natural forests" corresponds with Ukrainian definition of "forests of natural origin", i.e. forests regenerated naturally;
- "Planted forests" corresponds with Ukrainian definition of "forest crops", i.e. forest stands, created by planting of seedlings, saplings, sprigs of trees and shrubs or sowing its seeds (DSTU 2980-95 "Forest Crops. Definitions and Determinations").

As described in chapter 6.2.1 new definitions were introduced into the Forest Code of Ukraine. For the purpose of UNFCCC and KP reporting "natural forests", "primary forests" and "quasi-primary forests" (as it appears in the Code) were assumed to be unmanaged [13].

11.1.2 Elected activities under Article 3, paragraph 4, of the Kyoto Protocol

In the first commitment period under KP, Ukraine selected reporting on forest management as an activity under paragraph 4, Article 3 [16]. According to decision 2/CMP.7, this activity becomes mandatory for the Parties' reporting in the second commitment period. In addition to forest management, the decision of COP proposes voluntary reporting on a number of other activities under paragraph 4, Article 3. Ukraine does not intend to account for any additional activities other than forest management.

11.1.3 Description on how the definitions of each activity under Article 3.3 and each elected activity under Article 3.4 have been implemented and applied consistently over time

Ukraine reports under par. 3, Article 3 KP with regard to the accepted definition of *afforestation*, which is a direct result of anthropogenic activities on transformation of land that has not been forested for a period of at least 50 years, by planting, sowing and/or arising from anthropogenic activities on promotion of natural regeneration.

In the forest legislation of Ukraine, the key approaches to reforestation and afforestation are reflected in the Rules of Forest Regeneration, adopted with Resolution of the Cabinet of Ministers of Ukraine No. 303 of March 1, 2007, according to which [17]:

- Restoration of forests shall be performed by permanent forest users and forest owners on forest areas that was covered with forest vegetation (clear cuts, areas affected by fires, sparse forests, plantations that die out, and so on) by means of reforestation, and on land not previously forested, primarily unsuitable for use in agriculture or allocated for creation of protective forest plantations of the linear type by means of afforestation.
 - Land for afforestation shall be allocated in the order prescribed by the land legislation.
- The scope of work on forest regeneration and ways of its implementation shall be determined on the basis of forest inventory materials or data of special surveys, taking into account actual changes in the forest fund of Ukraine and depending on the conditions of the land subject to afforestation.
- Clear cuts, areas affected by fires shall be cleared of wood and forest residues and reforested within the period of one-two years. The forest plantations that die out shall be restored next year.

Activities of *deforestation* are a direct result of anthropogenic activities on conversion of forests to non-forest land with a change in land-use determination followed by wood harvesting, thus in the terms of national forest reporting on inventory that is shown as "conversion of forest areas into non-forest land". Changes in forest land destination are regulated by Chapter 11 of the Forest Code of Ukraine [10]. Changing the target destination of land with aim of using it for activities not related to forestry management takes place based on decisions of executive authorities or local self-government bodies (Art. 57 of the FCU). Balance sheet references on transfer and acceptance of land by forestry enterprises in the period between base forest inventory years are included in forestry organization and development project documents of these enterprises.

Since the statistical practice of Ukraine does not record transfer of land among land-use categories (see Chapter 7), to determine deforestation areas in the process of NIR preparation data from the data array on characteristics of activities, that fall under reporting in accordance with paragraphs 3 and 4, Article 3 KP were used. The array of data was collected within the framework of the research to establish and fill a database containing the characteristics of anthropogenic activities on forest land over the entire time series since 1990 [14].

Forest management is the implementation of a set of measures aimed at protection, conservation, rational use, and expanded reproduction of forests, which is reflected in Article 63 of the Forest Code of Ukraine [13]. Also, the Forest Code of Ukraine defines the basic requirements for forest management.

Some forest areas of Ukraine is excluded from the Forest Management reporting under 3.4. Particularly areas of "natural forests", "primary forests" and "quasi-primary forests" [13] as it appears in the Forest Code of Ukraine were assumed to be unmanaged.

Activities to create protective forest plantations and shelter belts (afforestation of unproductive, degraded, technologically contaminated land) are aimed at protecting the environment, overcoming the key destabilizing environmental factors - soil erosion and depletion of rivers.

Definitions of each activity type are consistently applied throughout the reporting period. As soon as any activity type is accounted for as an activity under Article 3.3 or 3.4 of KP, the requirement to report information on the relevant activities throughout the commitment period is complied with.

11.1.4 Description of precedence conditions and/or hierarchy among Article 3.4 activities, and how they have been consistently applied in determining how land was classified

Since only forest management activity was chosen, the hierarchy among the different activities was not explored. Forest management is conducted only on land classified as forests.

11.2 Land-related information

11.2.1 Spatial assessment unit used for determining the area of the units of land under Article 3.3

Area larger or equal to 0.1 hectares was adopted as the unit of spatial territory assessment used for determining the area of land under the activities of paragraph 3, Article 3 of KP. This area corresponds to the minimum forest plantation area unit subject to accounting when conducting forest inventory.

11.2.2 Methodology used to develop the land-use transition matrix

As described in NIR 2018 the Ministry of Ecology and Natural Resources of Ukraine and the Space Research Institute has signed Memorandum of Understanding, where both recognized needs to put efforts to deliver land-use change matrix based on satellite images. The Institute has experience in delivering land cover maps of Ukraine, using open-source data and own capacities. It was anticipated that the data provided by the Institute will allow to deliver land-use transition matrix. However QC procedures demonstrated that the quality of data provided is not sufficient to classify all land uses. Alternative methods were applied in effort to use spatial data (described in chapter 6.1.2 of NIR 2019).

Since neither of suggested data for land use transition matrix development were acceptable, new possibilities are exploring. For the current NIR previous approach of land-use change matrix development was applied, as described below.

To develop the land conversion matrix (Table 11.1), the database with plot coordinates was used for activity 3.3, and information from F6-zem with administrative references for activity 3.4.

The algorithm for developing the database for GHG inventory in the land-use category Forest Land is presented in Annex 3.3.1. Information in the database describes the amount of activities by individual plots within forestry enterprises subordinated to the State Forest Resources Agency of Ukraine, and by administrative districts in the regions of Ukraine for forestry areas subordinated to various other economic entities in Ukraine.

Each section of the database is described individually with indication of all the necessary parameters, in line with the guidelines. Development of a designated database was carried out during the few recent years, and at this stage the work to finalize its content and design associated with processing of cartographic illustrations for the plots, for which work was performed, is under completion. The designated type of work will be performed regularly followed by updating information in the database.

The information basis for forest accounting is forest inventory materials. The forest inventory object is forest fund lands under management of enterprises, organizations, or institutions.

As a result of the described activities in Ukraine, the Plot-Wide Taxation (9.8 Mha) and mapping (7.5 Mha) databases on forest land were set up. The Plot-Wide Taxation Database of the State Forest Resources Agency of Ukraine contains information on 2.4 million plots on the area of 7.4 Mha. The Standwise Taxation Database for other forest users covers 2.4 Mha of forest land.

The work conducted made it possible to solve the problem of the balance of forest areas by the different activities of 3.3-3.4. The total value of all categories of forest land areas corresponds to final values of statistical reporting form 6-zem.

Unlike reporting in the LULUCF sector under requirements of the UNFCCC, reporting under par. 3.3 and 3.4 of the KP is based on the requirement regarding accounting for areas by the relevant activities under par. 3 or 4, Article 3 of KP all through the commitment periods.

11.2.3 Maps and database to identify the geographical locations, and the system of identification codes for the geographical locations

Information is represented under Tier 1 method of the 2006 IPCC Guidelines, according to which the geographic boundary covers units of territory or lands on which numerous activities are performed.

The accumulated data set covers almost the entire territory of Ukrainian forests and meet the requirements of IPCC Tier 1 method [1]. At the same time, the Forest Inventory Database meeting Tier 2 requirements for managed forests was established for the area of 8.5 Mha, which is 89% of the total area of managed forests in the country [18].

The database "Forest Fund of Ukraine" established by the Ukrainian State Project Forest Inventory Production Association "Ukrderzhlisproekt" consists of three databases (sections): the database of standwise taxation characteristics of forest areas, the database of plot-wide mapping characteristics, and the database of reference information [19].

The taxation database contains descriptions of individual taxation areas, allowing use of its system of identification codes for identifying the geographic location of plots by the activities "creation of forest plantations" and "forest management". Identification of a forest land plot is ensured by use of the national unified codification system for taxation plots: administrative region code - code of the forestry enterprise - forestry compartment code - quarter - taxation plot.

Identification of afforestation or reforestation areas included into the forest management database is performed using the taxation plot codification system, and for plots not yet included into the forest stock of forestry enterprises (until registration of documents certifying the right to permanent use) - by specifying the geographic coordinates or mapping documents confirming the geographic location of the site (Fig. 11.2).

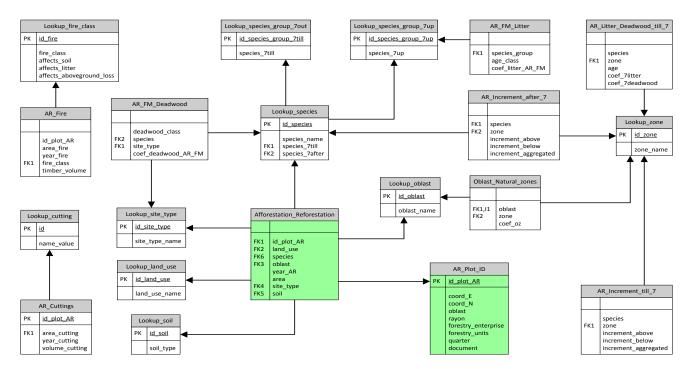


Fig. 11.2. A fragment of the afforestation and reforestation plot database schema containing a site identification table

Table 11.1. Land-use transition matrix, 2018

To th	he current inventory	Activities und	ler Article 3.3		Activities u	ınder Article 3.4		Other	Total area at the
		Afforestation	Deforestation	Forest man-	Cropland	Grazing land	Wetland drain-		beginning of in-
		and reforesta-		agement	management	management	age and re-		ventory year 2018
		tion			(not selected)	(not selected)	wetting (not se-		
							lected)		
From the previ	ous inventory	kha							
Activities under Article	Afforestation and reforestation	308.95	NO						310.67
3.3	Deforestation		50.08						50.11
Activities un-	Forest management		0.01	9 608.63					9 608.64
der Article 3.4	Cropland manage- ment (not selected)	NA	NA		NA	NA	NA		NA
	Grazing land man- agement (not se- lected)	NA	NA		NA	NA	NA		NA
	Wetland drainage and rewetting (not selected)	NA			NA	NA	NA		NA
	Other	1.44	1.92	NA	NA	NA	NA	NA	50 383.56
	he end of inventory ar 2018	310.67	310.88	50.09	9 608.63	NA	NA	NA	50 383.56

Note: NA - not applicable, NO - not occurred

11.3 Activity-specific information

11.3.1 Methods for carbon stock change and GHG emission and removal estimates

11.3.1.1 Description of the methodologies and the underlying assumptions used

To estimate changes in carbon stock in forests according to activities under par. 3 and 4, Article 3 of KP, similar methods were used as for estimation of carbon stock changes in the category Forest Land of the UNFCCC (Annex 3.3.1) [1, 12].

In order to address recommendation of ERT about forestry related data, paper archives of the Ukrderzhlisproject were scanned and digitalized. The data includes results of forest inventories in 1988, 1996 and 2002 years. Particular attention was put to institutional distribution of forests, distribution of forest area to different land cover and land use categories, as well as age distribution by species (by area and wood stock). All the information has regional coverage (except some gap regions, for which however the information was derived as difference between summary information for Ukraine and sum of available regions).

For post-2005 period of forest inventories, digital databases are available for extracting data about forest inventories. For each year the data about areas of main species and group of species were extracted by region. The data of areas have also age group structure (by 10-year step).

The materials of forest inventories in 1988, 1996 and 2002 was initially grouped by stage of maturity (young stands, middle-age, pre-mature, mature and older), which is dependent on age of clear cuts allowed. However, the age of clear cuts varies considering the species, category of protection, natural zone. Thus each of maturity group was assumed to have 20 years for conifers and hardwoods (for example, I class young stands of pine are 1-20 years, II class of young stands of pine 21-40 years and so on) and 10 years for other species.

All of information about forest inventories, described above, has different level of scope. It means, that not all of forests were covered by inventories. In order to extrapolate to entire forest covered areas, the areas of actual forest cover was used (described in the A3.3.1 of annex 3.3.1).

The data on losses from harvest, extreme weather events including fires and harvested wood products were derived from the State Statistic Service data, collected from all forest users, thus it does not require to be extrapolated.

To take into account recommendation from ERT regarding DOM Tier 1 method and default EFs were applied for DOM pool for all 3.3-3.4 activities until national methodology and emission factors will be developed. Thus, no CSC in deadwood for all activities, and in litter for FM activities were reported.

The volume of carbon stocks on lands of activity 3.4 categories does not include volumes of carbon stocks on activity 3.3 category land to avoid double counting.

For reporting on changes in carbon stock in harvested wood products for activities 3.3 and 3.4 the approach and the input data described in section 6.8 and Annex 3.3.3 were used. HWP from Deforestation events was estimated on a basis of instant oxidation, and for Afforestation and FM by applying production approach of first-order decay methodology, provided by KP Supplement. Half-lives of products are reported in table 6.27. Imported wood was not included into calculations.

In accordance with annex to Decision 2/CMP.7 and recommendation KL.10 HWP, reported in the first commitment period based on instant oxidation approach, were excluded from the calculations. To do so, the data on industrial roundwood production and export, used in calculation of share of industrial roundwood for the domestic production of HWP originating from domestic forests (f_{IRW}, equation 2.8.1), were changed to zero for the years 2008-2012.

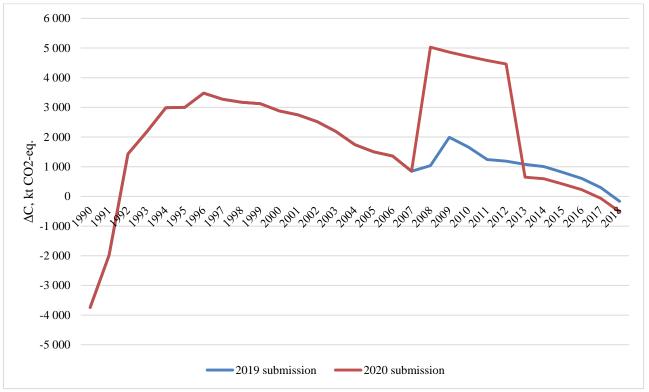


Fig. 11.3. Comparison of calculation results for HWP in 2019 and 2020 submissions

Wood, not included into sawnwood, wood panels and paper categories, was accounted under losses of living biomass and calculated on instantaneous oxidation basis.

Forest fires in Ukraine occur as a consequence of non-intended human activity. Therefore, they are reflected in the CRF tables as "wildfires". Controlled fires (burns) do not take place in Ukraine. In the current NIR, the approach to determining GHG emissions from forest fires was revised, as described in more detail in Annex 3.3.

For afforestation and deforestation activities, GHG emissions from mineralization of nitrogen during land conversion were also estimated. For this purpose, the approach similar to the one of LULUCF was applied - Tier 1 method with default EFs. For this purpose, equations 11.2 and 11.8 of the 2006 IPCC Guidelines were used.

Ukraine does not intend to exclude GHG emissions due to natural disturbances during the second commitment period.

11.3.1.2 Justification when omitting any carbon pool or GHG emissions/removals from activities under Article 3.3 and Forest Management under Article 3.4

When preparing reporting under Articles 3.3 and 3.4, all pools in forests were taken into consideration: above- and below-ground biomass, litter, deadwood, and soils. Regarding the pool of soils in the territory of managed forest areas, the assumption of zero carbon balance was applied. This assumption is also based on national study [4].

Based on recommendations from ERT in ARR 2017 Ukraine applied Tier 1 method and default EFs for DOM pool for FM category. This is caused by recommendation to develop more accurate and consistent country-specific EFs. Since currently there are no such EFs in Ukraine default EFs were applied (table 2.2 of IPCC 2006, Volume 4 Chapter 2). For deadwood the table does not consist any values.

Currently Ukraine does not estimate GHG emissions and removals in unmanaged forests (as described in chapter 11.1.1). The area of unmanaged forests were revised compared with Ukraine's 2019 submission. This affected C-removals due to biomass growth. However, C-removals were not affected because: 1) Ukraine's State Statistic Service collect information on harvest volumes indifferently where these occurred (even if that happened on unmanaged forests); 2) Ukraine does not exclude any emissions due to natural disturbances, and the State Statistic Service collect data on that,

which eventually is used in the GHG inventory. Considering abovementioned, Ukraine considers emissions from Forest Management are not underestimated.

For reporting on activities under Article 3.4, no additional activities were selected by Ukraine in addition to the mandatory reporting on forest management.

Ukraine does not submit reporting on CO_2 and N_2O emissions as a result of liming and fertilizer application in forestry due to the fact that this activity is not held in forest areas, and fertilization takes place in negligibly small quantities.

1.3.1.3 Information on whether or not indirect and natural GHG emissions and removals have been factored out

Estimation of emissions from sources and removals by sinks as a consequence of elevated carbon dioxide concentrations above pre-industrial levels and indirect nitrogen deposition, as well as of dynamic effects of the age structure change resulting from activities prior to January 1, 1990 were not held due to lack of an estimation technique.

11.3.1.4 Changes in data and methods since the previous submission (recalculations)

The recalculation was performed for FM category due to revision of area of unmanaged forests, consequently reducing the area of Forest Management. This resulted in lower levels of total C-gains. Nevertheless, C-removals from biomass losses (due to harvesting and disturbances) were not affected by area change since it was calculated based on official statistics of human activities. By law, anthropogenic activities, like harvests, are strictly forbidden in forests, reported in NIR as unmanaged.

GHG emissions due to natural disturbances were revised due to incorporation of recommendation by ERT L.31, concerned with clarification of correction factor for wood loss (more information is provided in annex 3.3.1). This revision affected 2013 only, since in the years 2014-2017 actual wood losses were reported by the State Statistic Service of Ukrine.

In order to incorporate recommendation KL.10 recalculations were performed in the HWP category. More information is provided in the chapter11.3.1.1 above.

In Deforestation category GHG emissions and removals from soils were revised due to identified miscalculation in calculation sheets.

	NIR	NIR	Differ-	NIR	NIR	Differ-	NIR 2019	NIR 2020	Differ-
Year	2019	2020	ence, %	2019	2020	ence, %	NIK 2019	NIK 2020	ence, %
	Afforestation			D	eforestatio	n	Forest Management		
2013	-2286.65	-2286.65	0.00	139.79	158.66	13.50	-55157.65	-53930.68	-2.22
2014	-2268.97	-2268.97	0.00	135.62	152.66	12.57	-54251.12	-52619.32	-3.01
2015	-2246.46	-2247.24	0.03	134.40	151.97	13.07	-52209.28	-50661.73	-2.96
2016	-2576.12	-2503.27	-2.83	127.51	136.04	6.69	-50829.59	-49316.00	-2.98
2017	-2595.23	-2528.85	-2.56	133.84	142.03	6.12	-50639.91	-49150.29	-2.94

Table 11.2. The results of recalculations

11.3.1.5 Uncertainty estimates

The primary factors that impact the uncertainty in this category are:

- accuracy of determining the area of forest land on which afforestation processes take place, and their distribution by categories;
- accuracy of biomass growth estimation;
- accuracy of conversion coefficients.

For the area uncertainty is around 10% [4], for the data on biomass growth rate - approximately 20 %, on the ratio of above-ground and below-ground biomass -15 % [1, 4]. Uncertainties

related to estimation of the carbon content in biomass are 2 % [1]. Since the data was obtained from different sources, it is assumed that it is not correlated. The value of the combined uncertainty of carbon removals in the territories where there are afforestation processes taking place is 5 %, with consideration of the uncertainty level of carbon accumulation in litter -75 %.

11.4 Article 3.3

11.4.1 Information that demonstrates that the activities under Article 3.3 began on or after 1 January 1990 and before 31 December 2012 and are directly human-induced

Control over implementation of forest management projects to improve effectiveness of their implementation, operational elimination of discovered deficiencies in forest management and forest management planning in Ukraine is performed in accordance with the Forest Code of Ukraine, as well as other regulatory instruments [13, 21, 45].

The following documents and materials are used during the control procedure:

- materials of the forest management plan (explanatory note, taxation descriptions, design sheets, forest inventory tabs);
- annual reports of the forestry enterprise on its economic and industrial activity in the period from the start of the management plan, including the year prior to the control one;
- duly issued acceptance or transfer acts on forest fund land from the forestry company, as well as decisions of competent authorities in these matters;
- in case of transfer of forest land for long-term use (rent) the decision of competent authorities and the contract stating rights and obligations of the parties;
- cutting area allocation materials and acts of logging site control;
- forest inventory logs (accounting of the forest fund);
- log to register forest plantations, forest fires, forest violations, loss of forests, etc.;
- materials of inventory of forest crops and protective forest plantations, orchards, areas where activities are implemented to promote natural regeneration of forests;
- acts of technical acceptance of forest crops and their transfer into land covered with forest vegetation;
- other acts of full-scale surveys of the forest areas where changes occurred as a result of fires, windbreaks, etc.

Activities under Article 3.3 started after January 1, 1990. This is confirmed with response letters from forestry companies obtained as a result of a questionnaire research conducted at the time of setting up the information array for the database. Based on findings of this survey, documented evidence of the start of activities under Article 3.3 of KP were obtained.

11.4.2 Information on how harvesting or forest disturbance that is followed by the re-establishment of forest is distinguished from deforestation

Forest logging activity in Ukraine is regulated with a certain set of legal documents, including Rules of Final Felling and Rules of Improving the Qualitative Composition of Forests.

In accordance with these documents and depending on the method of wood removal, three logging systems are distinguished – clear cuttings, gradual, and selective, as well as combined [21]. Regardless of the selected method of logging, Rules of Forest Restoration oblige the forest user to reforest the area where logging was performed. Reforestation can be held naturally (natural reforestation and support for natural recovery), as well as artificially - by planting entirely or partially forest crops. The Rules of Forest Restoration stipulate compulsory reforestation of all the areas that lost their forest cover as a result of logging and fires during one to two years.

11.4.3 Information on the size and geographical location of forest areas that have lost forest cover but which are not yet classified as deforestation

Since deforestation implies further change of the land-use category of forest land, the process of conversion into another land category, in accordance with Article 57 of the Forest Code of Ukraine, primarily is carried out by executive authorities or local self-government bodies in coordination with executive bodies on forestry and environmental protection. In view of the above mentioned, in Ukraine there are no forest areas that lost their forest cover but are still not classified as deforested.

11.5 Article 3.4

11.5.1 Information that demonstrates that the activities under Article 3.4 have occurred since 1 January 1990 and are human-induced

Forest management activities after January 1, 1990 were selected for reporting under Article 3.4 of KP during the first commitment period. According to decision 2/CMP.7, during the second period this type of activity is required for the countries listed in the third column in KP Annex B. No additional activities for reporting on par. 4, Article 3 of KP were selected by Ukraine.

Almost all forests of Ukraine are impacted by economic activities, as justified by statistical data of the state forest inventory, taxation databases, national statistical information on activities in the forestry sector.

11.5.2 Information relating to Cropland Management, Grazing Land Management, Revegetation and Wetland Drainage and Rewetting if elected, for the base year

Ukraine did not select these activities.

11.5.3 Information relating to Forest Management

Ukraine adopted a "broad" definition of forest management in accordance with the Annex to decision 11/CP.7, as a system of practices for conservation and management of forests aimed at fulfilling relevant ecological (including biological diversity), economic, and social functions of forests on the sustainable basis.

In the context of this definition, the types of activities carried out in forest-covered areas of forest land in Ukraine, according to information published annually by the State Statistics Service of Ukraine (Form 3-lg):

- controlled cuttings in accordance with forestry management plans (see Chapter 11.4.2.);
- forests protection from pests and diseases (with biological and chemical products, elimination of breeding site of pests and diseases with the help of implementation of special events);
 - conducting fire prevention measures.

Management prescriptions for forest management are provided in the Forest Code of Ukraine [13], Rules of Forest Regeneration [17], Rules of Final Harvest [21], Rules of Final Harvest in Mountain Forests of Carpathians [45].

11.5.4 Conversion of natural forest to planted forest

Forestry in Ukraine is oriented in promotion of natural regeneration of forests. Particularly after harvesting of natural forests high priority is given to natural regeneration of cutting areas.

11.5.5 Technical adjustments proposed by Ukraine pursuant to paragraph 14 of the Annex to decision 2/CMP.7

Paragraph 14 of the Annex to decision 2/CMP.7 requires that the Parties complied with methodological consistency between the reference level determined by countries in response to decision 2/CMP.6, and information provided on forest management in the second commitment period.

Ukraine performed recalculation of correction of FMRL in its 2019 submission. In the current submission the area of unmanaged forests was revised due to updated information from the State Forest Resources Agency. This was incorporated into FM calculations and triggered need to revise corrections of FMRL.

In the previous submission the State Forest Resources Agency has not been able to provide comprehensive information on areas of unmanaged forests. Thus temporarily all forests of the State Forest Resources Agency was considered as managed.

For the current submission the State Forest Resources Agency provided information on areas of unmanaged forests (please see Annex 3.3.1). Thus, removals from biomass growth were revised (see table below).

		2019 submission			2020 submissio	n
	Area of FM (stocked), kha	Unmanaged forests, kha	Removals by forest growth, kt CO ₂	Area of FM (stocked), kha	Unmanaged forests, kha	Removals by forest growth, kt CO ₂
2005	9496.51	1.24	-63922	9476.30	21.44	-63786
2006	9528.66	1.24	-63936	9508.45	21.44	-63801
2007	9540.96	1.24	-63854	9520.75	21.44	-63719
2008	9535.61	1.24	-63503	9515.40	21.44	-63369
2009	9542.45	1.24	-63117	9522.24	21.44	-62984
2010	9515.28	1.24	-62617	9495.12	21.44	-62484
2011	9489.62	1.24	-62115	9469.50	21.44	-61983
2012	9465.46	1.24	-61613	9445.38	21.44	-61482
2013	9442.44	1.24	-61111	9422.40	21.44	-60981
2014	9420.60	1.24	-60611	9400.59	21.44	-60482
2015	9399.58	1.24	-60111	9379.61	21.44	-59984
2016	9379.45	1.24	-59614	9359.51	21.44	-59488
2017	9359.89	1.24	-59119	9339.98	21.44	-58994
2018	9340.96	1.24	-58628	9321.09	21.44	-58503
2019	9322.38	1.24	-58138	9302.53	21.44	-58015
2020	9304.22	1.24	-57653	9284.41	21.44	-57530

Table 11.3. Revision of FM areas

To consider the recommendation of ERT KL.10 HWP contribution was recalculated (as described in chapter 11.3.1.1). In order to keep methodological consistency, the same modifications were done in the HWP contribution projections to FMRL.

Resulting values of FMRL are presented below.

Table 11.4. FMRL calculated by Ukraine in previous submissions, kt CO₂-eq.

	Removals by living biomass	Litter	Dead- wood	Total remov- als	Living biomass losses	Forest fires	Organic soils	Total emis- sions	HWP	Budget
1990	-62464	-441	-5376	-68281	3950	91	423	4463	5553	-58264
1991	-62767	-443	-5401	-68611	4772	53	423	5248	3905	-59458
1992	-62709	-443	-5395	-68546	6261	131	423	6815	2063	-59669
1993	-62803	-444	-5404	-68650	7085	180	443	7708	804	-60138
1994	-63024	-445	-5422	-68891	5509	515	444	6468	-432	-62854
1995	-63217	-446	-5430	-69093	5748	155	446	6349	-824	-63568
1996	-63196	-446	-5428	-69069	9466	410	445	10321	-1235	-59984
1997	-63292	-446	-5437	-69176	7158	29	446	7633	-980	-62523
1998	-63215	-445	-5424	-69084	4365	151	450	4965	-594	-64712

1999	-63384	-447	-5440	-69270	4312	200	454	4966	1269	-63035
2000	-63642	-448	-5463	-69553	5074	37	458	5569	-140	-64125
2001	-63712	-449	-5469	-69630	4888	154	462	5504	-124	-64250
2002	-63917	-451	-5489	-69856	5626	122	465	6213	817	-62827
2003	-64026	-451	-5498	-69976	5375	61	468	5905	1321	-62750
2004	-64081	-452	-5503	-70036	5631	10	469	6110	2840	-61085
2005	-64188	-442	-5382	-70011	5647	57	470	6174	2585	-61252
2006	-64310	-442	-5388	-70141	5691	97	476	6264	2225	-61651
2007	-64365	-443	-5393	-70201	6000	1148	467	7615	3570	-59016
2008	-64324	-442	-5388	-70155	5766	358	458	6582	2325	-61248
2009	-64354	-442	-5391	-70187	4335	160	479	4975	995	-64217
2010	-64362	-443	-5392	-70196	6177	246	479	6902	3013	-60280
2011	-65727	-797	-9084	-75608	6027	9	480	6516	3691	-65401
2012	-67164	-790	-9978	-77932	6426	210	479	7115	3379	-67437
2013	-65766	-793	-9972	-76531	6154	1	479	6635	4018	-65879
2014	-64048	-599	-7247	-71895	5803	160	479	6443	3843	-61609
2015	-63395	-601	-7272	-71268	5809	160	479	6449	3975	-60844
2020	-62884	-604	-7311	-70798	5809	160	479	6449	4143	-60207
Reference	e level									-62135

Table 11.5. Revised values of FMRL, kt CO₂-eq.

	Removals by living	Litter	Dead-	Living bio-	Forest	Organic	HWP	Budget
	biomass	Littei	wood	mass losses	fires	soils	11 44 1	Dudget
1990	-69010	-	ı	4346	117	423	-2665	-66788
1991	-69374	-	ı	4567	68	423	-1294	-65611
1992	-69738	-	ı	6299	162	423	650	-62203
1993	-70102	-	ı	7228	228	443	1499	-60704
1994	-70466	-	ı	5671	630	444	2381	-61340
1995	-70831	-	ı	5846	205	446	2447	-61887
1996	-71195	-	ı	10307	522	445	2965	-56956
1997	-71158	-	-	7645	37	446	2794	-60236
1998	-71122	-	ı	4436	191	450	2716	-63328
1999	-71085	-	ı	4422	253	454	2692	-63263
2000	-71049	-	ı	5723	48	458	2467	-62352
2001	-71012	-	ı	5838	199	462	2347	-62166
2002	-70975	-	ı	7139	153	465	2137	-61082
2003	-68624	-	ı	7776	76	468	1813	-58491
2004	-66273	-	-	7403	12	469	1387	-57003
2005	-63922	-	-	8174	72	470	1154	-54052
2006	-63936	-	ı	7967	130	476	1021	-54342
2007	-63854	-	ı	11179	1479	467	521	-50208
2008	-63503	-	ı	8076	470	458	4709	-49643
2009	-63117	-	ı	8009	321	479	4551	-49781
2010	-62617	-	ı	5497	321	479	4413	-52890
2011	-62115	-	-	5510	321	479	4290	-52499
2012	-61613	-	ı	5519	321	479	4177	-52101
2013	-61111	-	ı	5522	321	479	1205	-54570
2014	-60611	-	-	5540	321	479	1168	-54090
2015	-60111	-	ı	5539	321	479	1149	-53611
2020	-57563	-	ı	5583	321	479	1118	-53136
Refere	nce level							-52903

The reference level submitted by Ukraine originally was -46.6 Mt CO_2 -eq. During the review FMRL was calculated as 48.7 Mt CO_2 -eq.

Newly calculated projections is -51.6 Mt CO₂-eq. Thus technical corrections is:

$$FMRL_{corr} = -52.9 - (-48.7) = -4.2 Mt CO_2 \text{ eq.}$$

There are few key changes in projected values. First, removals from living biomass for 2010-2020 are lower than in the previous submission reviewed by the ERT. It is related with more accurate

factors used as well as age structure data. However because of projected values of clear cuttings and re-establishment of forests, the total forested area is decreasing until 2020.

Tier 1 assumption from IPCC currently is applied for DOM pool in FM category. Thus DOM is also excluded from FMRL calculations as well.

Removals from living biomass was revised accordingly to keep consistency with original Ukraine's submission, where values of removals were projected based on data for 1990-2009 years.

HWP was also revised to keep consistency with the method used for LULUCF reporting, as well as for FM category.

12 INFORMATION ON ACCOUNTING OF KYOTO UNITS

12.1 Background information

Annex I Parties are required to report their national registries' holdings and transactions of Kyoto units and inform about related issues as specified in Decision 15/CMP.1 Section E. The following chapters serve this purpose.

12.2 Summary of information reported in the SEF tables

Information from the national registry on acquisition, holding, transfer, cancellation, retirement and carry-over of AAUs, RMUs, ERUs, CERs, tCERs and lCERs for 2019 has been reported as separate files ('RREG1_UA_2019_2_1') in xls and xml format each by separate upload.

The SEF for CP2 2019 was generated on 4th May 2020 with data from the UA Registry from 4th May and the SEF report tool version 3.8.3, provided by the secretariat on 26th January 2018.

There is no obligation to submit a SEF for CP1 after the end of the true-up-period of CP1.

Further details can be found in the electronic SEF files as mentioned above and published at the UNFCCC website:

https://unfccc.int/ghg-inventories-annex-i-parties/2020.

12.3 Discrepancies and notifications

No discrepancies occurred in 2019. Therefore, no report R-2 is submitted.

No CDM notifications occurred in 2019. Therefore, no report R-3 is submitted.

No non-replacements occurred in 2019. Therefore, no report R-4 is submitted.

No invalid units exist at the 31 December 2019. Therefore, no report R-5 is submitted.

There were no actions necessary to correct any problem causing a discrepancy because there were no discrepancies in 2019.

12.4 Publicly accessible information

Section E of the annex to Decision 15/CMP.1 outlines provisions for making available non-confidential information to the public via a user interface. Ukraine makes available publicly accessible information on the official website of the Registry: $\frac{http://www.carbonunitsregistry.gov.ua}{http://www.carbonunitsregistry.gov.ua} \ .$ The website also publishes reports on holdings and transactions in the Registry.

The website was hosted and the Government .gov domain. However more than 10 years it's core was not updated at software level. Since September 2018 it's became not visible due to software incompatibility with PHP4 language of the new .gov domain. The website was upgraded in 2019 and since 4 December 2019 works and keeps the relevant information again. All the information were contained within a dump file and transferred without any loss.

12.5 Calculation of the commitment period reserve (CPR)

Pursuant to Annex I to Decision 3/CMP.11, Section I, B bis, paragraph 8 quinquies, the CPR for CP2 under paragraph 6 of the Annex to Decision 11/CMP.1 for Ukraine shall be calculated as "90 percent of eight times its average annual emissions for the first three years of the first commitment period, or 100 percent of eight times its most recently reviewed inventory, whichever is lower".

Taken the 2020 submission as the most recently reviewed inventory, the corresponding calculations of the possible CPR for Ukraine are follows:

- (i) $0.90 \times 413,994,809.19 \times 8 = 2,993,169,192$ tonnes of carbon dioxide equivalent;
- (ii) $339,244,284.78 \times 8 = 2,713,954,279$ tonnes of carbon dioxide equivalent.

Thus, the Ukraine's CPR is 2,713,954,279 tonnes of carbon dioxide equivalent.

12.6 KP-LULUCF accounting

For the second KP commitment period, Ukraine intends to report at the end of the period. More details are offered in the CRF "Accounting" table for KP-LULUCF.

Table 12.1. Results of activities under Articles 3.3 and 3.4 of KP

C l				let emissions/rem	ovals				
Greenhouse gas source and sink activities	2013	2014	2015	2016	2017	2018	Total	Accounting	Accounting
activities	kt CO ₂ -eq.							Parameters	Quantity
A. Article 3.3 activities									
A.1. Afforestation/reforestation	-2286.65	-2268.97	-2247.24	-2503.27	-2528.85	-2538.72	-14373.69		-14373.69
Excluded emissions from natural disturbances	NA	NA	NA	NA	NA	NA	NA		NA
Excluded subsequent removals from land subject to natural disturbances	NA	NA	NA	NA	NA	NA	NA		NA
A.2. Deforestation	158.66	152.66	151.97	136.04	142.03	50.72	792.09		792.09
B. Article 3.4 activities									
B.1. Forest management							-302853.84		6746.16
Net emissions/removals	-53930.68	-52619.32	-50661.73	-49316.00	-49150.29	-47175.82	-302853.84		
Excluded emissions from natural disturbances	NA	NA	NA	NA	NA	NA	NA		NA
Excluded subsequent removals from land subject to natural disturbances	NA	NA	NA	NA	NA	NA	NA		NA
Any debits from newly established forest (CEF-ne)	NA	NA	NA	NA	NA	NA	NA		NA
Forest management reference level (FMRL)								-48700.00	
Technical corrections to FMRL								-2900.00	
Forest management cap								262627.18	6746.16
B.2. Cropland management (if elected)	NA	NA	NA	NA	NA	NA	NA		NA
B.3. Grazing land management (if elected)	NA	NA	NA	NA	NA	NA	NA		NA
B.4. Revegetation (if elected)	NA	NA	NA	NA	NA	NA	NA		NA
B.5. Wetland drainage and rewetting (if elected)	NA	NA	NA	NA	NA	NA	NA		NA

12.7 PPSR-Accounts in the National Registry

Pending Doha Amendment entry into force, we are not in a position to open the PPSR account in our National Registry.

13 INFORMATION ON CHANGES IN THE NATIONAL GHG IN-VENTORY SYSTEM

There were a few changes to the National GHG Inventory System of Ukraine.

According to Resolution of the Cabinet of Ministers of Ukraine of September 02, 2019 No. 829 «Some Issues of Optimization of the System of Central Executive Government Bodies», the the Ministry of Ecology and Natural Resources of Ukraine was renamed to the Ministry of Energy and Environmental Protection of Ukraine (MEEP), and merge with the Ministry of Energy and Coal Industries of Ukraine.

In turn by the Order of the MEEP of February 11, 2020 No. 83 «On approval of the Structure and number of independent structural units of the MEEP», the Directorate of Climate Change and Ozone Layer Protection was created, which is responsible for the National GHG Inventory System functioning.

The work of the Budget Institution «National Center for GHG Emission Inventory» on the GHG inventory preparation started to be coordinated by newly established Directorate under the MEEP.

14 INFORMATION ON CHANGES IN THE NATIONAL REGISTRY

14.1 Information on changes according to Decision 15/CMP.1

The following table summarises the changes to the National Registry of Ukraine in 2018.

Reporting Item	Description
15/CMP.1 annex II.E paragraph 32.(a) Change of name or contact	No change of the name of the registry administrator and the alternate registry administrator occurred during the reported period
15/CMP.1 annex II.E paragraph 32.(b) Change regarding cooperation Arrangement	No change of cooperation arrangement occurred during the reported period.
15/CMP.1 annex II.E paragraph 32.(c) Change to database structure or the capacity of national registry	No change to database structure and the capacity of the national registry occurred during the reported period.
15/CMP.1 annex II.E paragraph 32.(d) Change regarding conformance to technical standards	No change in the registry's conformance to the technical standards occurred for the reported period.
15/CMP.1 annex II.E paragraph 32.(e) Change to discrepancies procedures	No change of discrepancies procedures occurred during the reported period.
15/CMP.1 annex II.E paragraph 32.(f) Change regarding security	No change regarding security occurred during the reported period.
15/CMP.1 annex II.E paragraph 32.(g) Change to list of publicly available Information	No change to the list of publicly available information occurred during the reporting period.
15/CMP.1 annex II.E paragraph 32.(h) Change of Internet address	No change of the registry internet address occurred during the reporting period. The website was hosted and the Government .gov domain. However more than 10 years it's core was not updated at software level. Since September 2018 it's became not visible due to software incompatibility with PHP4 language of the new .gov domain. The website was upgraded in 2019 and since 4 December 2019 works and keeps the relevant information again. All the information were contained within a dump file and transferred without any loss.
15/CMP.1 annex II.E paragraph 32.(i) Change regarding data integrity measures	No change of data integrity measures occurred during the reporting period.
15/CMP.1 annex II.E paragraph 32.(j) Change regarding test results	No change during the reported period

14.2 Previous Annual Review recommendations

The Standard Independent Assessment Report Ref: SIAR/2019/UA/2/1 prepared by: Malgorzata Dzieciuchowicz/ IOS-PIB Date: 26/07/2019 includes recommendation related to the registry those have not been successfully resolved:

Ref Nr	Recommendation Ref	Recommendation description	Comment
P2.4.2.1	P1.3.4	In chapter 14.1 of [NIR], the Party	No change in the registry's
		does not clearly state that changes	conformance to the tech-
		have been made to the conform-	nical standards occurred
		ance to technical standards by its	for the reported period.
		national registry.	
		The Party is recommended to pro-	
		vide a clear reference in [NIR] in-	
		dicating that there was or that there	
		was not a change to the conform-	
		ance to technical standards.	
P2.4.2.2	P1.3.10	In chapter 14.1 of [NIR], the Party	No change of test results
		dos not clearly state that changes	occurred during the report-
			ing period

Ref Nr	Recommendation Ref	Recommendation description	Comment
P2.4.2.3	P1.4.1 – P1.4.1.5 P1.4.2 – P1.4.2.4 P1.4.3 – P1.4.3.12 P1.4.4	Recommendation description have been made to the results of its test procedures. The Party is recommended to provide a clear reference in [NIR] indicating that there was or that there was no change to the results of its test procedure. The Party provides reference to this publicly available information in chapter 12.4 of [NIR], however the URL provided is not functional http://www.carbonunitsregistry.gov.ua/ The assessor was not able to review information on the website controlled by the Party, therefore, in accordance to paragraph 44 of the annex to decision 13/CMP.1, the assessor recommends that the Party report on non-confidential in-	The website was upgraded in 2019 and since 4 December 2019 works and keeps the relevant information again. All the information were contained within a dump file and transferred without any loss.
		formation by making it publicly available.	

15 MINIMIZATION OF ADVERSE IMPACTS IN ACCORDANCE WITH ARTICLE 3, PARAGRAPH 14

Ukraine, being a party not included in Annex 2 to the UNFCCC and being an economy in transition, has no relevant financial commitments under paragraphs 3-5, Article 4 of the UNFCCC. However, realizing the need to stabilize and improve the ecological condition of the Earth, ensure sustainable development and assist developing countries, Ukraine makes its contribution to strengthening the capacities of developing countries in the field of climate change prevention by training the qualified specialists.

Information about number of foreign citizens from developing countries, who studied in the specialty "Ecology" in the higher education institutions of Ukraine, is presented in the table below and based upon the statistics received from the Ministry of Education and Science of Ukraine.

	Name of Ukrainian Educational Institution	Number of Students as by 01.01.2019
	Total	92
1	National University of Life and Environmental Sciences of Ukraine	9
2	The National University of Water and Environmental Engineering	2
3	Mariupol State University	11
4	Institute of Chemical Technologies of the Ukrainian National University named after Volodymyr Dahl (Rubizhne City)	2
5	Kyiv Taras Shevchenko National Shevchenko University	1
6	State High Educational Institution " "Pridniprovsk State Academy of Architecture and Architecture""	1
7	Odessa National Academy of Food Technologies	2
8	V.N. Karazin Kharkiv National University	1
9	Zaporizhzhia National University	2
10	Vinnitskyi National Agriculture University	1
11	Bogdan Khmelnitsky Melitopol State Pedagogical University	1
12	Dnipro State Agrarian and Economic University	1
13	National University "Lvivska Politechnika"	1
11	National Technical University "Kharkiv Politechnic Institute"	1
15	National University of Shippbuilding named after Admiral Makarov	3
16	Oles Honchar Dnipro National University	1
17	Karkiv National Technical Agricultural University named after Ptro Vasylenko	1
18	National Metallurgical Academy of Ukraine	8
19	Tavria State Agrotechnological University Name After Dmitri Motor	1
20	Sumy National Agrarian University	1
21	Ivano-Frankivsk National Technical University of Oil and Gas	3
22	Odessa State Ecological University	22
23	National Aviation University	1
24	Odessa National Polytechnic University	1
25	Kharkiv National Highway University	1
26	Private Higher Educational Institution University "European University"	4
27	Zhytomyr National Agro-Ecological University	1
28	Belotserkov National Agrarian University	1
29	State Higher Educational Institution "Kharkiv college of Textile and Design"	2
30	Private Higher Educational Institution "Institute of economy, ecology and law	5

16 AUTHORS

The National Inventory Report was developed with the participation of:

Name	Place of work, position	The area of responsibility
Viktor Lyashenko	BI «NCI», Acting Director	Sector Industrial Processes and Product Use
Igor Onopchuk	BI «NCI», Head of Department of Inven-	Sector LULUCF
	tory and Monitoring	
Oleksandr Tymoshchuk	BI «NCI», Deputy head of Department	Sector Agriculture
	of Inventory and Monitoring, Head of In-	
	ventory Compartment, Candidate of Ag-	
	ricultural Sciences	
Hanna Hlebchuk	BI «NCI», Head of Sector Quality Con-	The Procedures of Quality Control, para-
	trol Inventory, Candidate of Technical	graph 1.2.2-1.2.3, subchapters 1.3, 1.6 -1.7,
	Sciences	Annex 5, Annex 7
Iuliia Zakharchuk	BI «NCI», Chief Specialist of Depart-	Sectors Waste
	ment Inventory	
Andriy Skliarenko	BI «NCI», Chief Specialist of Depart-	Sector Industrial Processes and Product Use
	ment Inventory	
Oleksandr Stakhovskyi	BI «NCI», Chief Specialist of Emission	Sectors Energy
	Sources Monitoring Compartment	
Oleksandra Dodonova	BI «NCI», Chief Specialist of Depart-	Sectors Energy
	ment Inventory	
Mykhailo Chyzhenko	Ministry of Energy and Environmental	Chapter 13, subchapter 1.3, Annex 8.2 NIR
	Protection of Ukraine	
Iaroslav Mikhieiev	Ministry of Energy and Environmental	Collection of baseline data, the chapters 12
	Protection of Ukraine	and 14, paragraph 1.1.3, Annex 6 and 8.2
01 1 91		NIR
Olesia Shapovalova	Ministry of Energy and Environmental	Collection of baseline data, summary p. 1,
	Protection of Ukraine	chapter 15 NIR
Anatolii Shmurak	Ministry of Energy and Environmental	Paragraph 6.1.2
7 Hatom Simurak	Protection of Ukraine	Turugrupii 0.1.2
Vira Balabukh	Ukrainian Hydrometeorological Institute,	Paragraph 1.1.1
, ira Barac arai	Department Head, Ph.D. (Geography)	
Iryna Trofimova	Ukrainian Hydrometeorological Institute,	Paragraph 1.1.1
,	Senior Researcher, Ph.D. (Physics and	
	Mathematics)	
L.V. Malytska	Ukrainian Hydrometeorological Institute,	Paragraph 1.1.1
•	Junior Researcher	
S.V. Krakovska	Ukrainian Hydrometeorological Institute,	Paragraph 1.1.1
	Senior Researcher, Ph.D. (Physics and	
	Mathematics)	
L.V. Palamarchuk	Ukrainian Hydrometeorological Institute,	Paragraph 1.1.1
	Senior Researcher, Ph.D. (Geography)	
N.V. Gnatiuk	Ukrainian Hydrometeorological Institute,	Paragraph 1.1.1
	Junior Researcher	
T.M. Shpytal	Ukrainian Hydrometeorological Institute,	Paragraph 1.1.1
	Junior Researcher	

For development of individual chapters of the NIR following organizations were participat-

- 1. Ukrainian state forest inventory production association «Ukrderzhlisproekt»;
- 2. Public Organization «Bureau of complex analysis and forecasts «BIAF»;
- 3. Institute of Animal Science of NAASU;

ing:

4. Ukrainian Hydrometeorological Institute.

17 REFERENCES

Executive Summary

1. Отчет о научно-исследовательской работе "Подготовка предложений и рекомендаций по учёту выбросов и поглощений парниковых газов на территориях с особенным статусом (4 административные единицы) по секторам МГЕИК" (конфиденциально).

Chapter 1

- 1. Балабух В.А. Межгодовая изменчивость интенсивности конвекции в Украине // Глобальные и региональные изменения климата; под ред. Осадчего В.И. / В.А. Балабух. Киев: Ника-Центр, 2011.— С. 161-173.
- 2. Балабух В.О. Зміна інтенсивності, повторюваності та локалізації небезпечних явищ погоди в Україні та їх регіональні особливості/ В.О. Балабух, О.М. Лавриненко, С.М. Ягодинець, Л.В.Малицька, Ю.О. Базалєєва // Системи контролю навколишнього середовища: Збірник наукових праць МГІ НАН України.—Севастополь, 2013.—Вип.19.— С.189-198.
- 3. Балабух В.О. Особливості термічного режиму 2013 року в Україні/ В.О. Балабух О.М.Лавриненко, Л.В. Малицька // Український гідрометеорологічний журнал: Науковий журнал. Одеса: Вид-во ПП «ТЕС», 2014. № 14. С.30-46.
- 4. Балабух В.О. Вплив зміни клімату на кількість та площу лісових пожеж у північночорноморському регіоні України/ В.О.Балабух,С.В. С. В. Зібцев// Український гідрометеорологічний журнал: Науковий журнал. Одеса: Вид-во ПП «ТЕС», 2016. № 18. С.60-71.
- 5. Барабаш М.Б. Дослідження змін та коливань опадів на рубежі XX і XXI ст.. в умовах потепління глобального клімату // М.Б. Барабаш, Т.В. Корж ,О.Г Татарчук //Наук. праці УкрHДГМІ. 2004. Вип. 253. С.92-103.
- 6. Вразливі екосистеми Поліського природного заповідника та його околиць в умовах глобального потепління: проблеми та шляхи вирішення /[Балабух В.О., Жила С.М., Орлов О.О., Яремченко О.А.]–Київ: Вид-во ТОВ «НВП Інтерсервіс», 2013.—92 с
- 7. Леса и изменение климата в Восточной Европе и Центральной Азии / Под ред. проф. Чаба Матиаша. Рим, 2010. 209 с.
- 8. Оцінка впливу кліматичних змін на галузі економіки України / С. М. Степаненко, А. М. Польовий, Є. П. Школьний [та ін.] ; за ред. С. М. Степаненко, А. М. Польовий. Одеса: Екологія , 2011. 696 с.
- 9. Проекції змін приземної температури повітря за даними ансамблю регіональних кліматичних моделей у регіонах України в XXI столітті / С. В. Краковська, Н. В. Гнатюк, Т. М. Шпиталь, Л. В. Паламарчук // Наук. пр. УкрНДГМІ. 2016. Вип. 268. С. 33-44.
- 10. Розроблення сценаріїв зміни кліматичних умов в Україні на середньо- та довгострокову перспективу з використанням даних глобальних та регіональних моделей : Звіт про науково-дослідну роботу. УкрНДГМІ МНС України та НАН України. Київ, 2013. 171.
- 11. Розроблення деталізованих карт майбутніх кліматичних умов для території України за різними сценаріями зміни клімату з використанням геоінформаційних систем : Звіт про науково-дослідну роботу. УкрНДГМІ МНС України та НАН України. Київ, 2013. 77.
- 12. Семёнова И.Г. Характеристика засушливых условий на Украине в конце XX начале XXI столетия / И.Г. Семёнова // Вестник Балтийского федерального университета им. И. Канта. 2014. Вып. 1 С. 20-29.
- 13. Стихійні метеорологічні явища на території України за останнє двадцятиріччя (1986–2005рр.): Монографія /Під редакцією В.М.Ліпінського, В.І.Осадчого, В.М.Бабіченко.— К.:Ніка–Центр,2006.—312 с.

- 14. Тимофеев В.Е.. Сильные снегопады на территории Украины в условиях современного климата. //В.Е.Тимофеев, О.Г.Татарчук //Проблемы гидрометеорологического обеспечения хозяйственной деятельности в условиях изменяющегося климата: Сборник научных статей. Минск: Издательский центр БГУ, 2015. с.192-193.
- 15. Третье, четвертое и пятое национальные сообщения Украины по вопросам изменения климата подготовленные на выполнение статей 4 и 12 Рамочной конвенции ООН об изменении климата и статьи 7 Киотского протокола. Киев, 2009 236 с.
- 16. Ходаков В. Е., Жарикова М. В. Лесные пожары: методы исследования. Херсон: Гринь Д.С., 2011. 470 с.
- 17. Хохлов В. М. Зміна погодних умов на території України в умовах зміни клімату / В. М. Хохлов, Г. О. Боровська, О. В. Уманська, М. С. Тенетко // Український гідрометеорологічний журнал. 2016. № 17. С. 31-37.
- 18. Хохлов В. М. Просторово-часовий розподіл засух на території України в умовах зміни клімату / В. М. Хохлов // Український гідрометеорологічний журнал. 2011. № 8. С. 38-43
- 19. Шестое национальное сообщение Украины по вопросам изменения климата подготовленное на выполнение статей 4 и 12 Рамочной конвенции ООН об изменении климата и статьи 7 Киотского протокола. Киев, 2012. 342 с.
- 20. Climate Change 2013: The Physical Science Basis. IPCC Working Group I Contribution to AR5 [Електронний ресурс]: Approved Summary for Policymakers— Режим доступу: http://www.climate2013.org/spm.
- 21. Krakovska S. ThebestensemblesofRCMsforclimatechangeprojectionsinUkraine / S. Krakovska, N. Gnatiuk, L. Palamarchuk, I. Shedemenko // EGU GeneralAssembly 2013 : зб. тез. між. наук. конф. Відень, 2013. Том 15. № EGU2013-889-1.
- 22. Ходорчук В.Я. Визначення змін запасів вуглецю для категорії землекористування «Ліси» у резервуарах біомаси (живої і відмерлої), підстилки та грунтів у розрізі природнокліматичних зон/ Отчёт о научно-исследовательской работе / ІТІ «Біотехніка», Київ 2012. 23. Инструкция по заполнению государственной статистической отчетности по количествен-ному учету земель (формы №№ 6-зем, 6а-зем, 6б-зем, 2-зем). Государственный комитет Украины по земельным ресурсам. Киев, 98, с. 16-27.

Chapter 3, Annex 2

- 1. IPCC 2006, 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Prepared by the National Greenhouse Gas Inventories Programme, Eggleston H.S., Buendia L., Miwa K., Ngara T. and Tanabe K. (eds). Published: IGES, Japan.
- 2. Отчетный топливно-энергетический баланс за 1990 г.: Форма 1-ТЭБ. Т.2. М: Госкомстат СССР, 1991. Архивный № 104 Госкомстата УССР.
- 3. Статистический ежегодник Украины за 2014 год [Электронный ресурс] / под ред. О.Г. Осауленко. Киев: Государственная служба статистики Украины, 2015. 586 с. Режим доступа: http://www.ukrstat.gov.ua.
- 4. Статистический ежегодник Украины за 2007 год [Электронный ресурс] / под ред. О.Г. Осауленко. Киев: Государственная служба статистики Украины, 2008. 572 с. Режим доступа: http://www.ukrstat.gov.ua.
- 5. Статистический ежегодник Украины за 2008 год [Электронный ресурс] / под ред. О.Г. Осауленко. Киев: Государственная служба статистики Украины, 2009. 567 с. Режим доступа: http://www.ukrstat.gov.ua.
- 6. Статистический ежегодник Украины за 2009 год [Электронный ресурс] / под ред. О.Г. Осауленко. Киев: Государственная служба статистики Украины, 2010. 567 с. Режим доступа: http://www.ukrstat.gov.ua.
- 7. Статистический ежегодник Украины за 2010 год [Электронный ресурс] / под ред. О.Г. Осауленко. Киев: Государственная служба статистики Украины, 2011. 560 с. Режим доступа: http://www.ukrstat.gov.ua.

- 8. Статистический ежегодник Украины за 2011 год [Электронный ресурс] / под ред. О.Г. Осауленко. Киев: Государственная служба статистики Украины, 2012. 559 с. Режим доступа: http://www.ukrstat.gov.ua.
- 9. Статистический ежегодник Украины за 2012 год [Электронный ресурс] / под ред. О.Г. Осауленко. Киев: Государственная служба статистики Украины, 2013. 552 с. Режим доступа: http://www.ukrstat.gov.ua.
- 10. Статистический ежегодник Украины за 2013 год [Электронный ресурс] / под ред. О.Г. Осауленко. Киев: Государственная служба статистики Украины, 2014. 533 с. Режим доступа: http://www.ukrstat.gov.ua.
- 11. Разработка методики расчёта и проведения оценки выбросов метана угольных шахт: Отчёт о научно-исследовательской работе. МакНИИ. 2012.
- 12. Разработка методики расчёта и прогнозирования объёмов выбросов парниковых газов на металлургических предприятиях Украины: Отчёт о научно-исследовательской работе (заключительный) / [Сталинский Д.В., Ботштейн В.А., Мантула В.Д. и др.]. ГП «УкрНТЦ «Энергосталь». Киев, 2013. 242 с.
- 13. Разработка методики расчёта и определения выбросов парниковых газов в отдельных категориях химической промышленности с построением определённого временного ряда: Отчёт о научно-исследовательской работе (заключительный) / [Гоженко А.И., Мальгота А.А., Тимофеева С.В. и др.]; под рук. А.И. Гоженка. Государственное предприятие «Украинский НИИ медицины транспорта» МОЗ Украины. Одесса, 2013. 210 с.
 - 14. Steel Statistical Yearbook 2011. World steel association, 2011.
- 15. Методологические основы и объяснения к позициям Классификации видов экономической деятельности [Электронный ресурс] / [Бугакова К., Варнидис А., Грищина В. и др.]. Киев, 2012. 49 с.: Режим доступа: http://www.ukrstat.gov.ua.
 - 16. Керівництво з проектування вентиляції вугільних шахт. Київ, 1994. 311 с.
- 17. Triplett J., Filippov A., Paisarenko A. Inventory of methane emissions from coal mines in Ukraine: 1990-2001. Partnership for Energy and Environmental Reform, 2002.
- 18. Разработка кадастра выбросов газов, которые вызывают парниковый эффект в энергетическом секторе в Украине в период 1991-1998: Отчёт про научно-исследовательскую работу (заключительный) / [Кулик М.Н., Костюковский Б.А., Линецкий Й.К. и др.]; под рук. Б.А. Костюковского. Институт общей энергетики НАН Украины. Киев, 1999. 43 с.
- 19. ГОСТ 22667-82. Газы горючие природные. Расчетный метод определения теплоты сгорания, относительной плотности и числа Воббе.
 - 20. ГОСТ 2939-63. Газы. Условия для определения объема.
- 21. Calculations of greenhouse gas emissions from coal combustion in thermal power plants of Ukraine for 1990 2015: Technical Assistance Report on research work (final) / [M. Chernyavskyi, I. Volchyn, D. Bondzik, T. Monastiryova, O. Moiseenko and etc.]; by head of M. Chernyavskyi. Coal Energy Technology Institute of NASU. Kiev, 2017. 56 pp.
- 22. Chernyavskiy M. Modern problems of fuel supply and fuel consumption at TPPs in Ukraine // Energy technologies and Resource Saving. 2015. №3. P. 5-19.
- 23. EMEP/EEA air pollutant emission inventory guidebook 2013. Technical guidance to prepare national emission inventories. EEA Technical report No 12/2013.
- 24. Предложения о расчете выбросов парниковых газов в газовой промышленности Украины за подписью Загороднего А. Г., вице-президента Национальной академии наук Укра-ины, члена Президиума НАН Украины, академика, доктора физико-математических наук. Письмо Национальной академии наук Украины от 03.04.2014г. № 9п/594-9.
- 25. Предложения об оценке утечек природного газа в газовой промышленности Украины за подписью Костюковского Б. А., научного директора Бюро комплексного анализа и прогнозов, кандидата технических наук, старшего научного сотрудника. Письмо Бюро комплексного анализа и прогнозов от 20.03.2014 № 1/1/2.
- 26. Отчет о научно-исследовательской работе "Подготовка предложений и рекомендаций по учёту выбросов и поглощений парниковых газов на территориях с особенным статусом (4 административные единицы) по секторам МГЕИК" (конфиденциально).
- 27. Capacity building of the national GHG inventory system in terms of the development of methodological recommendations for determining national GHG emission factors from the use of

motor fuels in the transport sector: – Clima East project report. Tim Murrells, Sabino Del Vento, Ross Hunter, Alexey Klimenko, Bogdan Kochirko / Ricardo Energy & Environment (United Kingdom), State Enterprise State Road Transport Research Institute (Ukraine), MASMA (Ukraine), 54 pp.

- 28. Chernyavskiy M.V., Provalov O.Yu., Beztsenniy I.V. Features of the fuel supply at thermal power plants and CHPs in Ukraine in modern conditions. Development and implementation of the methods of pulverized combustion of non-project fuels and fuel mixtures // 12-th Intern. scient.pract. conf. «Coal power generation: the ways of reconstruction and development»: Collection of papers. Kyiv: CETI of NAS of Ukraine, 2016. P. 84-88.
- 29. Статистический ежегодник Украины за 2015 год [Электронный ресурс] / под ред. И.М. Жук. Киев: Государственная служба статистики Украины, 2016. 575 с. Режим доступа: http://www.ukrstat.gov.ua.
- 30. Статистический ежегодник Украины за 2016 год [Электронный ресурс] / под ред. И.М. Жук. Киев: Государственная служба статистики Украины, 2017. 579 с. Режим доступа: http://www.ukrstat.gov.ua.
- 31. Статистический ежегодник Украины за 2017 год [Электронный ресурс] / под ред. И.Є. Вернер. Киев: Государственная служба статистики Украины, 2017. 541 с. Режим доступа: http://www.ukrstat.gov.ua.
- 32. Статистический ежегодник Украины за 2018 год [Электронный ресурс] / под ред. И.Є. Вернер. Киев: Государственная служба статистики Украины, 2018. 482 с. Режим доступа: http://www.ukrstat.gov.ua

Chapter 4, Annex 3.1

- 1. МГЭИК 2006, Руководящие принципы национальных инвентаризаций парниковых газов. МГЭИК, 2006 г., Подготовлено Программой МГЭИК по национальным кадастрам парниковых газов, Игглестон Х.С., Буэндиа Л., Мива К., Нгара Т. и Танабе К. (редакторы). Опубликовано: ИГЕС, Япония.
- Звіт про виробництво та реалізацію промислової продукції (Форма № 1П НПП).
 Державна служба статистики України. Київ. 2016р.
- 3. Inventory of U.S. Greenhouse Emissions and Sinks: 1990-2003. Washington, DC. 2005.
- 4. Руководящие указания по эффективной практике и учету факторов неопределенности в национальных кадастрах парниковых газов. 2000 г.
- 5. Пересмотренные руководящие принципы национальных инвентаризаций парниковых газов, МГЭИК, 1996: Рабочая книга.
 - 6. EMEP/EEA emission inventory guidebook 2013. Guidebook 2013.
- 7. Разработка методики расчета и определение выбросов гидрофторуглеродов, перфторуглеродов и гексафторида серы: Отчёт о научно-исследовательской работе (заключительный) / [Гоженко А.И., Мальгота А.А., Тимофеева С.В. и др.]; под рук. А.И. Гоженка. Государственное предприятие «Украинский НИИ медицины транспорта» МОЗ Украины. Одесса, 2013. 210 с.
- 8. Отчет о научно-исследовательской работе «Разработка методики расчета и определение выбросов углекислого газа при использовании известняка и доломита». УкрГНТЦ «Энергосталь». г. Харьков. $2012~\Gamma$.
- 9. Отчет о научно-исследовательской работе «Разработка методических рекомендаций по определению коэффициентов выбросов путем уточнения данных о составе восстановителей, используемых при производстве ферросплавов, а также содержания углерода в руде, шлакообразующих материалах и отходах». ГУ «Государственная экологическая академия последипломного образования та управления». г.Киев. 2013 г.
- 10. Разработка методики расчёта и прогнозирования объёмов выбросов парниковых газов на металлургических предприятиях Украины: Отчёт о научно-исследовательской работе (заключительный) / [Сталинский Д.В., Ботштейн В.А., Мантула В.Д. и др.]. ГП «УкрНТЦ «Энергосталь». Киев, 2013. 242 с.

- 11. Report of the individual review of the annual submission of Ukraine submitted in 2013. FCCC/ARR/2013/UKR. 28 November 2013.
- 12. Отчет о научно-исследовательской работе: «Разработка методики расчета и определения выбросов парниковых газов в химической промышленности с построением определенного временного ряда».- Государственное предприятие «Украинский НИИ медицины транспорта» МОЗ Украины.
- 13. Отчет о научно-исследовательской работе «Разработка методики расчета и определение выбросов гидрофторуглеродов, перфторуглеродов и гексафторида серы».- Государственного предприятия «Черкасский научно-исследовательский институт технико-экономической информации в химической промышленности» (НИИТЭХИМ). Черкассы.-2012г.
- 14. Отчет о научно-исследовательской работе «Разработка методики расчета и определение выбросов углекислого газа при производстве чугуна и стали». УкрГНТЦ «Энергосталь». г.Харьков. 2012 г.
- 15. Отчет о научно-исследовательской работе «Разработка методики расчета и определения выбросов парниковых газов при использовании красок и лаков» / Якубовский В. В. [и др.]. УДК 504.3.054; 504.3.06, № госрегистрации 0113U00464. Киев, 2013. 141 с.
- 16. Сборник методик по расчету выбросов в атмосферу загрязняющих веществ различными производствами. Ленинград; Гидрометеоиздат, 1986.
- 17. Статистичний щорічник України за 2008 рік. //Під ред. О.Г. Осауленка Київ: Державний комітет статистики України, 2009. 571 с.
- 18. Национальный доклад о кадастре антропогенных выбросов из источников и абсорбции поглотителями парниковых газов в Белоруссии для 2003 г. 2005г. Минск.
- 19. Отчет о научно-исследовательской работе: «Разработка методологических рекомендаций касательно определения показателей применения закиси азота в медицинских целях».- Государственное предприятие «Украинский НИИ медицины транспорта» МОЗ Украины.
- 20. Отчет о научно-исследовательской работе "Подготовка предложений и рекомендаций по учёту выбросов и поглощений парниковых газов на территориях с особенным статусом (4 административные единицы) по секторам МГЕИК" (конфиденциально).
- 21. Звіт про використання та запаси палива (Форма № 4 МТП). Державна служба статистики України. Київ. 2016р.
 - 22. Questionnaries IEA. International Energy Agency (IEA) 2016.
- 23. Обсяги експорту та імпорту товарів. Державна служба статистики України. Київ. 2016р.
- 24. Cherkassy NIITECHIM expert assessment for life time of the domestic refrigeration equipment. Державне підприємство «Черкаський державний науково-дослідний інститут техніко-економічної інформації в хімічній промисловості». Черкаси. 2017р.

Chapter 5, Annex 3.2

- 1. IPCC 2006, 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Prepared by the National Greenhouse Gas Inventories Programme, Eggleston H.S., Buendia L., Miwa K., Ngara T. and Tanabe K. (eds). Published: IGES, Japan (https://www.ipcc-nggip.iges.or.jp/public/2006gl/vol4.html).
- 2. НДР "Підготовка пропозицій і рекомендацій щодо урахування викидів і поглинання парникових газів на територіях з особливим статусом" (confidential).
- 3. Підпала Т.В. Скотарство і технологія виробництва молока і яловичини: навч. посібник / Т.В. Підпала. Миколаїв: видавничий відділ МДАУ, 2007. 369 с.
- 4. Костенко В.І. Технологія виробництва молока і яловичини. Практикум: навч. посібник / В.І. Костенко. К.: Центр учбової літератури, 2013. 400 с.
- 5. Угнівенко А.М. Спеціалізоване м'ясне скотарство: навч. видання / А.М. Угнівенко, В.І. Костенко, Ю.І. Чернявський. К.: Вища освіта, 2006. 303 с.

- 6. Вівчарство України: монографія / [В.М. Іовенко, П.І. Польська, О.Г. Антонець та ін.]; за ред. акад. УААН В.П. Бурката. Нац. наук. селекц.-генет. центр з вівчарства. К.: Аграрна наука, 2006. 614 с.
- 7. Штомпель М.В. Технологія виробництва продукції вівчарства: навч. видання / М.В. Штомпель, Б.О. Вовченко. К.: Вища освіта, 2005. 343 с.
- 8. Основи тваринництва і ветеринарної медицини: монография / [А.І. Вертійчук, М.І. Маценко, І.Л. Плуженко та ін.]; за ред. А.І. Вертійчука. К.: Урожай, 2004. 654 с.
- 9. Відомчі норми технологічного проєктування. Вівчарські та козівничі підприємства. ВНТП–АПК–03.05. Міністерство аграрної політики України. К., 2005 87 с.
- 10. Statistical yearbook: Animal Production of Ukraine (http://www.ukrstat.gov.ua/druk/publicat/Arhiv_u/07/Arch_tvar_zb.htm).
- 11. Відомчі норми технологічного проектування. Скотарські підприємства (комплекси, ферми, малі ферми). ВНТП–АПК–01.05. Міністерство аграрної політики України. К., 2005 111 с.
- 12. Розробка методики розрахунку та визначення викидів метану та закису азоту від прибирання, зберігання та використання гною тварин та птиці: Заключний звіт про виконання ІІ (другого) етапу науково-дослідної роботи. ІТІ "Біотехніка" НААН Одеса, 2013. 227 с.
- 13. Statistical bulletin: The status of livestock in Ukraine (http://www.ukrstat.gov.ua/druk/publicat/Arhiv_u/07/Arch_st_bl.htm).
- 14. Відомчі норми технологічного проектування. Свинарські підприємства (комплекси, ферми, малі ферми). ВНТП–АПК–02.05. Міністерство аграрної політики України. К., 2005 98 с.
- 15. Відомчі норми технологічного проектування. Підприємства птахівництва. ВНТП– АПК–04.05. Міністерство аграрної політики України. К., 2005 90 с.
- 16. Відомчі норми технологічного проектування. Системи видалення, обробки, підготовки та використання гною. ВНТП-АПК-09.06. Міністерство аграрної політики України. К., 2006-100 с.
- 17. Довідник по удобренню сільськогосподарських культур / [П.О. Дмитренко, М.Л. Колобова, Б.С. Носко та ін.]; за ред. П.О. Дмитренка. 4-е вид., перероб. і доп. К.: Урожай, 1987. 208 с.
- 18. Типовые рационы для крупного рогатого скота, свиней и овец по зонам страны М.: Колос, 1971. 487 с.
- 19. Агрохімія / [І.М. Карасюк, О.М. Геркіял, Г.М. Господаренко та ін.]; за ред. проф. І.М. Карасюка. К.: Вища школа, 1995. 471 с.
- 20. Господаренко Г.М. Агрохімія: підручник / Г.М. Господаренко. К.: Аграрна освіта, 2013.-406 с.
- 21. Мороз В.А. Овцеводство и козоводство / В.А. Мороз. Ставрополь: Ставропольское кн. изд-во, $2002.-453~\rm c.$
- 22. EMEP/EEA air pollutant emission inventory guidebook 2013. Technical guidance to prepare national emission inventories. EEA Technical report No 12/2013.
- 23. Розробка методики розрахунку та визначення викидів закису азоту від сільськогосподарських грунтів: Заключний звіт про виконання ІІ (другого) етапу науководослідної роботи. ІТІ «Біотехніка» НААН Одеса, 2013. 169 с.
- 24. Statistical bulletin: The application of synthetic and organic fertilizers for harvest of agricultural crops (http://www.ukrstat.gov.ua/druk/publicat/Arhiv_u/07/Arch_mod_bl.htm).
- 25. Левин Ф.И. Количество растительных остатков в посевах полевых культур и его определение по урожаю основной продукции / Ф.И. Левин // Агрохимия. − 1977. − №8. − С. 36-42.
- 26. Statistical bulletin: The area, gross harvesting and yields of crops, fruits, berries and grapes (http://www.ukrstat.gov.ua/druk/publicat/Arhiv_u/07/Arch_zy_bl.htm).
- 27. Луговодство и пастбищное хозяйство / [И.В. Ларин, А.Ф. Иванов, П.П. Бегучев и др.] 2-е изд., перераб. и доп. Л.: Агропромиздат. Ленингр. отд-ние, 1990. 600 с.
- 28. Атлас почв Украинской ССР / [Н.М. Бреус, В.Л. Дусановский, В.А. Джамаль и др.]; под ред. Н.К. Крупского, Н.И. Полупана. К.: Урожай, 1979. 156 с.

- 29. Довідник з агрохімічного та агроєкологічного стану грунтів України / За редакцією Б.С. Носка, Б.С. Прістера, М.В. Лободи. К.: Урожай, 1994. 332 с.
- 30. Левин Ф.И. Вопросы окультуривания, деградации и повышения плодородия пахотных почв / Ф.И. Левин. М.: МГУ, 1983. 93 с.
- 31. Рослинництво: Підручник / О.І. Зінченко, В.Н. Салатенко, М.А. Білоножко; за ред. О.І. Зінченка. К.: Аграрна освіта, 2001. 591 с.
- 32. Лихочвор В.В. Рослинництво. Технології вирощування сільськогосподарських культур / В.В. Лихочвор. Львів: НВФ "Українські технології", 2002. 800 с.
- 33. Екологічні основи використання добрив / [Е.Г. Дегодюк, В.Т. Мамонтов, В.І. Гамалей та ін.]; за ред. Е.Г. Дегодюка. К.: Урожай, 1988. 232 с.
- 34. Методичні рекомендації щодо проведення розрахунків витрат кормів худобі та птиці у господарствах усіх категорій. Затверджено Наказом Державного комітету статистики України від 24.01.2008 №18.
- 35. Методика проведення розрахунків основних статистичних показників виробництва продукції тваринництва. Затверджено Наказом Державної служби статистики України від 22.11.2016 №220 (http://www.ukrstat.gov.ua/metod_polog/metod_doc/2016/220/m_prosp_vpt.zip).
- 36. IPCC 2014, 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands, Hiraishi, T., Krug, T., Tanabe, K., Srivastava, N., Baasansuren, J., Fukuda, M. and Troxler, T.G. (eds). Published: IPCC, Switzerland (https://www.ipcc-nggip.iges.or.jp/public/wetlands/index.html).

Chapters 6, 11, Annex 3.3

- 1. 2006 IPCC Guidelines for National Greenhouse Gas Inventories/ Eggleston H.S., Buendia L., Miwa K., Ngara T. and Tanabe K. (eds). Published: IGES, Japan.
- 2. Інструкція із заповнення форми адміністративної звітності з кількісного обліку земель (форма № 16-зем (річна)): затверджено наказом Міністерства регіонального розвитку, будівництва та житлово-комунального господарства України № 337 від 30.12.2015р.
- 3. Звіт про науково-дослідну роботу "Підготовка пропозицій і рекомендацій щодо урахування викидів і поглинання парникових газів на територіях з особливим статусом" (confidential).
- 4. Ходорчук В.Я. Визначення змін запасів вуглецю для категорії землекористування «Ліси» у резервуарах біомаси (живої і відмерлої), підстилки та грунтів у розрізі природно-кліматичних зон: Звіт про науково-дослідну роботу / ІТІ «Біотехніка», Київ, 2012.
- 5. Global Forest Resources Assessment 2015 Ukraine Country Report. URL: http://www.fao.org/documents/card/en/c/7d1e01d6-9d2e-4909-bb34-4657c6304a9a/
- 6. Harmonized World Soil Database v 1.2, IIASA. URL: http://webarchive.iiasa.ac.at/Research/LUC/External-World-soil-database/HTML/index.html
- 7. Кодекс України про адміністративні правопорушення. Введено в дію Постановою Верховної Ради Української РСР № 8074-10 від 07.12.84, ВВР 1984, додаток до № 51, ст.1123.
- 8. EMEP/EEA air pollutant emission inventory guidebook 2013. Technical guidance to prepare national emission inventories. EEA Technical report No 12/2013.
- 9. «Розроблення методик поглинання парникових газів»: Звіт про науково-дослідну роботу/ Букша І.Ф. та ін.; ТОВ «Ліс-Інформ», Харків. – 2007 р.
- 10. Букша І.Ф., Пастернак В.П. Інвентаризація та моніторинг парникових газів у лісовому господарстві. Харків: ХНАУ. 2005. 125 с.
- 11. 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands / Hiraishi, T., Krug, T., Tanabe, K., Srivastava, N., Baasansuren, J., Fukuda, M. and Troxler, T.G. (eds). Published: IPCC, Switzerland, 2014.
- 12. 2013 Revised Supplementary Methods and Good Practice Guidance Arising from the Kyoto Protocol/ Hiraishi, T., Krug, T., Tanabe, K., Srivastava, N., Baasansuren, J., Fukuda, M. and Troxler, T.G. (eds) Published: IPCC, Switzerland, 2014.

- 13. Лісовий кодекс України: Постанова ВР № 3853-XII від 21.01.94, ВВР, 1994, № 17, ст.100.
- 14. Державна цільова програма «Ліси України» на 2010-2015 роки: Постанова Кабінету Міністрів України від 16 вересня 2009 р. №977.
- 15. «Створення і підтримка бази даних площ та характеристика видів діяльності з лісорозведення та знеліснення та управління лісовим господарством»: Звіт про науково-дослідну роботу / Шворак А та ін. ТОВ «ІМАТЕК-ЕКСПО», Київ. 2013.
- 16. Ukraine's Initial Report Under Article 7, Paragraph 4 of the Kyoto Protocol, 2006. URL: https://unfccc.int/files/national_reports/initial_reports_under_the_kyoto_protocol/application/pdf/ukraine_aa_report.pdf
- 17. Правила відтворення лісів: Постанова Кабінету Міністрів України від 1 березня 2007 р. N 303.
- 18. Державний облік лісів України підсумки та прогнози. Лесной и охотничий журнал №2, 2012.
- 19. Васькевич М.С. Особливості створення та структура банку даних «Лісовий фонд України» / Науковий вісник Національного університету біоресурсів і природокористування України, 2010. Вип. 147.
- 20. Концептуальна програма розвитку лісовпорядкування на період до 2015 року: наказ Держлісагентства №60 від 30.03.2011 р.
- 21. Правила рубок головного користування: Наказ Державного комітету лісового господарства України від 23.12.2009 N 364.
- 22. Л. Ременік, Ю. Безнощенко, О. Микитюк. «Розроблення методів ідентифікації ділянок з лісорозведення та лісовідновлення на базі геоінформаційних систем та передових вимірювальних технологій»: Звіт про науково-дослідну роботу / ТОВ «ІМАТЕК-ЕКСПО», Київ. 2013.
- 23. Інвентаризація парникових газів у секторі землекористування та лісового господарства / Букша І.Ф., Бутрим О.В., Пастернак В.П. Харків: ХНАУ, 2008. 232 с.
- 24. Запаси та динаміка відмерлої деревини у лісах північного сходу України / В.П. Пастернак, В.Ю. Яроцький. Науковий вісник Національного університету біоресурсів і природокористування України. 2010. Вип. 152 Ч.2. С.93-100.
- 25. Букша І.Ф. Запаси органічного вуглецю у грунтах та підстилці на ділянках моніторингу лісів / І.Ф. Букша, С.П. Распопіна, В.П. Пастернак. Лісівництво та агролісомеліорація. 2012. Вип. 120. С.106-112.
- 26. Тараріко О.Г., Лобас М.Г. Нормативи ґрунтозахисних контурно-меліоративних систем землеробства. К.: Урожай, 1998. 158 с.
- 27. Тараріко Ю.О. Розробка ґрунтозахисних ресурсо- та енергозберігаючих систем ведення сільськогосподарського виробництва з використанням комп'ютерного програмного комплексу. Київ, Нора-Друк, 2002. 122 с.
- 28. Якість грунтів та сучасні стратегії удобрення / За ред.. Д. Мельничука, Дж. Гофман, М. Городнього. К.: Аристей, 2004. 488 с.
- 29. Красєха Є.Н., Оніщук В.П. Деградація чорноземів південного заходу України. Матер. Наук. Конф. «Стан земельних ресурсів в Україні: проблеми, шляхи вирішення». Київ, 2001. С. 60 -63.
- 30. Пономарева В.В., Плотникова Т.А. Методические указания по определению содержания и состава гумуса в почвах (минеральных и торфяных). Л.: Наука, 1975. 106 с.
- 31. А.М Лыков. К методике расчетного определения гумусового баланса почвы в интенсивном земледелии. Известия ТСХА, вып. 6, 1979 г. С. 14-19.
- 32. Рекомендации для исследования баланса и трансформации органического вещества при сельскохозяйственном использовании и интенсивном окультуривании почв / под ред. Шишов Л.Л., М., 1984.
- 33. Ф.И. Левин. Вопросы окультуривания, деградации и повышения плодородия пахотных почв., Москва: МГУ, 1983, 95 с.

- 34. Чесняк Г.Я. Закономірності змін вмісту гумусу і шляхи забезпечення його бездефіцитного балансу в чорноземах типових при інтенсифікації землеробства. Агрохімія і грунтознавство: Респ. міжвід. зб.. УНДІЗ. Київ, 1982. Вип. 43. С. 18-24.
- 35. И.Г.Захарченко, Г.К.Медведь. Баланс азота, фосфора и калия в зерно-свекловичном севообороте. Агрохимия, 1968, №5. С. 73-81.
- 36. Б.Н. Макаров. Потери азота из почвы в газообразной форме. В сб.: «Баланс азота в дерново-подзолистых почвах». М., 1966.
- 37. Oksana Butrym. Application of IPCC Good Practice Guidance to LULUCF Sector of Ukraine lessons learned. Technical meeting on specific forestry issues related to reporting and accounting under the Kyoto Protocol, Ispra, November 27-29, 2006.
- 38. Oksana Butrym. Application of IPCC Good Practice Guidance to LULUCF Sector of Ukraine lessons learned. Current State and Future Development of GHG Inventory System and GHG Registry in Russia, Moscow, 2006.
- 39. Бутрим О.В. Методика оцінки викидів і поглинання парникових газів при землекористуванні. Вісник аграрної науки. 2008. № 11. С. 51-54.
- 40. Ф.И. Левин. Количество растительных остатков в посевах полевых культур и его определение по урожаю основной продукции. Агрохимия, №8, 1977г. С. 36-42.
- 41. Екологічні основи використання добрив/ Е.Г. Дегодюк, В.Т. Мамонтов, В.І. Гамалей та ін.; За ред. Е.Г. Дегодюка. К.: Урожай, 1988. 232 с.
- 42. Прістер Б.С., Носко Б.С. Довідник з агрохімічного та агроекологічного стану грунтів. Київ, Урожай, 1994. 336 с.
- 43. Атлас почв Украинской УССР/ под ред Н.К Крупского, Н.И Полупана. Киев: Урожай, 1979. 156 с.
- 44. Характеристика сельскохозяйственных угодий по механическому составу почв и признакам, влияющим на плодородие (приложение №6 к форме №22, 22«а», 22«б») по состоянию на 1.11.90 г./ Министерство сельского хозяйства УССР, Киев 1991 г.
- 45. Правила рубок головного користування в гірських лісах Карпат: Постанова Кабінету Міністрів України № 929 від 22 жовтня 2008 р.
- 46. Санітарні правила в лісах України: Постанова Кабінету Міністрів України від 27 липня 1995 р. N 555 (в редакції Постанови КМУ від 26 жовтня 2016 р. N 756).

Chapter 7, Annex 3.4

- 1. 2006 IPCC Guidelines for National Greenhouse Gas Inventories: 5 Volumes / [TFI IPCC]; edited by H.S. Eggleston, L. Buendia, K. Miwa, T. Ngara, K. Tanabe Hayama: IGES, 2006. Vol. 5: Waste / [R. Pipatti and S.M. Manso Vieira]; edited by D. Kruger, K. Parikh. 2006. ISBN 4887880324.
- 2. Исследование газообразования на наиболее крупных полигонах ТБО и переход на трехкомпонентную национальную модель расчетов выбросов ПГ от свалок ТБО в Украине [Текст]: отчет о НИР (заключ.) / Институт технической теплофизики НАН Украины; рук. Матвеев Ю.Б.; исполн.: Клименко В.М. [и др.]: К., 2012 − 82 с. − Библиогр.: 72-76. № ГР 0112U001577.
- 3. Шмарин С. Содержание биоразлагаемых компонентов в составе твердых бытовых отходов в Украине / Шмарин Сергей, Алексеевец Иван, Филозоф Роман, Ремез Наталья, Денафас Гинтарас // Экология и промышленность. 2014. №1. С. 73 77.
- 4. J. Burlakovs, M. Kriipsalu, D. Arina, F. Kaczala, S. Shmarin, G. Denafas, W. Hogland. Former Dump Sites and the Landfill Mining Perspectives in Baltic Countries and Sweden: the Status. 13th SGEM GeoConference on Science and Technologies In Geology, Exploration and Mining, www.sgem.org, SGEM2013 Conference Proceedings, ISBN 978-954-91818-7-6 / ISSN 1314-2704, June 16-22, 2013, Vol. 1, 485 492 pp.
- 5. World Population Prospects: The 2004 Revision and World Urbanization / [DESA of UN Secretariat]. New York: UN, 2005. 324 p.
- 6. Бабаянц Р.А. Методика и результаты исследования городских отбросов / Бабаянц Р.А. –[2-е изд.]. М-Л.: Изд. Мин. Ком. Хоз, РСФСР, 1950. 116 с.

- 7. Санитарная очистка городов: сбор. удаление, обезвреживание и использование твердых отходов / [З.А. Арзамасова, З.И. Александровская, Н.Ф. Гуляев и др.]; под. ред. к.т.н. Н.Ф. Гуляева. М.: Изд. Литературы по строительству, 1966. 220 с.
- 8. Санитарная очистка городов от твердых бытовых отходов / [З.И. Александровская, А.М. Кузьменкова, Н.Ф. Гуляев, Я.Н. Крхамбаров]; под. ред. З.И. Александровской. М.: Стройиздат, 1977. 320 с.
- 9. Санитарная очистка и уборка населенных мест: справочник / под. ред. А.Н. Мирного. М.: Стройиздат, 1985. 245 с.
- 10. Санитарная очистка и уборка населенных мест: справочник / под. ред. А.Н. Мирного. [2-е изд. перераб и доп.]. М.: Стройиздат, 1990. 413 с.
- 11. Рекомендованные нормы накопления твердых бытовых отходов для населенных пунктов Украины: КТМ 204 Украины 012-95. [действующие от 01-01-1996]. Х.: Укркоммун- НДИпрогресс, 1995. 5 с. (Руководящий технический материал).
- 12. Стан сфери поводження з побутовими відходами в Україні за 2018 рік. (14.03.2019). http://www.minregion.gov.ua/napryamki-diyalnosti/zhkh/terretory/stan-sferi-povodzhennya-z-pobutovimi-vidhodami-v-ukrayini-za-2018-rik/
- 13. Інформація щодо впровадження сучасних методів та технологій у сфері поводження з побутовими відходами (30.09.2019). http://www.minregion.gov.ua/napryamki-diyal-nosti/zhkh/terretory/informatsiya-shhodo-vprovadzhennya-suchasnih-metodiv-ta-tehnologiy-u-sferi-povodzhennya-z-pobutovimi-vidhodami-4/
- 14. Національна комісія, що здійснює державне регулювання у сферах енергетики та комунальних послуг (НКРЕКП). http://www.nerc.gov.ua/?id=31521
- 15. Про схвалення Національної стратегії управління відходами в Україні до 2030 року. Кабінет Міністрів України. Розпорядження від 8 листопада 2017 р. № 820-р., Київ. https://zakon.rada.gov.ua/laws/show/820-2017-p
- 16. Шмарин С. Исследование содержания биоразлагаемого углерода в пищевых отходах Украины в городе Борисполе / Шмарин Сергей // Научно-практический журнал «Экологические науки». -2015. -№ 3-4 (10-11). C. 296-306.
- 17. Арзамасова 3. Вопросы методики исследования свойств твердых отбросов / 3. Арзамасова, А. Кузьменкова, С. Шустрова // Санитарная очистка городов от твердых бытовых отходов. М.: Стройиздат, 1964. С. 83-88.
- 18. Шмарин С. Анализ инвентаризации парниковых газов с мест захоронения твердых бытовых отходов в Украине / Шмарин Сергей, Тимощук Александр, Ремез Наталья // Вестник НТУУ «КПИ», серия «Горное дело». -2014. № 25. С. 165-170.
- 19. С. Шмарин. Тенденции внедрения систем утилизации свалочного газа на полигонах твердых бытовых отходов в Украины / Шмарин Сергей, Ремез Наталья // Тезисы докладов VIII международной научно-практической конференции «Энергетика. Экология. Человек». НТУУ «КПИ». Киев. 2016. С. 29-31.
- 20. Beck-Friis, B.G. (2001). *Emissions of ammonia, nitrous oxide and methane during composting of organic household waste*. Uppsala: Swedish University of Agricultural Sciences. 331 p. (Doctoral Thesis).
- 21. Detzel, A., Vogt, R., Fehrenbach, H., Knappe, F. and Gromke, U. (2003). *Anpassung der deutschen Methodik zur rechnerischen Emissionsermittlung und internationale Richtlinien: Teilbericht Abfall/Abwasser*. IFEU Institut Öko-Institut e.V. 77 p.
- 22. Arnold, M. (2005). Espoo: VTT Processes: Unpublished material from measurements from biowaste composts. (Personal communication).
- 23. Petersen, S.O., Lind, A.M. and sommer, S.G. (1998). 'Nitrogen and organic matter losses during storage of cattle and pig manure', *J. Agric. Sci.*, 130: 69-79.
- 24. Исследование выбросов метана и закиси азота при обработке сточных вод и разработка методики определения национальных коэффициентов выбросов [Текст]: отчет о НИР (заключ.) / Институт технической теплофизики НАН Украины; рук. Матвеев Ю.Б.; исполн.: Гелетуха Г.Г. [и др.]: К., 2012 91 с. Библиогр.: с. 84-85. № ГР 0112U001578.

- 25. Укрупненные нормы водопотребления и водоотведения для различных отраслей промышленности / Совет Эконом. Взаимопомощи, ВНИИ ВОДГЕО Госстроя СССР. М.: Стройиздат, 1978. 590 с.
- 26. Водоотведение и очистка сточных вод / Ю.В. Воронов, С.В. Яковлев // Учебник для вузов: М.: Изд. Ассоциации строительных вузов, 2006 704 с.
- 27. Approved consolidated baseline and monitoring methodology ACM0014 "Mitigation of greenhouse gas emissions from treatment of industrial wastewater" (Version 04.1.0, valid from 13 Aug 10).
- 28. СанПиН 4630-88. Санитарные правила и нормы охраны поверхностных вод от загрязнения / Утв. Зам. Министра здравоохранения СССР, гл. гос. сан. врач СССР А.И. Кондрусев от 04.07.1988 г. № 4630-88 (с изменениями от 21.10.1991 г.)
- 29. Отчет о научно-исследовательской работе "Подготовка предложений и рекомендаций по учёту выбросов и поглощений парниковых газов на территориях с особенным статусом (4 административные единицы) по секторам МГЕИК" (конфиденциально).

ANNEX 1 KEY CATEGORIES

Identification of key categories makes possible to identify the categories that require more detailed study, which allows to comprehensively use available resources. Their determination was performed using the methods described in the 2006 IPCC Guidelines. Detailed categories specialization, that reported in Table A1.1, used for key categories estimation according to 2006 IPCC Guidelines methodology.

Results of the analysis of key categories in base year and last reported year are shown in Tables A1.2 – A1.7. The analysis was based on Tier 1 approach and included emission analysis for base year (Tables A1.2 – A1.3), and analysis of emission trends for report year (Tables A1.4 – A1.7). It should be noted that the emission level and trend analysis was performed in two steps. At the first step of the analysis, key categories were defined not taking into account the LULUCF sector in the general list of categories. The second step took into account categories of the LULUCF sector. After that, the categories that were included into key categories at the first step but were "pushed out" in the second step were included into the final list of key categories.

Table A1.1. Category specialization for key categories estimation

	IPCC source category	Gas
1.A.1	Fuel combustion - Energy industries - Liquid fuels	CO_2
1.A.1	Fuel combustion - Energy industries - Liquid fuels	CH ₄
1.A.1	Fuel combustion - Energy industries - Liquid fuels	N ₂ O
1.A.1	Fuel combustion - Energy industries - Solid fuels	CO_2
1.A.1	Fuel combustion - Energy industries - Solid fuels	CH ₄
1.A.1	Fuel combustion - Energy industries - Solid fuels	N ₂ O
1.A.1	Fuel combustion - Energy industries - Gaseous fuels	CO ₂
1.A.1	Fuel combustion - Energy industries - Gaseous fuels	CH ₄
1.A.1	Fuel combustion - Energy industries - Gaseous fuels	N ₂ O
1.A.1	Fuel combustion - Energy industries - Other fossil fuels	CO_2
1.A.1	Fuel combustion - Energy industries - Other fossil fuels	CH ₄
1.A.1	Fuel combustion - Energy industries - Other fossil fuels	N ₂ O
1.A.1	Fuel combustion - Energy industries - Peat	CO ₂
1.A.1	Fuel combustion - Energy industries - Peat	CH ₄
1.A.1	Fuel combustion - Energy industries - Peat	N ₂ O
1.A.1	Fuel combustion - Energy industries - Biomass	CH ₄
1.A.1	Fuel combustion - Energy industries - Biomass	N ₂ O
1.A.2	Fuel combustion - Manufacturing Industries and Construction - Liquid fuels	CO ₂
1.A.2	Fuel combustion - Manufacturing Industries and Construction - Liquid fuels	CH ₄
1.A.2	Fuel combustion - Manufacturing Industries and Construction - Liquid fuels	N ₂ O
1.A.2	Fuel combustion - Manufacturing Industries and Construction - Solid fuels	CO ₂
1.A.2	Fuel combustion - Manufacturing Industries and Construction - Solid fuels	CH ₄
1.A.2	Fuel combustion - Manufacturing Industries and Construction - Solid fuels	N ₂ O
1.A.2	Fuel combustion - Manufacturing Industries and Construction - Gaseous fuels	CO ₂
1.A.2	Fuel combustion - Manufacturing Industries and Construction - Gaseous fuels	CH ₄
1.A.2	Fuel combustion - Manufacturing Industries and Construction - Gaseous fuels	N ₂ O
1.A.2	Fuel combustion - Manufacturing Industries and Construction - Other fossil fuels	CO_2
1.A.2	Fuel combustion - Manufacturing Industries and Construction - Other fossil fuels	CH ₄
1.A.2	Fuel combustion - Manufacturing Industries and Construction - Other fossil fuels	N ₂ O
1.A.2	Fuel combustion - Manufacturing Industries and Construction - Peat	CO ₂
1.A.2	Fuel combustion - Manufacturing Industries and Construction - Peat	CH ₄
1.A.2	Fuel combustion - Manufacturing Industries and Construction - Peat	N ₂ O
1.A.2	Fuel combustion - Manufacturing Industries and Construction - Biomass	CH ₄
1.A.2	Fuel combustion - Manufacturing Industries and Construction - Biomass	N ₂ O
1.A.3.a	Civil Aviation	CO ₂
1.A.3.a	Civil Aviation	CH ₄
1.A.3.a	Civil Aviation	N ₂ O
1.A.3.b	Road Transportation	CO_2
1.A.3.b	Road Transportation	CH ₄
1.A.3.b	Road Transportation	N ₂ O

	IPCC source category	Gas
1.A.3.c	Railway Transport	CO ₂
1.A.3.c	Railway Transport	CH ₄
1.A.3.c	Railway Transport	N ₂ O
1.A.3.d	Water transport - Liquid fuels	CO_2
1.A.3.d	Water transport - Liquid fuels	CH ₄
1.A.3.d	Water transport - Liquid fuels	N ₂ O
1.A.3.e	Other types of transport	CO ₂
1.A.3.e	Other types of transport	CH ₄
1.A.3.e	Other types of transport	N ₂ O
1.A.4	Other sectors - Liquid fuels	CO_2
1.A.4	Other sectors - Liquid fuels	CH ₄
1.A.4	Other sectors - Liquid fuels	N ₂ O
1.A.4	Other sectors - Solid fuels	CO ₂
1.A.4	Other sectors - Solid fuels	CH ₄
1.A.4	Other sectors - Solid fuels	N ₂ O
1.A.4	Other sectors - Gaseous fuels	CO ₂
1.A.4	Other sectors - Gaseous fuels	CH ₄
1.A.4	Other sectors - Gaseous fuels	N ₂ O
1.A.4	Other sectors - Other Fossil Fuels	CO ₂
1.A.4	Other sectors - Other Fossil Fuels	CH ₄
1.A.4	Other sectors - Other Fossil Fuels	N ₂ O
1.A.4	Other Sectors - Peat	CO ₂
1.A.4	Other Sectors - Peat	CH ₄
1.A.4 1.A.4	Other Sectors - Peat Other Sectors - Biomass	N ₂ O CH ₄
1.A.4	Other Sectors - Biomass Other Sectors - Biomass	N ₂ O
1.A.4 1.A.5	Unspecified categories - Liquid fuels	CO ₂
1.A.5	Unspecified categories - Liquid fuels Unspecified categories - Liquid fuels	CH ₄
1.A.5	Unspecified categories - Liquid fuels Unspecified categories - Liquid fuels	N ₂ O
1.B.1	Fugitive emissions from Solid fuels	CO ₂
1.B.1	Fugitive emissions from Solid fuels	CH ₄
1.B.2.a	Fugitive emissions from Oil and natural gas - Oil	CO ₂
1.B.2.a	Fugitive emissions from Oil and natural gas - Oil	CH ₄
1.B.2.b	Fugitive emissions from Oil and natural gas - Natural gas	CO ₂
1.B.2.b	Fugitive emissions from Oil and natural gas - Natural gas	CH ₄
1.B.2.c	Fugitive emissions from Oil and natural gas - Ventilation and flaring	CO_2
1.B.2.c	Fugitive emissions from Oil and natural gas - Ventilation and flaring	CH ₄
1.B.2.c	Fugitive emissions from Oil and natural gas - Ventilation and flaring	N ₂ O
2.A.1	Cement Production	CO_2
2.A.2	Lime Production	CO_2
2.A.3	Glass Production	CO_2
2.A.4	Other processes using carbonates	CO ₂
2.B.1	Ammonia Production	CO ₂
2.B.2	Nitric Acid Production	N ₂ O
2.B.3	Adipic Acid Production	N ₂ O
2.B.4	Production of Caprolactam, Glyoxal, and Glyoxylic Acid	N ₂ O
2.B.5	Carbide Production	CO ₂
2.B.5	Carbide Production	CH ₄
2.B.6	Titanium Dioxide Production	CO ₂
2.B.7	Soda Ash Production	CO ₂
2.B.8	Petrochemical and Carbon Black Production	CO ₂
2.B.8	Petrochemical and Carbon Black Production	CH ₄
2.C.1	Iron and Steel production	CO_2
2.C.1	Iron and Steel production	CH ₄
2.C.2	Ferroalloys Production	CO_2
2.C.2	Ferroalloys Production	CH ₄
2.C.5	Lead production	CO ₂
2.C.6	Zinc production	CO ₂
2.D.1	Lubricant use	CO_2

	IPCC source category	Gas
2.D.2	Paraffin Wax use	CO ₂
2.F.1	Refrigeration and Air Conditioning Systems	HFC
2.F.2	Foam Blowing Agents	HFC
2.F.3	Fire Extinguishers/Gas Fire Extinguishing Systems	HFC
2.F.4	Aerosols	HFC
2.F.5	Solvents	HFC
2.G	Other Production and Use	SF ₆
2.G	Other Production and Use	N ₂ O
3.A	Enteric fermentation	CH ₄
3.B	Manure management	CH ₄
3.B	Manure management	N ₂ O
3.C	Rice Cultivation	CH ₄
3.D.1	Direct N ₂ O emissions from managed soils	N ₂ O
3.D.2	Indirect N ₂ O Emissions from managed soils	N ₂ O
3.G	Liming	CO ₂
3.H	Urea Application	CO_2
4.A.1	Forest Land remaining Forest Land	CO_2
4.A.2	Land converted to Forest Land	CO ₂
4.B.1	Cropland remaining Cropland	CO_2
4.B.2	Land Converted to Cropland	CO_2
4.C.1	Grassland remaining Grassland	CO ₂
4.C.2	Land Converted to Grassland	CO_2
4.D.1.1	Peat Extraction remaining Peat Extraction	CO ₂
4.D.2	Land Converted to Wetlands	CO ₂
4.E.2	Land Converted to Settlements	CO_2
4.F.2	Land Converted to Other Land	CO_2
4.G	Harvested Wood Products (HWP)	CO_2
4(II)	Emissions and removals from drainage and rewetting and other management of organic and mineral soils	N ₂ O
4(III)	Direct N ₂ O emissions from nitrogen mineralization/immobilization	N ₂ O
4(V)	Biomass Burning	CH ₄
4(V)	Biomass Burning	CO_2
4(V)	Biomass Burning	N ₂ O
5.A	Solid Waste disposal	CH ₄
5.B	Biological Treatment of Solid Waste	CH ₄
5.B	Biological Treatment of Solid Waste	N ₂ O
5.C	Incineration and open burning of waste	CO ₂
5.C	Incineration and open burning of waste	CH ₄
5.C	Incineration and open burning of waste	N ₂ O
5.D	Wastewater Treatment and Discharge	CH ₄
5.D	Wastewater Treatment and Discharge	N ₂ O

Table A1.2 Key categories analysis by level, excluding LULUCF, in 1990

IPCC source category	Gas	Emissions in 1990, kt CO ₂ -eq.	Share in total emissions in 1990	Cumulative total of Col- umn D
A	В	C	D	E
1.A.1 Fuel combustion - Energy Industries - Gaseous Fuels	CO ₂	121 545,98	0,129	0,13
1.A.1 Fuel combustion - Energy Industries - Solid Fuels	CO ₂	96 756,68	0,103	0,23
2.C.1 Iron and Steel Production	CO_2	79 689,69	0,085	0,32
1.B.1 Fugitive emissions from Solid Fuels	CH ₄	61 923,39	0,066	0,38
1.A.3.b Road Transportation	CO ₂	59 916,59	0,064	0,45
1.B.2.b Fugitive Emissions from Oil and Natural Gas - Natural Gas	CH ₄	58 071,11	0,062	0,51
1.A.1 Fuel combustion - Energy Industries - Liquid Fuels	CO ₂	53 148,53	0,056	0,56
1.A.4 Other Sectors - Solid Fuels	CO_2	48 177,92	0,051	0,62
1.A.2 Fuel combustion - Manufacturing Industries and Construction - Gaseous Fuels	CO ₂	48 058,63	0,051	0,67
1.A.3.e Other Transportation	CO_2	39 807,94	0,042	0,71
3.A Enteric Fermentation	CH ₄	39 311,34	0,042	0,75
1.A.2 Fuel combustion - Manufacturing Industries and Construction - Solid Fuels	CO ₂	33 008,26	0,035	0,79
1.A.2 Fuel combustion - Manufacturing Industries and Construction - Liquid Fuels	CO ₂	29 955,80	0,032	0,82
3.D.1 Direct N ₂ O Emissions From Managed Soils	N ₂ O	29 655,98	0,031	0,85
1.A.4 Other Sectors - Gaseous Fuels	CO ₂	26 458,72	0,028	0,88
1.A.4 Other Sectors - Liquid Fuels	CO_2	23 334,88	0,025	0,90
2.B.1 Ammonia Production	CO ₂	9 402,92	0,010	0,91
2.A.1 Cement Production	CO ₂	9 400,94	0,010	0,92
3.D.2 Indirect N ₂ O Emissions From Managed Soils	N ₂ O	8 022,20	0,009	0,93
5.A Solid Waste Disposal	CH ₄	6 534,85	0,007	0,94
2.B.2 Nitric Acid Production	N ₂ O	5 284,58	0,006	0,94
2.A.2 Lime Production	CO_2	5 121,81	0,005	0,95
1.B.2.a Fugitive Emissions from Oil and Natural Gas - Oil	CH ₄	3 883,15	0,004	0,95
Other				1,00

Table A1.3 Key categories analysis by level, including LULUCF, in 1990

IPCC source category	Gas	Emissions in 1990, kt CO ₂ -eq.	Share in total emissions in 1990	Cumulative total of Col- umn D
A	В	C	D	E
1.A.1 Fuel combustion - Energy Industries - Gaseous Fuels	CO ₂	121 545,98	0,118	0,12
1.A.1 Fuel combustion - Energy Industries - Solid Fuels	CO ₂	96 756,68	0,094	0,21
2.C.1 Iron and Steel Production	CO ₂	79 689,69	0,077	0,29
4.A.1 Forest Land Remaining Forest Land	CO ₂	-64 009,58	0,062	0,35
1.B.1 Fugitive emissions from Solid Fuels	CH ₄	61 923,39	0,060	0,41
1.A.3.b Road Transportation	CO ₂	59 916,59	0,058	0,47
1.B.2.b Fugitive Emissions from Oil and Natural Gas - Natural Gas	CH ₄	58 071,11	0,056	0,53
1.A.1 Fuel combustion - Energy Industries - Liquid Fuels	CO ₂	53 148,53	0,052	0,58
1.A.4 Other Sectors - Solid Fuels	CO ₂	48 177,92	0,047	0,63
1.A.2 Fuel combustion - Manufacturing Industries and Construction - Gaseous Fuels	CO ₂	48 058,63	0,047	0,67
1.A.3.e Other Transportation	CO ₂	39 807,94	0,039	0,71
3.A Enteric Fermentation	CH ₄	39 311,34	0,038	0,75
1.A.2 Fuel combustion - Manufacturing Industries and Construction - Solid Fuels	CO ₂	33 008,26	0,032	0,78
1.A.2 Fuel combustion - Manufacturing Industries and Construction - Liquid Fuels	CO ₂	29 955,80	0,029	0,81
3.D.1 Direct N ₂ O Emissions From Managed Soils	N ₂ O	29 655,98	0,029	0,84
1.A.4 Other Sectors - Gaseous Fuels	CO_2	26 458,72	0,026	0,86
1.A.4 Other Sectors - Liquid Fuels	CO ₂	23 334,88	0,023	0,89
4.D.1.1 Peat Extraction Remaining Peat Extraction	CO ₂	12 207,91	0,012	0,90
2.B.1 Ammonia Production	CO ₂	9 402,92	0,009	0,91
2.A.1 Cement Production	CO ₂	9 400,94	0,009	0,92
3.D.2 Indirect N ₂ O Emissions From Managed Soils	N ₂ O	8 022,20	0,008	0,93
5.A Solid Waste Disposal	CH ₄	6 534,85	0,006	0,93
2.B.2 Nitric Acid Production	N ₂ O	5 284,58	0,005	0,94
2.A.2 Lime Production	CO_2	5 121,81	0,005	0,94
4.B.1 Cropland Remaining Cropland	CO_2	-4 561,21	0,004	0,95
1.B.2.a Fugitive Emissions from Oil and Natural Gas - Oil	CH ₄	3 883,15	0,004	0,95
4.G Harvested Wood Products	CO ₂	-3 739,21	0,004	0,95
Other				1,00

Table A1.4. Key categories analysis by level, excluding LULUCF, in 2018

IPCC source category	Gas	Emissions in 2018, kt CO ₂ -eq.	Share in total emissions in 2018	Cumulative total of Col- umn D
A	В	C	D	E
1.A.1 Fuel combustion - Energy Industries - Solid Fuels	CO ₂	67 583,38	0,199	0,20
2.C.1 Iron and Steel Production	CO ₂	39 880,19	0,118	0,32
1.B.2.b Fugitive Emissions from Oil and Natural Gas - Natural Gas	CH ₄	28 842,73	0,085	0,40
1.A.1 Fuel combustion - Energy Industries - Gaseous Fuels	CO ₂	26 899,56	0,079	0,48
3.D.1 Direct N ₂ O Emissions From Managed Soils	N ₂ O	26 678,37	0,079	0,56
1.A.4 Other Sectors - Gaseous Fuels	CO ₂	26 392,58	0,078	0,64
1.A.3.b Road Transportation	CO_2	24 071,95	0,071	0,71
1.B.1 Fugitive emissions from Solid Fuels	CH ₄	12 899,59	0,038	0,75
1.A.2 Fuel combustion - Manufacturing Industries and Construction - Solid Fuels		9 500,24	0,028	0,77
1.A.3.e Other Transportation		8 801,78	0,026	0,80
1.A.2 Fuel combustion - Manufacturing Industries and Construction - Gaseous Fuels		8 443,72	0,025	0,83
3.A Enteric Fermentation	CH ₄	8 298,21	0,024	0,85
5.A Solid Waste Disposal	CH ₄	8 136,75	0,024	0,87
3.D.2 Indirect N ₂ O Emissions From Managed Soils	N ₂ O	6 800,92	0,020	0,89
2.A.1 Cement Production	CO ₂	3 718,58	0,011	0,90
5.D Wastewater Treatment and Discharge	CH ₄	2 917,08	0,009	0,91
2.B.8 Petrochemical and Carbon Black Production	CH ₄	2 568,94	0,008	0,92
2.A.2 Lime Production	CO ₂	2 317,02	0,007	0,93
1.A.1 Fuel combustion - Energy Industries - Other Fossil Fuels	CO ₂	2 088,25	0,006	0,93
2.C.2 Ferroalloys Production	CO ₂	1 958,67	0,006	0,94
1.B.2.b Fugitive Emissions from Oil and Natural Gas - Natural Gas	CO ₂	1 829,27	0,005	0,95
1.A.1 Fuel combustion - Energy Industries - Liquid Fuels	CO ₂	1 527,68	0,005	0,95
1.B.2.a Fugitive Emissions from Oil and Natural Gas - Oil	CH ₄	1 519,13	0,004	0,95
Other				1,00

Table A1.5 Key categories analysis by level, including LULUCF, in 2018

IPCC source category	Gas	Emissions in 2018, kt CO ₂ -eq.	Share in total emissions in 2018	Cumulative total of Col- umn D
A	В	C	D	E
1.A.1 Fuel combustion - Energy Industries - Solid Fuels	CO ₂	67 583,38	0,152	0,15
4.A.1 Forest Land Remaining Forest Land	CO_2	-49 362,30	0,111	0,26
4.B.1 Cropland Remaining Cropland	CO ₂	47 271,98	0,106	0,37
2.C.1 Iron and Steel Production	CO ₂	39 880,19	0,090	0,46
1.B.2.b Fugitive Emissions from Oil and Natural Gas - Natural Gas	CH ₄	28 842,73	0,065	0,52
1.A.1 Fuel combustion - Energy Industries - Gaseous Fuels	CO ₂	26 899,56	0,061	0,58
3.D.1 Direct N ₂ O Emissions From Managed Soils	N ₂ O	26 678,37	0,060	0,64
1.A.4 Other Sectors - Gaseous Fuels	CO_2	26 392,58	0,059	0,70
1.A.3.b Road Transportation	CO_2	24 071,95	0,054	0,76
1.B.1 Fugitive emissions from Solid Fuels	CH ₄	12 899,59	0,029	0,79
1.A.2 Fuel combustion - Manufacturing Industries and Construction - Solid Fuels		9 500,24	0,021	0,81
1.A.3.e Other Transportation	CO_2	8 801,78	0,020	0,83
1.A.2 Fuel combustion - Manufacturing Industries and Construction - Gaseous Fuels	CO ₂	8 443,72	0,019	0,85
3.A Enteric Fermentation	CH ₄	8 298,21	0,019	0,87
5.A Solid Waste Disposal	CH ₄	8 136,75	0,018	0,88
3.D.2 Indirect N ₂ O Emissions From Managed Soils	N ₂ O	6 800,92	0,015	0,90
4.E.2 Land Converted to Settlements	CO_2	4 917,58	0,011	0,91
2.A.1 Cement Production	CO ₂	3 718,58	0,008	0,92
5.D Wastewater Treatment and Discharge	CH ₄	2 917,08	0,007	0,93
2.B.8 Petrochemical and Carbon Black Production	CH ₄	2 568,94	0,006	0,93
2.A.2 Lime Production	CO ₂	2 317,02	0,005	0,94
1.A.1 Fuel combustion - Energy Industries - Other Fossil Fuels	CO ₂	2 088,25	0,005	0,94
2.C.2 Ferroalloys Production	CO_2	1 958,67	0,004	0,95
1.B.2.b Fugitive Emissions from Oil and Natural Gas - Natural Gas	CO ₂	1 829,27	0,004	0,95
1.A.1 Fuel combustion - Energy Industries - Liquid Fuels	CO ₂	1 527,68	0,003	0,95
Other				1,00

Table A1.6. Key categories analysis by trend, excluding LULUCF, in 2018

IPCC source category	Gas	Emissions in 2018, kt CO ₂ -eq.	Share in total emissions in 2018	Cumulative total of Col- umn D
A	В	C	D	E
1.A.1 Fuel combustion - Energy Industries - Solid Fuels	CO ₂	67583,38	0,149	0,15
1.A.1 Fuel combustion - Energy Industries - Liquid Fuels	CO ₂	1527,68	0,080	0,23
1.A.1 Fuel combustion - Energy Industries - Gaseous Fuels	CO ₂	26899,56	0,077	0,31
1.A.4 Other Sectors - Gaseous Fuels	CO ₂	26392,58	0,077	0,38
1.A.4 Other Sectors - Solid Fuels	CO ₂	936,04	0,075	0,46
3.D.1 Direct N ₂ O Emissions From Managed Soils	N ₂ O	26678,37	0,073	0,53
2.C.1 Iron and Steel Production	CO_2	39880,19	0,051	0,58
1.A.2 Fuel combustion - Manufacturing Industries and Construction - Liquid Fuels		150,06	0,048	0,63
1.B.1 Fugitive emissions from Solid Fuels		12899,59	0,043	0,67
1.A.2 Fuel combustion - Manufacturing Industries and Construction - Gaseous Fuels	CO ₂	8443,72	0,040	0,71
1.A.4 Other Sectors - Liquid Fuels	CO_2	129,25	0,038	0,75
1.B.2.b Fugitive Emissions from Oil and Natural Gas - Natural Gas	CH ₄	28842,73	0,036	0,79
3.A Enteric Fermentation	CH ₄	8298,21	0,027	0,81
5.A Solid Waste Disposal	CH ₄	8136,75	0,026	0,84
1.A.3.e Other Transportation	CO ₂	8801,78	0,025	0,87
3.D.2 Indirect N ₂ O Emissions From Managed Soils	N ₂ O	6800,92	0,018	0,88
1.A.3.b Road Transportation	CO ₂	24071,95	0,011	0,89
2.B.8 Petrochemical and Carbon Black Production	CH ₄	2568,94	0,011	0,91
1.A.2 Fuel combustion - Manufacturing Industries and Construction - Solid Fuels	CO ₂	9500,24	0,011	0,92
2.B.1 Ammonia Production	CO ₂	1275,90	0,010	0,93
1.A.1 Fuel combustion - Energy Industries - Other Fossil Fuels	CO ₂	2088,25	0,010	0,94
5.D Wastewater Treatment and Discharge	CH ₄	2917,08	0,007	0,94
1.A.3.d Domestic Navigation - Liquid Fuels	CO ₂	74,71	0,005	0,95
2.F.1 Refrigeration and Air conditioning	HFC	1077,78	0,005	0,95
Other				1,00

Table A1.7. Key categories analysis by trend, including LULUCF, in 2018

IPCC source category	Gas	Emissions in 2018,	Share in total	Cumulative total of Col-
if CC source category	Gas	kt CO ₂ -eq.	emissions in 2018	umn D
A	В	С	D	E
4.B.1 Cropland Remaining Cropland	CO_2	47271,98	0,147	0,15
4.A.1 Forest Land Remaining Forest Land	CO_2	-49362,30	0,130	0,28
1.A.1 Fuel combustion - Energy Industries - Gaseous Fuels		26899,56	0,083	0,36
1.A.1 Fuel combustion - Energy Industries - Liquid Fuels	CO ₂	1527,68	0,064	0,42
1.A.4 Other Sectors - Solid Fuels	CO_2	936,04	0,059	0,48
1.A.1 Fuel combustion - Energy Industries - Solid Fuels	CO ₂	67583,38	0,059	0,54
1.B.1 Fugitive emissions from Solid Fuels	CH ₄	12899,59	0,045	0,59
1.A.2 Fuel combustion - Manufacturing Industries and Construction - Gaseous Fuels	CO ₂	8443,72	0,039	0,63
1.A.2 Fuel combustion - Manufacturing Industries and Construction - Liquid Fuels		150,06	0,038	0,66
1.A.4 Other Sectors - Gaseous Fuels		26392,58	0,037	0,70
3.D.1 Direct N ₂ O Emissions From Managed Soils		26678,37	0,034	0,73
1.A.4 Other Sectors - Liquid Fuels		129,25	0,030	0,76
3.A Enteric Fermentation	CH ₄	8298,21	0,028	0,79
1.A.3.e Other Transportation	CO_2	8801,78	0,027	0,82
1.A.2 Fuel combustion - Manufacturing Industries and Construction - Solid Fuels	CO ₂	9500,24	0,017	0,84
4.D.1.1 Peat Extraction Remaining Peat Extraction	CO_2	219,59	0,015	0,85
4.G Harvested Wood Products	CO_2	-166,45	0,015	0,87
5.A Solid Waste Disposal	CH ₄	8136,75	0,014	0,88
4.E.2 Land Converted to Settlements	CO_2	4917,58	0,013	0,89
1.A.3.b Road Transportation	CO_2	24071,95	0,012	0,91
2.B.1 Ammonia Production	CO_2	1275,90	0,009	0,91
3.D.2 Indirect N ₂ O Emissions From Managed Soils	N ₂ O	6800,92	0,008	0,92
2.B.8 Petrochemical and Carbon Black Production	CH ₄	2568,94	0,007	0,93
1.A.1 Fuel combustion - Energy Industries - Other Fossil Fuels	CO ₂	2088,25	0,006	0,93
2.C.1 Iron and Steel Production	CO_2	39880,19	0,006	0,94
1.A.3.d Domestic Navigation - Liquid Fuels	CO ₂	74,71	0,004	0,94
4.C.1 Grassland Remaining Grassland	CO_2	190,42	0,004	0,95
4.A.2 Land Converted to Forest Land	CO_2	-1415,00	0,004	0,95
1.B.2.b Fugitive Emissions from Fuels - Oil and Natural Gas - Natural Gas	CH ₄	28842,73	0,003	0,95
Other				1,00

ANNEX 2 METHODOLOGY FOR EMISSION ASSESSMENT IN THE ENERGY SECTOR

A2.1 The method to determine GHG emissions from stationary fuel combustion

When conducting the national inventory of GHG emissions from combustion of fossil fuels in the period of 1990-2018, the methodology of 2006 IPCC Tier 1 and Tier 2 was applied (in a few exceptional cases - of Tier 3, see below), in accordance with which the amount of a certain type of GHG emissions for a particular CRF category at burning of a specific type of fuel is estimated under expression A1:

$$B_{gfi} = FC_{fi} \bullet KB_{gfi}, \tag{A1}$$

where:

The amount of emissions of a particular type of GHG (index g, $g=1 \div G$) at burning of a particular type of fuel, which corresponds to the index f, $f=1 \div F$ in the emission source category under the CRF corresponding to index i, $i=1 \div I$, (kg);

 FC_{fi} — The amount of fuel burned f in the i emission source category in accordance with the CRF (TJ);

KB_{gfi} — The default ratio of GHG emissions or the national coefficient at combustion (kg of GHG/TJ). This factor for CO₂ takes into account carbon content in fuel and its degree of oxidation.

The total amount of emissions B_g under the i emission source category for individual types of GHGs is determined as follows:

$$B_{gi} = \sum_{f=1}^{F} B_{gfi},$$
 (A2)

The total amount of emissions B_i under the i emission source category for all types of GHGs is determined as follows:

$$\boldsymbol{B}_{i} = \sum_{g=1}^{G} \boldsymbol{B}_{gi}, \tag{A3}$$

The methodology for calculating emissions in category 1.A.3.a. "Domestic Aviation" is characterized by a number of significant peculiarities and is presented in A2.7.

The key sources of information are the fuel and energy balance (FEB) of the Ukrainian SSR for 1990 [2], statistical reporting forms No. 4-MTP "Report on balances and use of energy materials and oil processing products" and No. 11-MTP "Report on results of fuel, heat, and electricity use" for years 1991-2018.

A2.2 Sources of activity data

A2.2.1 Statistical reporting form No. 4-MTP "Fuel usage report"

Form No. 4-MTP is the main form used for inventory of emissions from fossil fuel combustion.

In accordance with the type of economic activity (TEA) of the consumer, in form No. 4-MTP all consumed fuel and lubricants, as well as their losses, are attributed to this TEA. At the same time, consumers submit information on use of fuel in accordance with the actual field of its use based on the Classification of Economic Activities, which is reflected in this form. This necessitates application of special methods for proper ensuring of consistency between volumes of fuel used from form No. 4-MTP and emission categories in accordance with the CRF, because emission factors for some types of GHG may significantly differ for the various categories of emission sources.

Also, the structure of form No. 4-MTP requires additional calculations to correctly distribute emission sources. This form is used for reporting by all enterprises regardless of their form of ownership. When submitting information to state statistics authorities, each enterprise specifies the key economic activity in accordance with the National Classification of Economic Activities (NCEA) of the SSSU.

In the period of 1991-2018, this reporting form changed frequently.

In 1991, the form for each sector of the economy contained information on the total consumption by fuel type with separate indication of volume used for household needs.

In the period of 1992-1996, the following information was tracked by sector of the economy:

- 1. The total.
- 2. For conversion production of electricity and heat.
- 3. As a raw material.
- 4. Directly as fuel, separately indicating fuel for household needs and that sold to the public.

In the period 1997-2015, the structure of form No. 4-MTP stabilized. In 2016 it changed significantly, particularly fuel codes (see Table A2.1) and section structure. At present, it consists of four sections, each of them containing information about the specific domain of use of fuel and energy resources. Each section of form No. 4-MTP consists of a table, which horizontally indicates the name of fuel, and in columns - the domain where it was used.

When estimating emissions by using the sector approach, data of the second, third and forth sections are applied.

Section 2 of form No. 4-MTP contains information on fuel consumption by the energy sector of the enterprise in the following domains:

- field 1 is the sum of fields 2-13, as described below;
- field 2 fuel consumption for production of hard coal, lignite and peat briquettes;
- field 3 fuel consumption for production of wood briquettes and charcoal;
- field 4 fuel consumption for production of coke and coke gas;
- field 5 fuel consumption for production of various types of gas;
- field 6 fuel consumption for production of blast furnace coke;
- field 7 fuel consumption for production of oil products;
- field 8 fuel consumption for production of heat and electricity at common use power plants;
- field 9 fuel consumption for production of heat and electricity at power plants of enterprises;
- field 10 fuel consumption for production of heat and electricity at common use CHPs;
- field 11 fuel consumption for production of heat and electricity at combined heat and power plants (CHPs) of enterprises;
- field 12 fuel consumption for production of heat at heat power stations and boiler plants;
- field 13 fuel consumption for production of heat and electricity by other enterprises and plants;
- field 14 fuel consumption for own use of power plants and enterprises.

Section 3 of form No. 4-MTP contains information on final fuel consumption in the following domains:

- field 1 fuel consumption for non-energy purposes;
- field 2 final fuel consumption;
- field 3 fuel consumption by in-house factory transport;
- field 4 fuel consumption by international marine and avia transport;
- field 5 fuel sold to the public.

Section 4 of form No. 4-MTP contains information on fuel losses at its transportation, distribution, storage etc.

A2.2.2 Statistical reporting form No. 11-MTP "Report on results of fuel, heat, and electricity consumption"

From form No.11-MTP, section I "Fuel" and the Annex (form No.11-MTP (fuel)) "Actual fuel consumption for production of certain types of products and work" with respect to oil refining are used for inventory purposes.

From section 1, data on volumes of oil refining are used, and from the annex 11-MTP (fuel) - the volume of fuel used for these purposes.

In 2016 the structure of form No. 11-MTP changed significantly and does not contain data on fuel consumption for 2016, 2017, 2018.

A2.2.3 Fuel and energy balances of Ukraine

The FEB of Ukraine for 1990 was used to calculate GHG emissions from fuel combustion within emission inventory. It contains all the necessary detailed information on fuel consumption, except for data on fuel consumption for oil refining, which are accounted for in other industries and are not explicitly indicated.

FEBs developed by the SSSU and the IEA in the next years cannot be properly applied for the purpose of GHG inventory, because they does not contain details necessary for calculations according to IPCC guidelines.

A2.3 Fuel structure

The range of fuels in the national statistics differs from the range defined by [1], and, as noted, it has undergone a lot of changes. Fuel structure is shown in the table Table A2.1.

Table A2.1. Types of fuels used

# Fuel	Engl	Groups	Fuel code		
	ruei	of fuels*	2015	2016, 2017, 2018	
1	Hard coal	S	100	110	
2	Briquettes, pellets from hard coal	S	110	140	
3	Brown coal	S	115	120	
4	Briquettes, pellets from brown coal	S	120	150	
5	Non-agglomerated fuel peat	P	130	130	
6	Briquettes, pellets from peat	P	140	160	
7	Crude oil, including Oil from bituminous materials	L	150	410	
8	Gas condensate	L	160	415	
9	Natural gas	G	170	310	
10	Charcoal	В	185	720	
11	Firewood	В	190	740	
12	Fuel briquettes and pellets from wood and other natural materials	В	195	730	
13	Of these, briquettes from scobs	В	196	731	
14	Biodiesel from oils, sugar and starch crops, and animal fats	В	198	782	
15	Other types of source fuels	В	200	750,760,770,790	
16	Coke and semi-coke from hard coal, gaseous coke	S	220	170	
17	Hard, brown coal, and peat resins	S	225	200	
18	Pitch and pitch coke	S	226	190	
19	Aviation gasoline	L	230	450	
20	Motor gasoline	L	240	430	
21	Mixed motor fuel containing bio-ethanol 5-30%	В	245	435	
22	Fuel for jet engines of the gasoline type	L	250	460	
23	Oil distillates, other light fractions	L	260	510	

#	Fuel	Groups	Fuel code	
#	ruei	of fuels*	2015	2016, 2017, 2018
24	White spirit and other special gasoline	L	261	511
25	Light oil distillates for production of motor gasoline	L	262	512
26	Fuel for jet engines of the kerosene type	L	270	470
27	Kerosene	L	280	480
28	Gas oils	L	300	440
29	Medium oil distillates, other medium frac-	L	310	520
	tions		310	
30	Heavy fuel black oils	L	320	490
31	Petroleum oils, heavy oil distillates	L	330	530
32	Propane and butane, liquefied	L	430	540
33	Ethylene, propylene	L	440	580
34	Petroleum coke (including shale)	L	460	570
35	Other types of oil products	L	500	650
36	Other fuel processing products	Oth	630	800
37	Coke oven gas produced as a byproduct	S	600	220

^{*} S - solid fuel, L - liquid fuels, G - gaseous fuel, B - biomass, P - peat, Oth. - others

A2.4 Methods to determine the fuel combustion volume by CRF category

A2.4.1 Stationary fuel combustion

When calculating the volume of GHG emissions at stationary combustion, motor fuels in CRF category 1.A.1 "Energy Industries" were not transferred to other sources of emissions; in categories 1.A.2 "Manufacturing Industries and Construction" and 1.A.4 "Other Sectors" motor fuels (gasoline, gas oil, etc, for the exception of liquefied propane and butane) were not accounted for the period of 1991-2018 and were transferred to the category of mobile sources - CRF 1.A.3 "Transport", because no information is available for the period on their use in stationary combustion. This information is available only for 1990.

98% of lubricants are accounted for in the IPPU sector as non-energy use. Small amounts of lubricants are accounted for in in CRF category 1.A.1 "Energy Industries" and subcategory 1.A.3.b.iv "Motorcycles".

Activity data of fuel consumption by CRF category at stationary fuel combustion for 2018 are presented in Table A2.2.

Table A2.2. Activity data of fuel consumption at stationary fuel combustion for 2018 in accordance with CRF emissions categories

CRF category	Determining the volume of fuel burned
1.A	.1. Fuel and Energy Industry
1.A.1.a Public Electricity and Heat Produc-	
tion	
1.A.1.ai Electricity Generation	Form No.4-MTP total, Section 2, Column 8
1.A.1.aii Combined Heat and Power genera-	Form No.4-MTP total, Section 2, Columns 9,10, 11
tion (CHP)	
1.A.1.aiii Heat Plants	Form No.4-MTP total, Section 2, Column 12
1.A.1.b Petroleum Refining	Data on the total fuel consumption for oil refining by fuel types from
	form No.11-MTP (fuel); Refinery in take from IEA
1.A.1.c Manufacture of Solid Fuels and	Summary of:
Other Energy Industries	1. Form No.4-MTP total, Section 2, Columns 13,14;
	2. The difference between Field 2 and Fields 3,4 of section 3 of form
	No.4-MTP for TEA with the codes:
	- 05 "Production of lignite and hard coal";
	- 06 "Oil and Natural Gas"
1.A.2. Manu	facturing Industries and Construction
1.A.2.a Iron and Steel	Form No.4-MTP kved, TEA Division 24 "Metallurgical Industry", Sec-
	tion, Column 2 minus Columns 3,4;

CRF category	Determining the volume of fuel burned
	Minus: fuel consumed under form No.4-MTP kved, TEA Division 24.4
	"Production of precious and other non-ferrous metals"
1.A.2.b Non-Ferrous Metals	Form No.4-MTP kved, TEA Division 24.4 "Production of precious and
	other non-ferrous metals", Section 3, Column 2 minus Columns 3,4
1.A.2.c Chemicals	Form No.4-MTP kved, TEA Division 20 "Production of chemical sub-
	stances and chemical products", Section 3, Column 2 minus Columns
	3,4
1.A.2.d Pulp, Paper and Print	Summary of:
	1. Form No.4-MTP kved, TEA Division 17 "Manufacture of paper and
	paper products", Section 3, Column 2 minus Columns 3,4;
	2. Form No.4-MTP kved, TEA Division 18 "Printing and reproduction
	of information", Section 3, Column 2 minus Columns 3,4
1.A.2.e Food Processing, Beverages and To-	Summary of:
bacco	1. Form No.4-MTP kved, TEA Division 10 "Manufacture of food
	products", Section 3, Column 2 minus Columns 3,4;
	2. Form No.4-MTP kved, TEA Division 11 "Manufacture of bever-
	ages", Section 3, Column 2 minus Columns 3,4;
	3. Form No.4-MTP kved, TEA Division 12 "Manufacture of tobacco
	products", Section 3, Column 2 minus Columns 3,4
1.A.2.f Non-metallic minerals	Form No.4-MTP kved, TEA Division 23 "Production of other non-fer-
	rous mineral products", Section 3, Column 2 minus Columns 3,4
1.A.2.g Other Industrial Products and Con-	Summary of:
struction	1. Form No.4-MTP kved, TEA Division BCDE "Industry", Section 3,
	Column 2 minus Columns 3,4;
	2. Form No.4-MTP kved, TEA Division F "Construction", Section 3,
	Column 2 minus Columns 3,4.
	Minus:
	1. Volume of fuel burned in categories 1A2a – 1A2f;
	2. The difference between Field 2 and Fields 3,4 of section 3 of form
	No.4-MTP for TEA with the codes:
	- 05 "Production of lignite and hard coal";
	- 06 "Oil and Natural Gas"
	1.A.4. Other Sectors
1.A.4.a Commercial/Institutional	Summary of:
	Form No.4-MTP kved, TEA Divisions G,H,I,J,K,L,M,N,O,P,Q,R,S,
1 4 41 D 11 21	Section 3, Column 2 minus Columns 3,4
1.A.4.b Residential	Form No.4-MTP total, Section 3, Column 5
1.A.4.c Agriculture/Forestry/Fishing	Summary of:
	Form No.4-MTP kved, TEA Division A "Agriculture, forests, fishing",
	Section 3, Column 2 minus Columns 3,4

Given the specific features of form No.4-MTP in 1991, to determine volumes of stationary fuel combustion in accordance with the CRF, expert estimates were used, which were based on data from TEAs for 1990 and those listed in this form.

For the period of 1992 to 1996, the following approach was applied to determine the volume of fuel burned by CRF category - fuel consumption for household needs is attributed to the service sector, and what was sold to the public - to the household sector. Along with this, given the fact that in this period there were active transformation processes in Ukraine's economy, expert opinions were used to smoothen the emission series by CRF categories to some extent to ensure the overall balance of fuel volumes used for power generation [18].

A2.4.2 Mobile fuel combustion

Activity data of fuel consumption by CRF category at mobile fuel combustion for 2018 are presented in Table A2.3.

Table A2.3. Activity data of fuel consumption at mobile fuel combustion for 2018 in accord-

ance with CRF emissions categories

CRF sub-category	Determining the volume of fuel burned	Fuel code
LA 2 - Demonstra Assisting		450
1.A.3.a Domestic Aviation	The fuel volume on aircraft (AC) departures from air-	460
	ports situated in the territory of Ukraine	470
		782
		430
		435
		510
1.A.3.b Road Transportation	The fuel volume according to surrogate method (see	511
	3.2.9.2.2)	512
		480
		440
		520
		540
I.A.3.c Railways	Form No.4-MTP kved, TEA Divisions 49.1, 49.2 "Railway transport", Section 3, Column 2	440
.A.3.d Domestic Navigation	Form No.4-MTP kved, TEA Division 50, "Waterway	440
Ç	transport", Section 3, Column 2	490
.A.3.e.i Pipeline Transport	The fuel volume provided by enterprises (see 3.2.9.2.5)	310
		198
A 2 a ii Off Bood wahil 1		240
.A.3.e.ii Off-Road vehiles and	The fuel volume according to surrogate method (see	245
other machinery	3.2.9.2.5)	280
		300
		310

The observed trends in cargo for domestic and international navigation are shown in the fig. A.2.1 and A.2.2.

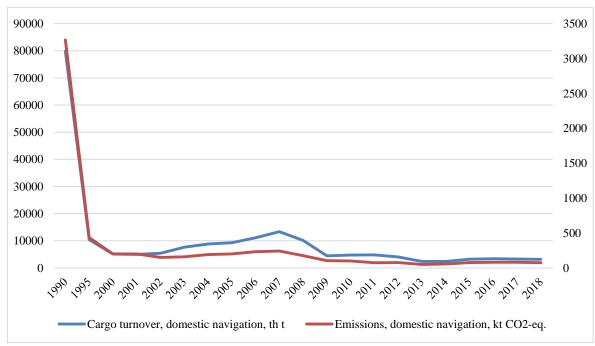


Fig. A.2.1. The observed trends in cargo for domestic navigation

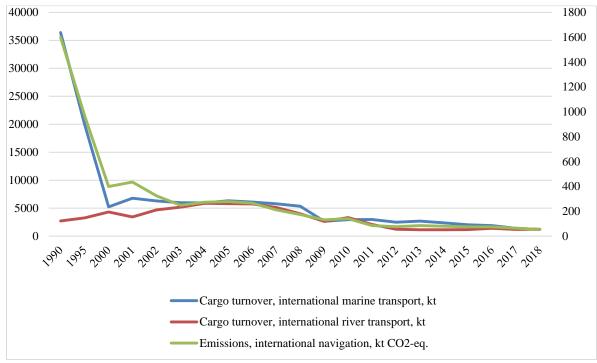


Fig. A.2.2. The observed trends in cargo for international navigation

As to biodiesel consumed in categories 1.A.3.b and 1.A.3.e.ii there is no opportunity to collect consumption data for the period 1990-2012. The SSSU began to indicate the amount of biodiesel consumed in statistical forms only in 2013. Taking into account the negligible amount fixed by SSSU in 2013 (222 t), 2014 (0), 2015 (47 t) it is reasonable to suggest that in 1990-2012 the amount of biodiesel consumed was negligible.

A2.5 Emission factors

The method for determination of carbon content in natural gas is presented in A2.6.1, for coal combusted at the TPPs – in A2.6.2, for motor fuels (gasoline, diesel oil and LPG) – in A2.6.3.

For other types of fuels, carbon content factors by default were used in accordance with [1], see details in Table A2.4.

Carbon content factors for CH_4 and N_2O were default ones for the entire time series of 1990-2018 according to [1] within the exception of category 1.A.3.b "Domestic Aviation" for NOx, CO, NMVOC and SO_2 for which determining CORINAIR 2013 was used.

NCV values for most types of fuel for 1990-2018 in Ukraine in general were adopted based on state statistics of Ukraine (4-MTP, 11-MTP, FEB of the Ukrainian SSR, the statistical compilation "Fuel and Energy Resources of Ukraine").

An exception is the NCV of hard coal used at TPPs, natural gas, gasoline, diesel oil and LPG for which scientific and analytical activity was performed (see A2.6.1, A2.6.2 and A2.6.3). Also, for certain types of fuel where the NCV cannot be determined correctly, the default values were used [1]. For details on NCV, see Table A2.4.

Carbon oxidation factors for all the categories within the exception of coal combusted at the TPPs (category 1.A.1.ai, see A.2.6.2) are equal to 1.

The development of CSEFs for petroleum coke and refinery gases are does not considered because of small quantity of petroleum coke and including of refinery gases into other oil products by national statistics.

The values of CH₄ and N₂O emission factors are shown in Tables A2.5-A2.8.

Table A2.4. Carbon content factors (t/TJ) and NCV (GJ/t) in different fuels

1 abic 112.4.			013 (1/13)		JIII CI CII		1
Fuel	Code	Carbon content factor	NCV	Fuel	Code	Carbon content factor	NCV
Hard coal	110	25.99*	21.51*	Aviation gasoline	450	19.1	44.30
Briquettes, pellets from hard coal	140	26.6	15.23			19.65	43.04
Brown coal	120	27.6	8.63	Mixed motor fuel containing bio-ethanol 5% -30%	435	19.65	43.04
Briquettes, pellets from brown coal	150	26.6	16.53	Fuel for jet engines of the gasoline type	460	19.65	43.04
Non-agglomerated fuel peat	130	28.9	10.28	Oil distillates, other light fractions	510	19.65	43.04
Briquettes, pellets from peat	160	28.9	14.66	Light oil distillates for production of mo- tor gasoline	512	20.0	40.20
Crude oil, including oil from bituminous materials	410	20	41.55	Fuel for jet engines of the kerosene type	470	19.5	44.10
Gas condensate	415	17.5	37.97	Kerosene	480	19.6	43.80
Natural gas	310	15.22	48.50	Gas oil	440	20.12	43.05
Charcoal	720	30.5	29.50	Medium oil distil- lates, other medium fractions	520	20.12	43.05
Firewood	740	30.5	10.82	Heavy fuel black oils	490	21.1	40.18
Fuel briquettes and pellets from wood and other natural materials	730	27.3	11.60	Petroleum oils, heavy oil distillates	530	20	39.81
Briquettes from made of scobs	731	27.3	11.60	Propane and butane, liquefied	540	17.2	45.35
Biodiesel from oils, sugar and starch crops	782	19.3	27.00	Ethylene, propylene, petroleum gases, other	580	15.7	43.67
Other types of source fuels	750,760, 770,790	27.3	11.6	Petroleum coke (in- cluding shale)	570	26.6	31.65
Coke and semi- coke from hard coal, gaseous coke	170	29.2	28.59	Other types of oil products	650	20	40.2
Hard, brown coal, and peat resins	200	22.0	28.00	Other fuel processing products	800	20	40.2
Pitch and pitch coke	190	29.2	28.20	Coke oven gas pro- duced as a byproduct	220	12.1	35.22

^{* -} calculated separately for TPPs in A2.6.2

Table A2.5. Methane emission factors that were applied for estimation of emissions from stationary fuel combustion

Table 112.5. Wethane emission	Methane emission factors by fuel consumption domains, kg/TJ						
Name of the fuel in form No. 4-MTP	Code of the fuel in form No. 4- MTP	Energy Indus- tries	Industry and Construction	Agriculture	Commercial/Institutional	Residential Sector	
Hard coal	110	1	10	300	10	300	
Briquettes, pellets from hard coal	140	1	10	300	10	300	
Brown coal	120	1	10	300	10	300	
Briquettes, pellets from brown coal	150	1	1	300	10	300	
Non-agglomerated fuel peat	130	1	2	300	1	300	
Briquettes, pellets from peat	160	1	2	300	1	300	
Crude oil, including oil from bituminous	410						
materials		3	3	10	10	10	
Gas condensate	415	3	3	10	10	10	
Natural gas	310	1	1	5	5	5	
Charcoal	720	200	200	200	200	200	
Firewood	740	30	30	300	300	300	
Fuel briquettes and pellets from wood and	730						
other natural materials		30	30	300	300	300	
Briquettes from made of scobs	731	30	30	300	300	300	
Biodiesel from oils, sugar and starch crops	782	3					
Other types of source fuels	750,760,770,790	30	30	300	300	300	
Coke and semi-coke from hard coal, gase-	170						
ous coke		1	1	5	5	5	
Hard, brown coal, and peat resins	200	1	10	300	10	300	
Pitch and pitch coke	190	1	10	300	10	300	
Aviation gasoline	450						
Motor gasoline	430	3					
Motor fuel composite with bioethanol	435						
5% -30%		3					
Fuel for jet engines of the gasoline type	460						
Oil distillates, other light fractions	510	3					
Light oil distillates for production of motor	512						
gasoline		3					
Fuel for jet engines of the kerosene type	470						
Kerosene	480	3					
Gas oils	440	3					
Medium oil distillates, other medium frac-	520						
tions		3					
Heavy fuel black oils	490	3	3	10	10	10	
Petroleum oils, heavy oil distillates	530	3					
Propane and butane, liquefied	540	1	1	5	5	5	

Ukraine's Greenhouse Gas Inventory 1990-2018

Ethylene, propylene, petroleum gases,	580					
other		3	3	10	10	10
Petroleum coke (including shale)	570	3	3	10	10	10
Other types of oil products	650	3	3	10	10	10
Other fuel processing products	800	3	3	10	10	10
Coke oven gas produced as a byproduct	220	1	1	5	5	5
Refinery gas, not liquefied	061	1	1	5	5	5
Refinery feedstock	054	3	3	10	10	10

Table A2.6. Nitrous oxide emission factors that were applied for estimation of emissions from stationary fuel combustion

Tuote 112.0. Title out office office	Methane emission factors by fuel consumption domains, kg/TJ										
Name of the fuel in form No. 4-MTP	Code of the fuel in form No. 4- MTP	Energy Indus- tries	Industry and Construction	Agriculture	Commercial/Institutional	Residential Sector					
Hard coal	110	1.5	1.5	1.5	1.5	1.5					
Briquettes, pellets from hard coal	140	1.5	1.5	1.5	1.5	1.5					
Brown coal	120	1.5	1.5	1.5	1.5	1.5					
Briquettes, pellets from brown coal	150	1.5	1.5	1.5	1.5	1.5					
Non-agglomerated fuel peat	130	1.5	1.5	1.4	1.4	1.4					
Briquettes, pellets from peat	160	1.5	1.5	1.4	1.4	1.4					
Crude oil, including oil from bituminous	410										
materials		0.6	0.6	0.6	0.6	0.6					
Gas condensate	415	0.6	0.6	0.6	0.6	0.6					
Natural gas	310	0.1	0.1	0.1	0.1	0.1					
Charcoal	720	4	4	1	1	1					
Firewood	740	4	4	4	4	4					
Fuel briquettes and pellets from wood and	730										
other natural materials		4	4	4	4	4					
Briquettes from made of scobs	731	4	4	4	4	4					
Biodiesel from oils, sugar and starch crops	782	0.6									
Other types of source fuels	750,760,770,790	4	4	4	4	4					
Coke and semi-coke from hard coal, gase-	170										
ous coke		0.1	0.1	0.1	0.1	0.1					
Hard, brown coal, and peat resins	200	1.5	1.5	1.5	1.5	1.5					
Pitch and pitch coke	190	1.5	1.5	1.5	1.5	1.5					
Aviation gasoline	450										
Motor gasoline	430	0.6									
Motor fuel composite with bioethanol 5%	435										
-30%		0.6									
Fuel for jet engines of the gasoline type	460										
Oil distillates, other light fractions	510	0.6									
Light oil distillates for production of motor	512										
gasoline		0.6									
Fuel for jet engines of the kerosene type	470										
Kerosene	480	0.6									
Gas oils	440	0.6									
Medium oil distillates, other medium frac-	520										
tions		0.6									
Heavy fuel black oils	490	0.6	0.6	0.6	0.6	0.6					
Petroleum oils, heavy oil distillates	530	0.6									
Propane and butane, liquefied	540	0.1	0.1	0.1	0.1	0.1					

Ukraine's Greenhouse Gas Inventory 1990-2018

Ethylene, propylene, petroleum gases,	580					
other		0.6	0.6	0.6	0.6	0.6
Petroleum coke (including shale)	570	0.6	0.6	0.6	0.6	0.6
Other types of oil products	650	0.6	0.6	0.6	0.6	0.6
Other fuel processing products	800	0.6	0.6	0.6	0.6	0.6
Coke oven gas produced as a byproduct	220	0.1	0.1	0.1	0.1	0.1
Refinery gas, not liquefied	240	0.1	0.1	0.1	0.1	0.1
Refinery feedstock	006	0.6	0.6	0.6	0.6	0.6

Table A2.7. Methane emission factors that were applied for estimation of emissions from mobile fuel combustion

Name of fuel	Fuel code	1.A.3.a - Civil Aviation	1.A.3.b - Road Transport	1.A.3.c - Railway transport	1.A.3.d - Water transport	1.A.3.e.i - Pipeline transport	1.A.3.e.ii - Off-road transport
		ethane emis	sion factor	rs by fuel c	onsumptio	n domains, l	kg/TJ
Natural gas	310					1	
Biodiesel from oils	782		18.4				115
Aviation gasoline	450	see A2.7					
Motor gasoline	430		18.4				115
Motor fuel composite	435		18.4				115
Jet gasoline-type fuel	460	see A2.7					
Oil distillates, other light fractions	510		18.4				115
Light oil distillates for production of motor gasolines	512		3.9				
Jet kerosene-type fuel	470	see A2.7					
Kerosene	480		18.4				115
Gasoil (diesel fuel)	440		3.9	4.15	7		4.15
Oil medium distillates	520		3.9				4.15
Heavy fuel black oils	490				7		
Petroleum oils	530		18.4				4.15
Propane and butane, liquefied	540		92				

Table A2.8. Nitrous oxide emission factors that were applied for estimation of emissions from mobile fuel combustion

Name of fuel	Fuel code	1.A.3.a - Civil Aviation	1.A.3.b - Road Transport	1.A.3.c - Railway transport	1.A.3.d - Water transport	1.A.3.e.i - Pipeline transport	1.A.3.e.ii - Off-road transport
		trous oxi	de emiss	ion factors by	fuel consum	ption domain	s, kg/TJ
Natural gas	310					0.1	
Biodiesel from oils	782		5.6				1.2
Aviation gasoline	450	see A2.7					
Motor gasoline	430		5.6				1.2
Motor fuel composite	435		5.6				1.2
Jet gasoline-type fuel	460	see A2.7					
Oil distillates, other light fractions	510		5.6				1.2
Light oil distillates for production of motor gasolines	512		3.9				
Jet kerosene-type fuel	470	see A2.7					
Kerosene	480		5.6				1.2
Gasoil (diesel fuel)	440		3.9	28.6	2		28.6
Oil medium distillates	520		3.9				28.6
Heavy fuel black oils	490				2		
Petroleum oils	530		5.6				28.6
Propane and butane, liquefied	540		3				

A2.6 Determination of physical and chemical parameters of natural gas and power-generating coals

A2.6.1 Natural gas

The input data for determination of parameters of natural gas in the Ukraine gas transportation system are passport certificates of physical and chemical parameters of gas, which contain daily information (from all gas measuring stations and for each pipeline) on the elemental composition of natural gas, calorific value, density, consumption, and other physical and chemical indicators. These passport certificates were provided by the companies NJSC "Naftogaz of Ukraine" and PJSC "Ukrgasvydobuvannya".

The component composition of natural gas is determined based on chromatographic analysis in line with [19], based on which the net calorific value of natural gas is estimated according to [20].

The carbon content in natural gas was determined on the basis of the estimated value of the average percentage of carbon content and calorific value according to the formula:

$$k_c^{Av} = \frac{\sum_i \rho_i^{av} \cdot r_i^{av} \cdot \frac{M_C}{M_i}}{NCV^{av}}; \tag{A4}$$

where k_c^{Av} – is the average carbon content in natural gas consumed in the country, t/TJ;

 ρ_i^{av} – the average density of the *i* component of natural gas, the molecule of which contains the carbon atom, in relative units;

 r_i^{av} – the average volume ratio of the *i* component of natural gas, the molecule of which contains the carbon atom, in relative units;

 M_C – the molar weight of carbon, g/mole;

 M_i – the molar weight of the i component of natural gas, the molecule of which contains the carbon atom, g/mole;

i – the index of the component of natural gas, the molecule of which contains the carbon atom; NCV^{av} – the average net calorific value of natural gas, TJ/million m³;

Average values of density, volume fractions, and the net calorific value of natural gas were calculated as the weighted average of the respective indicators of import and domestic natural gas production in the country.

Detailed data on NCV, carbon content and density are presented in Table A2.9.

Table A2.9. Average physical and chemical parameters of consumed natural gas in Ukraine, 1990-2018

Parameter*	NCV	Carbon content	Density	CH ₄	CO ₂
Year	GJ/t	tC/TJ	kg/m3	% vol.	% vol.
1990	48.720	15.180	0.697	96.245	0.163
1991	48.720	15.180	0.697	96.245	0.163
1992	48.720	15.180	0.697	96.245	0.163
1993	48.720	15.180	0.697	96.245	0.163
1994	48.720	15.180	0.697	96.245	0.163
1995	48.720	15.180	0.697	96.245	0.163
1996	48.720	15.180	0.697	96.245	0.163
1997	48.720	15.180	0.697	96.245	0.163
1998	48.720	15.180	0.697	96.245	0.163
1999	48.720	15.180	0.697	96.245	0.163
2000	48.720	15.180	0.697	96.245	0.163
2001	48.720	15.180	0.697	96.245	0.163
2002	48.720	15.180	0.697	96.245	0.163
2003	48.720	15.180	0.697	96.245	0.163
2004	48.720	15.180	0.697	96.245	0.163
2005	48.720	15.190	0.697	96.245	0.163
2006	48.720	15.220	0.697	96.245	0.163

Parameter*	NCV	Carbon content	Density	CH ₄	CO ₂
Year	GJ/t	tC/TJ	kg/m3	% vol.	% vol.
2007	48.720	15.160	0.697	96.245	0.163
2008	48.720	15.170	0.697	96.245	0.163
2009	48.720	15.200	0.697	96.245	0.163
2010	48.720	15.170	0.697	96.245	0.163
2011	48.720	15.129	0.697	96.245	0.163
2012	48.721	15.140	0.700	95.903	0.194
2013	48.697	15.168	0.701	95.759	0.247
2014	48.612	15.121	0.698	96.035	0.219
2015	48.771	15.214	0.714	94.298	0.411
2016	48.752	15.260	0.708	94.898	0.265
2017	48.410	15.203	0.711	94.551	0.363
2018	48.500	15.225	0.712	94.411	0.355

^{*} Determined for standard conditions (20°C, 101.3 kPa)

The national value of carbon content in natural gas is different from the default value [1] by 0.5-1.2%. The average deviation from the value is approximately minus 0.5 %, which is in the range of deviation from the default values [1].

Since fluctuation of carbon content in natural gas over the period of 2004-2012 was extremely low and ranged from minus 0.3% to plus 0.3%, and taking into account that the natural gas supply into Ukraine sources remained unchanged over the past decades, the carbon content of natural gas in the period of 1990-2003 was adopted as the average of its value for the period of 2004-2010, and amounted to 15.18 t/TJ.

Information about the natural gas NCV, density, and component composition is not available for 1990-2010 period, so the corresponding values were taken based on data in 2011.

A2.6.2 Hard coal

In 2017, research work "Calculations of Greenhouse Gas Emissions from Coal Combustion in Thermal Power Plants of Ukraine for 1990 – 2015" was carried out by Coal Energy Technology Institute of NASU in the framework of realization of Agreement between Ministry of Energy and Coal Industry of Ukraine and Ministry of Foreign Affairs of Denmark on development and cooperation for the Ukraine-Denmark Energy Center [21] and implemented in current submission. Similar calculations for 2016, 2017, 2018 were carried out on the basis of this research work.

Due to the results of the research work, methodology to estimate NCV, carbon content and oxidation factor for coals combusted at all 15 acting TPPs in Ukraine was upgraded. Proposed methodology also accounts for the fraction of volatile components in the coal itself when determining the carbon content.

When developing the methodology two specific thermal groups of coals were taken into account: bituminous and low-reactive coal. Thermal coal division on 2 groups with the definition of average value C^{daf} (the part of carbon in coal on "dry ash-free" basis) for each of them is based on the following considerations. Among the 14 large TPPs of Ukraine 7 are designed to burn bituminous coal (Zuyivska, Vuglegirska, Zaporizka, Kurakhisvska, Ladyzhynska, Dobrotvirska, Burshtynska), 7 – for burning of low-reactive coal (Tripilska, Zmiyivska, Prydniprovska, Starobeshivska, Slovyanska, Luganska, Kryvorizka – anthracite of grade A and semi-anthracite of grade P) [22]. At the small Mironivska TPP the both bituminous and low-reactive coal are used, but their accounting is made separately.

During recent years some TPP units were re-equipped for consuming D, DG and G coal instead of A and P coal. This is reflected in calculations.

Carbon content on dry ash free basis C^{daf} is divided to the same groups – bituminous (C^{daf} = 76-85%) and low-reactive coal (C^{daf} = 89.5-93.3%). Afterwards, it was formed the list of documents that gave the most reliable input data for calculating CO_2 emissions from coal combustion at thermal power plants. This list is presented in Table A2.10.

According to the National standards DSTU ISO 17246:2010 "Coal. Proximate analysis", DSTU ISO 17247:2010 "Coal. Ultimate analysis", GOST 27313-95 (ISO 1170-77) "Mineral solid fuel. Designation of quality characteristics and the formula calculation results analysis for different bases of fuel", C^{daf} value is calculated from the analytical values of Ca, Aa, Wa obtained on samples enriched to ash content less than 10%. C^{daf} includes non-volatile carbon, carbon of volatile matter and carbon of carbonate mineral matter. However, since the carbonate content in Ukrainian coal is usually less than 2%, according to GOST 27313-95 (ISO 1170-77) carbonate carbon is not considered separately.

Thus, used in subsequent calculations C^{daf} values of thermal coal given in Ukrainian "Certificates of genetic, technological and qualitative characteristics" include both non-volatile carbon, and carbon, which is part of the volatile substances.

Table A2.10. Data sources for the estimates on physical and chemical properties for coals combusted at TPPs

№	Type of source	Name	Input data
1	The annual report	Form 3-tech-TPP "Technical &	Annual consumption of fuel B, tCE
	for each TPP	economic performance of the	The share of coal in the fuel bcoal, %
		equipment"	NCV Qir, kcal/kg
			Moisture content Wtr, %
			Ash content Ar, %
			Heat loss with unburned carbon q4, %
			(Average per year)
2	Certificate	Certificates of genetic, techno-	Organic carbon on dry ash-free coal base C ^{daf} , %
			(for 4 years)
		istics of coal products	
3	Statistical digest	Digests of quality, volume of	Weight fraction of producers and coal grades in groups of manu-
		coal mining and of coal pro-	factured coal:
		cessing products (annual)	grades A, P – group of low-reactive coal (V^{daf} < 18%)
			grades D, DG, G – group of bituminous coal ($V^{daf} = 35-45\%$)

According to the developed methodology [21] the mass of coal combusted is estimated as following:

$$B_{coal} = \left(B \cdot \frac{b_{coal}}{100}\right) \cdot \left(\frac{7000}{Q_i^r}\right), \text{ tons}$$
 (A5)

where B – annual consumption of fuel, tCE (by reports of 3-tech-TPP);

 b_{coal} – the part of coal in total fuel, % (by reports of 3-tech-TPP);

 Q_i^r – net calorific value of coal, kcal/kg (by reports of 3-tech-TPP).

NCV values for coals in MJ/kg can be estimated according to the formula:

$$NCV_{coal} = Q_i^r \cdot 4.187/1000, MJ/kg$$
 (A6)

where NCV_{coal} – NCV of coals combusted, MJ/kg.

Carbon content in the coals was estimated according to the formula:

$$K_c = 10 \cdot C^r / NCV_{coal}, \text{ t/TJ}$$
 where K_c – carbon content in coal, t/TJ; (A7)

C' - the part of carbon in coal on "as received" basis, % (by reports of 3-tech-TPP); and can be estimated as followed:

$$C^r = C^{daf} \cdot (1 - \frac{W_t^r}{100} - \frac{A^r}{100}), \%$$
 (A8)

where C^{daf} – the part of carbon in coal on "dry-ash-free" basis, %;

 W_t^r , A^r – moisture content and ash content on "as received" basis by reports of 3-tech-TPP;

Carbon oxidation factor was estimated as followed:

$$K_o = 1 - B_c / (B_{coal} \cdot \frac{c^r}{100})$$
, share (A9)

where K_o – carbon oxidation factor for coals combusted, share; B_c – the mass of unburned carbon, t, and estimated as:

$$B_c = (B \cdot q_4/100) \cdot (\frac{7000}{7800}), t$$
 (A10)

where 7800 kcal/kg (32.66 MJ/kg) – NCV of unburned carbon in flue ash and in slag, in accordance to industry standard GKD 34.09.103-96 "Calculation of reporting technical and economic indicators of thermal power plant equipment efficiency Guidance"; 7000 kcal/kg (29.31 MJ/kg) – NCV of CE; *q4* – heat loss with unburned carbon, % (by reports of 3-tech-TPP).

To determine the weighted average carbon content Cdaf for grades and groups of grades of Ukrainian thermal coal for the years 2003-2018 were used:

- the annual "Digests of quality, volume of coal mining and of coal processing products", published by the Institute «UkrNDIvuglezbagachennya»;
- the "Certificates of genetic, technological and qualitative characteristics" of coal products that they developed for a 4-year period for each manufacturer and type of coal by the institute "UkrNDIvuglezbagachennya";
- the Institute "UkrNDIvuglezbagachennya" intermediate report on the work "The generalization of carbon content dependence of coal quality per grades in different periods, which differ by varying share of contribution of domestic deposits of Donbas and Lviv-Volyn basin".

The data on TPP units are presented in the tables A.2.11 - A.2.14.

Table A2.11. Coal consumption at TPPs in Ukraine, th. tons

TPP	Grade	1990	1995	2000	2005	2011	2012	2013	2014	2015	2016	2017	2018
Zmiyivska	A,P/ G,DG	4204	3111	1870	2140	2840	3139	3213	2382	552	1086	647	1066
Tripilska	A,P/G, DG	1911	1960	1407	1285	2270	2564	2148	1803	1311	1434	464	1112
Vuglegirska	G, DG	1491	1963	1450	1725	2035	2596	1016	1608	2002	2241	1936	2012
Starobeshivska	A, P	3438	4033	2658	2232	2743	3035	3739	2721	2107	2211	2211	3274
Slovyanska	A, P	689	1159	1038	1303	1616	1346	1159	575	1075	1407	1049	1629
Luganska	A, P	2461	1238	2060	1937	2594	2747	2345	2128	1267	1606	1259	1063
Zuyivska	G, DG	1024	2668	2497	2441	3231	2629	3119	2087	1560	1776	1776	1680
Kurakhisvska	G, DG	4633	4855	2814	2662	3820	3424	3785	3303	3368	3504	3921	3669
Zaporizka	G, DG	3967	2891	2263	2074	2246	2165	2605	2482	2656	2366	2846	2864
Prydniprovska	A,P/G, DG	2061	3104	1486	1756	1944	1986	1943	1907	794	1354	689	908
Kryvorizka	A,P/G, DG	6539	4015	1510	1848	3402	3747	3236	3023	1241	2310	1222	1126
Ladyzhynska	G, DG	2854	3088	1818	1676	1740	2252	2823	2706	2746	2072	2601	2002
Burshtynska	G, DG	4523	4024	1892	3201	4391	4700	4748	4895	4845	4289	4483	5057
Dobrotvirska	G, DG	376	1037	1248	944	941	1139	972	912	1158	1164	1349	1240
Myronivska	G, DG	317	174	135	41	175	166	164	135	80	260	240	266
Myronivska	A, P	195	3	-	39	181	192	179	147	125	260	240	266
Totally in Ukrain	e	40684	39322	26146	27304	36168	37826	37193	32815	26888	29079	26692	28966

Table A2.12. NCV of coal supplied to TPPs in Ukraine, MJ/kg (as received)

TPP	1990	1995	2000	2005	2010	2012	2013	2014	2015	2016	2017	2018
Zmiyivska	20.75	19.28	19.23	22.00	21.91	23.03	23.00	22.08	23.54	23.23	22.48	21.85
Tripilska	19.28	19.05	18.37	22.27	21.89	22.82	22.91	22.23	23.36	21.93	21.73	22.29

TPP	1990	1995	2000	2005	2010	2012	2013	2014	2015	2016	2017	2018
Vuglegirska	18.07	17.77	19.40	20.70	21.45	22.57	22.51	22.71	22.39	22.35	21.86	22.20
Starobeshivska	20.22	20.86	18.31	19.82	21.95	22.55	22.02	23.17	23.15	23.30	23.30	23.30
Slovyanska	21.73	20.75	17.67	20.73	22.70	22.63	22.84	23.38	23.60	23.30	24.32	23.01
Luganska	18.16	19.24	18.41	24.23	23.90	24.43	25.03	24.94	23.17	23.51	23.84	23.52
Zuyivska	16.22	16.08	16.43	20.06	19.75	19.22	20.22	20.34	20.73	19.85	19.85	19.85
Kurakhisvska	14.89	15.47	15.39	18.55	17.88	17.67	18.87	17.93	17.94	17.38	18.07	18.67
Zaporizka	17.03	15.77	16.45	19.85	21.85	21.09	22.14	21.32	21.11	21.02	20.90	21.01
Prydniprovska	21.13	19.56	18.37	20.96	23.72	22.56	23.09	23.31	22.32	23.47	23.29	21.83
Kryvorizka	21.51	18.59	18.41	21.53	24.74	24.35	24.15	24.28	23.35	24.03	23.42	23.82
Ladyzhynska	14.74	13.98	12.90	19.78	20.76	20.73	21.32	20.39	20.40	20.91	20.83	20.93
Burshtynska	16.70	16.90	16.63	19.14	20.53	21.33	21.56	21.31	20.76	20.74	21.06	21.52
Dobrotvirska	18.74	17.69	15.47	21.42	21.31	22.44	22.46	21.99	20.81	21.01	21.15	21.99
Myronivska	13.69	13.47	16.48	17.48	17.95	18.57	18.77	18.51	19.00	19.98	19.69	18.61
Myronivska	21.14	18.23	0.00	23.02	20.51	20.57	20.63	20.84	22.64	19.98	19.09	10.01
Totally in Ukraine	18.45	17.68	17.13	20.58	21.58	21.88	22.04	21.83	21.29	21.46	21.21	21.51

Table A2.13. Carbon content factor Kc of coal supplied to TPPs in Ukraine, t/TJ

TPP	1990	1995	2000	2005	2010	2012	2013	2014	2015	2016	2017	2018
Zmiyivska	28.81	29.33	28.72	28.24	28.86	27.89	28.05	28.17	27.46	28.00	28.24	25.38
Tripilska	28.64	29.03	28.85	28.64	28.89	28.14	28.45	28.37	27.83	28.49	28.54	26.02
Vuglegirska	26.14	26.22	25.43	25.16	25.38	24.73	25.00	25.13	25.10	25.14	25.25	25.20
Starobeshivska	27.90	28.12	28.13	28.61	28.76	28.26	28.60	28.00	27.59	27.66	27.66	27.66
Slovyanska	28.23	28.90	28.82	28.41	28.51	28.28	28.27	27.95	27.68	27.66	27.45	27.52
Luganska	29.37	28.06	28.91	27.19	28.13	28.14	28.23	28.04	28.48	28.21	28.09	28.13
Zuyivska	27.02	27.06	26.63	25.56	25.89	25.70	25.61	25.60	25.38	25.73	25.73	25.73
Kurakhisvska	26.39	26.77	25.99	25.90	26.27	25.92	25.62	26.14	26.06	26.27	25.79	25.43
Zaporizka	26.75	26.59	25.83	25.33	25.17	25.35	25.45	25.68	25.32	25.30	25.28	25.27
Prydniprovska	28.82	29.52	28.92	28.67	28.21	28.22	28.27	28.05	28.38	27.81	27.97	25.34
Kryvorizka	27.79	28.25	28.33	27.64	27.21	27.23	27.29	27.23	27.59	27.10	27.52	27.07
Ladyzhynska	27.74	26.52	26.14	25.83	25.68	25.97	26.39	26.45	26.16	25.49	25.40	25.53
Burshtynska	27.41	26.65	25.99	25.65	25.54	25.39	25.58	25.68	25.75	25.92	25.65	25.34
Dobrotvirska	25.99	26.45	25.91	24.42	24.84	24.59	24.94	25.32	25.51	27.05	25.41	25.16
Myronivska	27.64	27.96	26.46	25.75	25.92	25.09	25.34	25.53	25.73	26.84	25.59	25.47
Myronivska	28.80	30.45	-	27.65	27.90	27.60	27.83	27.61	28.04	28.00	23.39	23.47
Totally in Ukraine	27.77	27.74	27.31	26.78	27.05	26.75	26.90	26.80	26.42	26.64	26.24	25.99

Table A2.14. Carbon oxidation factor Ko of coal at TPPs in Ukraine

TPP	1990	1995	2000	2005	2010	2012	2013	2014	2015	2016	2017	2018
Zmiyivska	0.914	0.886	0.906	0.913	0.944	0.956	0.954	0.924	0.945	0.927	0.969	0.993
Tripilska	0.896	0.880	0.837	0.875	0.921	0.930	0.928	0.921	0.934	0.930	0.930	0.967
Vuglegirska	0.994	0.993	0.996	0.997	0.997	0.998	0.998	0.998	0.997	0.997	0.997	0.997
Starobeshivska	0.898	0.899	0.906	0.850	0.922	0.954	0.949	0.957	0.956	0.958	0.958	0.958
Slovyanska	0.964	0.898	0.889	0.915	0.952	0.949	0.961	0.975	0.968	0.970	0.967	0.960
Luganska	0.851	0.784	0.774	0.944	0.948	0.954	0.955	0.952	0.936	0.936	0.939	0.945
Zuyivska	0.992	0.993	0.991	0.995	0.995	0.996	0.997	0.997	0.997	0.997	0.997	0.997
Kurakhisvska	0.955	0.968	0.959	0.976	0.977	0.976	0.977	0.976	0.976	0.974	0.976	0.978
Zaporizka	0.994	0.992	0.992	0.994	0.996	0.995	0.996	0.996	0.995	0.995	0.996	0.996
Prydniprovska	0.900	0.908	0.873	0.902	0.930	0.895	0.898	0.903	0.901	0.915	0.922	0.983

TPP	1990	1995	2000	2005	2010	2012	2013	2014	2015	2016	2017	2018
Kryvorizka	0.966	0.947	0.955	0.958	0.949	0.956	0.949	0.938	0.918	0.933	0.926	0.926
Ladyzhynska	0.988	0.987	0.983	0.995	0.996	0.995	0.996	0.995	0.995	0.996	0.995	0.996
Burshtynska	0.988	0.988	0.980	0.979	0.983	0.985	0.987	0.986	0.986	0.984	0.988	0.987
Dobrotvirska	0.980	0.974	0.964	0.980	0.982	0.986	0.987	0.987	0.983	0.983	0.981	0.984
Myronivska	0.935	0.887	0.973	0.990	0.990	0.990	0.990	0.990	0.990	0.968	0.988	0.994
Myronivska	0.562	0.606	-	0.937	0.973	0.977	0.970	0.972	0.961	0.927	0.988	0.394
Totally in Ukraine	0.943	0.937	0.926	0.948	0.961	0.965	0.965	0.963	0.971	0.968	0.976	0.979

In 1990-1991 the share of coal in coal-firing power units did not exceed 52% in terms of coal equivalent (CE), but in the years 1993-2001 it ranged from 65 to 80%. In 2002, due to the above mentioned coal quality improvement, it became possible to reduce oil and gas addition when coal firing, so the share of coal in coal-firing power units started to grow, and since 2009 it has stabilized at 96-98%.

In 1990-1994 years the consumption of low-reactive coal at thermal power plants significantly exceed the consumption of bituminous coal, then within 20 years their consumption in CE units was almost the same, but since 2014 the share of anthracite significantly reduced.

A2.6.3 Motor fuels

In 2017, research work "Capacity building of the national GHG inventory system in terms of the development of methodological recommendations for determining national GHG emission factors from the use of motor fuels in the transport sector" was carried out by Ricardo Energy & Environment (United Kingdom), State Enterprise State Road Transport Research Institute (Ukraine) and MASMA (Ukraine) under the Clima East Policy Project [27] and implemented in current submission.

According to the results of the research work, carbon content and NCV for gasoline, diesel oil and LPG (see Table A2.4) consumed in Ukraine were determined for 2014, as well as retrospective values obtained for the whole period up to 1990.

According to the recommendations of research work authors the data in 2015, 2016, 2017, 2018 were taken based on 2014.

Applied method is based on the theoretical approach and has been focused on an assessment of the chemical structure of each component in the fuel, namely the mix of different hydrocarbons and their properties, and the proportions of each component in the final fuel formulation. The method takes into account the carbon, hydrogen, oxygen and sulphur content of each individual hydrocarbon, its mass density and its thermodynamic properties.

The general principle of the approach was to consider the number of component fuels from different parts of the refinery process that makes up the blend of fuel and the chemical composition of each of the component parts. The considerations were based on fuel production industry data, fuel standards and expert knowledge of the refinery processing of fuel formulations that have made up the types of gasoline, diesel oil and LPG available on the market in Ukraine since 1990.

At the first stage of the study representative types of market fuels available since 2014 were identified for gasoline, diesel oil and LPG and a market share for each representative fuel type was obtained. At the second stage, blend of components for different fuel types, the chemical composition of components and respectively for the fuel types in whole were evaluated so the carbon content for different fuel types was identified. At the third stage, NCVs for different fuel types were estimated according to Mendeleev formula [27]:

$$NCV (MJ/kg) = 0.339*C+1.256*H-0.109*(O-S)-0.025*(W-9H);$$
(A11)

where C, H, O, S and W are the mass fractions of carbon, hydrogen, oxygen, sulphur and water in the fuel.

For gasoline the components of 15 different representative types of market fuels available since 1990 were considered as well as the market share of each type in Ukraine in each year from 1990-2014. These are refferred to as "Average Fuel Brand Representative (AFBR)".

For diesel oil the components of 12 different representative types of market fuels available since 1990 were considered as well as the market share of each type in Ukraine in each year from 1990-2014. Again, these are refferred to as AFBR.

A similar model for LPG as for gasoline and diesel oil was developed, but based on one single AFBR fuel type with a defined mix of these simple components that was considered valid over the whole period from 1990-2014. The AFBR is characterized by a 47% propane component, 47% butane component, 4.9% 'other hydrocarbons' and the remaining mass being non-hydrocarbon residue (including water).

A2.7 Methods to estimate GHG emissions from aircraft equipped with jet engines

To assess GHG emissions from civil aviation aircraft equipped with jet engines, the method was used that corresponds to Tier 3 in accordance with [1]. As activity data, data on aircraft (AC) departures from airports situated in the territory of Ukraine were used. Data on departures (hereinafter - the departure database (DDB)) were provided by the State Enterprise for Air Traffic Service of Ukraine (SE "Ukraeroruh"), and they include the following information for each departure:

- date and time of departure;
- airport of departure and destination;
- airline;
- ICAO code of the AC.

GHG emissions from AC was performed in two stages: preliminary data processing and calculation of GHG emissions.

A2.7.1 Data preprocessing

Data preprocessing included removing entries from the DDB on departures meeting the following criteria:

- the AC is a helicopter;
- the AC is a military one;
- the AC's engine is a piston one;
- the airport of departure and destination is the same;
- the AC's code is not defined.

A2.7.2 Distribution of GHG emissions between domestic and international aviation

The approach applied to distribution of GHG emissions between domestic and international aviation is consistent with the approach described in [1]. Emissions from domestic aviation include emissions from AC operations where the departure and destination airports are located in the territory of Ukraine. Emissions from international aviation include emissions from AC operations where the departure airport is located in the territory of Ukraine, while the destination airport is outside of Ukraine, or vice versa.

A2.7.3 Estimation of GHG emissions

The GHG estimation was performed in accordance with the detailed methodology EMEP/CORINAIR, 2013 [23], which corresponds to Tier 3 of [1].

Fuel consumption for the "take-off and landing" cycle was taken according to the EMEP/CORINAIR methodology [23], as well as fuel consumption during cruise flight was calculated on the basis of this methodology.

To convert jet fuel consumption from mass units, as shown in the EMEP/CORINAIR methodology [23], into energy ones, the net calorific value was used, which is 44.1 MJ/kg in accordance with [1].

When calculating emissions of CO₂, the carbon emission factor for jet fuel was assumed to be 19.5 t of C/TJ according to [1].

Emissions of CO, NOx, NMVOC, N₂O, SO₂, and CH₄ were adopted based on the EMEP/CORINAIR methodology with the data on the type of aircraft and the flight length.

The algorithm for matching the AC type that actually performed the flight and the representative AC, fuel consumption and GHG emission data for which are presented in the EMEP/CORINAIR methodology, Tables A2.15-A2.21 were used.

Table A2.15. The correspondence between the representative AC type and the AC type that actually performed the flight

Sentative AC	Name of the repre-	ICAO code	Name of the rep-	ICAO code	Name of the rep-	ICAO code
A310 A30B Beech AN28 DHC8 A140 A310 A310 Beech B350 DHC8 A748 A320 A318 Beech BE10 DHC8 AN24 A320 A319 Beech BE20 DHC8 AN26 A320 A320 Beech BE90 DHC8 AN32 A330 A321 Beech BE91 DHC8 AN32 A330 A332 Beech BE91 DHC8 AT43 A340 A343 Beech C425 DHC8 AT45 A340 A345 Beech D228 DHC8 AT75 A340 A345 Beech DHC6 DHC8 ATLA A340 A345 Beech DHC8 ATP A340 A345 Beech DHC8 ATP A340 C17 Beech DHC8 ATP ATR72 AN12 Beech PUC8 C16	sentative AC	of the AC	resentative AC	of the AC		of the AC
A310 A310 Beech B350 DHC8 A748 A320 A318 Beech BE10 DHC8 AN24 A320 A319 Beech BE20 DHC8 AN30 A320 A321 Beech BE91 DHC8 AN30 A330 A331 Beech BE91 DHC8 AN43 A330 A333 Beech BE97 DHC8 AT43 A340 A342 Beech C425 DHC8 AT75 A340 A343 Beech D228 DHC8 AT75 A340 A345 Beech D1C6 DHC8 ATLA A340 A346 Beech DHC8 ATP A340 A346 Beech DHC8 ATP A340 A342 Beech DHC8 ATP A340 A347 Beech DHC8 ATP A340 A347 Beech DHC8 B190 AFR72 <td></td> <td>A306</td> <td>Beech</td> <td></td> <td></td> <td>YK42</td>		A306	Beech			YK42
A320 A318 Beech BE10 DHC8 AN24 A320 A319 Beech BE20 DHC8 AN36 A320 A321 Beech BE30 DHC8 AN30 A320 A321 Beech BE9L DHC8 AN32 A330 A332 Beech C425 DHC8 AT43 A340 A342 Beech C425 DHC8 AT75 A340 A343 Beech D1C8 AT75 A340 A343 Beech D1C8 AT7 A340 A345 Beech DHC8 ATTA A340 A346 Beech DHC8 ATLA A340 C17 Beech MU2 DHC8 BE12 ATR72 AN12 Beech MU2 DHC8 BE12 ATR72 AN22 Beech PAY1 DHC8 C160 ATR72 AN70 Beech PAY2 DHC8 C212 <	A310	A30B	Beech	AN28	DHC8	A140
A320 A319 Beech BE20 DHC8 AN26 A320 A320 Beech BE30 DHC8 AN30 A320 A321 Beech BE91 DHC8 AN32 A330 A332 Beech BE97 DHC8 AT43 A330 A333 Beech C425 DHC8 AT45 A340 A342 Beech D228 DHC8 AT75 A340 A343 Beech DHC6 DHC8 AT75 A340 A345 Beech DHC6 DHC8 ATLA A340 A346 Beech F406 DHC8 ATLA A340 A346 Beech F406 DHC8 ATLA A340 A346 Beech F406 DHC8 ATLA A340 A342 Beech F406 DHC8 ATLA A340 AXIV2 Beech P180 DHC8 C100 ATR72 AN12 B	A310	A310	Beech	B350	DHC8	A748
A320 A320 Beech BE30 DHC8 AN30 A320 A321 Beech BE9L DHC8 AN32 A330 A333 Beech BE9T DHC8 AT43 A340 A342 Beech C425 DHC8 AT75 A340 A342 Beech D228 DHC8 AT75 A340 A343 Beech D228 DHC8 AT75 A340 A343 Beech DHC6 DHC8 ATLA A340 A345 Beech DHC6 DHC8 ATLA A340 A346 Beech PH06 DHC8 ATP A340 C17 Beech L410 DHC8 BE12 ATR72 AN12 Beech MU2 DHC8 BE12 ATR72 AN22 Beech P180 DHC8 C160 ATR72 AN22 Beech PAY1 DHC8 C27J ATR72 C130 Be	A320	A318	Beech	BE10	DHC8	AN24
A320 A321 Beech BE9L DHC8 AN32 A330 A332 Beech BE9T DHC8 AT43 A330 A332 Beech C425 DHC8 AT45 A340 A342 Beech C441 DHC8 AT75 A340 A343 Beech DD28 DHC8 AT75 A340 A345 Beech DHC6 DHC8 ATLA A340 A346 Beech F406 DHC8 ATLA A340 A346 Beech F406 DHC8 ATLA A340 A346 Beech F406 DHC8 ATLA A340 C17 Beech MU2 DHC8 B190 ATR72 AN12 Beech MU2 DHC8 C160 ATR72 AN12 Beech PAY1 DHC8 C212 ATR72 AN70 Beech PAY2 DHC8 C221 ATR72 L138 Be	A320	A319	Beech	BE20	DHC8	AN26
A330 A332 Beech BE9T DHC8 AT43 A330 A333 Beech C425 DHC8 AT45 A340 A342 Beech C441 DHC8 AT72 A340 A343 Beech D228 DHC8 AT75 A340 A345 Beech DHC6 DHC8 ATLA A340 A346 Beech F406 DHC8 B190 ATR72 AN12 Beech MU2 DHC8 B190 ATR72 AN12 Beech MU2 DHC8 BE12 ATR72 AN12 Beech P180 DHC8 C160 ATR72 AN22 Beech P180 DHC8 C212 ATR72 AN70 Beech PAY1 DHC8 C271 ATR72 C130 Beech PAY3 DHC8 C271 ATR72 IL18 Beech PAY4 DHC8 CL27 ATR72 IL18 <	A320	A320	Beech	BE30	DHC8	AN30
A330 A333 Beech C425 DHC8 AT45 A340 A342 Beech C441 DHC8 AT72 A340 A343 Beech D228 DHC8 AT75 A340 A345 Beech DHC6 DHC8 ATLA A340 C17 Beech L410 DHC8 B190 ATR72 AN12 Beech MU2 DHC8 B190 ATR72 AN12 Beech MU2 DHC8 B122 ATR72 AN22 Beech PAY1 DHC8 C160 ATR72 AN70 Beech PAY1 DHC8 C212 ATR72 C130 Beech PAY2 DHC8 C227 ATR72 IL18 Beech PAY3 DHC8 C227 ATR72 IL18 Beech STAR DHC8 CL2T ATR72 IL18 Beech STAR DHC8 CL2T ATR72 B73 <t< td=""><td>A320</td><td>A321</td><td>Beech</td><td>BE9L</td><td>DHC8</td><td>AN32</td></t<>	A320	A321	Beech	BE9L	DHC8	AN32
A340 A342 Beech C441 DHC8 AT72 A340 A343 Beech D228 DHC8 AT75 A340 A345 Beech DHC6 DHC8 ATLA A340 A346 Beech F406 DHC8 ATP A340 C17 Beech L410 DHC8 B190 ATR72 AN12 Beech MU2 DHC8 BE19 ATR72 AN12 Beech P180 DHC8 C160 ATR72 AN70 Beech PAY1 DHC8 C212 ATR72 AN70 Beech PAY1 DHC8 C212 ATR72 C30 Beech PAY2 DHC8 C27J ATR72 IL18 Beech PAY3 DHC8 C295 ATR72 IL38 Beech STAR DHC8 CL2T ATR72 IL38 Beech SW3 DHC8 CN35 ATR72 B73	A330	A332	Beech	BE9T	DHC8	AT43
A340 A343 Beech DD228 DHC8 AT75 A340 A345 Beech DHC6 DHC8 ATLA A340 A346 Beech F406 DHC8 ATP A340 C17 Beech F406 DHC8 B190 ATR72 AN12 Beech MU2 DHC8 BE12 ATR72 AN22 Beech P180 DHC8 C160 ATR72 AN70 Beech PAY1 DHC8 C212 ATR72 C130 Beech PAY2 DHC8 C27J ATR72 G30J Beech PAY3 DHC8 C27J ATR72 IL18 Beech PAY4 DHC8 CL2T ATR72 IL18 Beech STAR DHC8 CL2T ATR72 IL38 Beech STAR DHC8 CN35 ATR72 IL38 Beech SW3 DHC8 D188 B727 B703 <	A330	A333	Beech	C425	DHC8	AT45
A340 A345 Beech DHC6 DHC8 ATLA A340 A346 Beech F406 DHC8 ATP A340 C17 Beech L410 DHC8 B190 ATR72 AN12 Beech MU2 DHC8 BE12 ATR72 AN22 Beech P180 DHC8 C160 ATR72 AN70 Beech PAY1 DHC8 C212 ATR72 C130 Beech PAY2 DHC8 C271 ATR72 C301 Beech PAY2 DHC8 C295 ATR72 IL18 Beech PAY4 DHC8 CL2T ATR72 II.38 Beech STAR DHC8 CN35 ATR72 P3 Beech SW3 DHC8 D328 B727 B70 Beech SW4 DHC8 DH8A B727 B712 Beech SW4 DHC8 DH8B B737-100 B733 <td< td=""><td>A340</td><td>A342</td><td>Beech</td><td>C441</td><td>DHC8</td><td>AT72</td></td<>	A340	A342	Beech	C441	DHC8	AT72
A340 A346 Beech F406 DHC8 ATP A340 C17 Beech L410 DHC8 B190 ATR72 AN12 Beech MU2 DHC8 BE12 ATR72 AN22 Beech P180 DHC8 C160 ATR72 AN70 Beech PAY1 DHC8 C212 ATR72 C130 Beech PAY2 DHC8 C27J ATR72 C301 Beech PAY3 DHC8 C295 ATR72 IL18 Beech PAY4 DHC8 CL2T ATR72 IL18 Beech STAR DHC8 CN35 ATR72 IL38 Beech SW3 DHC8 CN35 ATR72 B73 Beech SW4 DHC8 DHSA B727 B703 Beech SW4 DHC8 DHSA B727 B712 Cassna ASTR DHC8 DHSC B727 B721	A340	A343	Beech	D228	DHC8	AT75
A340 C17 Beech L410 DHC8 B190 ATR72 AN12 Beech MU2 DHC8 BE12 ATR72 AN22 Beech P180 DHC8 C160 ATR72 AN70 Beech PAY1 DHC8 C212 ATR72 C130 Beech PAY2 DHC8 C27J ATR72 IL18 Beech PAY3 DHC8 C2295 ATR72 IL18 Beech PAY4 DHC8 CL2T ATR72 IL18 Beech PAY4 DHC8 CL2T ATR72 IL18 Beech STAR DHC8 CN35 ATR72 IL18 Beech SW3 DHC8 D328 B727 B73 Beech SW4 DHC8 D48A B727 B712 Beech SW4 DHC8 DH8C B727 B721 Cassna ASTR DHC8 DH8C B737-100 B732	A340	A345	Beech	DHC6	DHC8	ATLA
ATR72 AN12 Beech MU2 DHC8 BE12 ATR72 AN22 Beech P180 DHC8 C160 ATR72 AN70 Beech PAY1 DHC8 C212 ATR72 C130 Beech PAY2 DHC8 C27J ATR72 C30J Beech PAY3 DHC8 C295 ATR72 IL18 Beech PAY4 DHC8 CL2T ATR72 II.38 Beech PAY4 DHC8 CL2T ATR72 II.38 Beech STAR DHC8 CN35 ATR72 II.38 Beech SW3 DHC8 D328 B727 B73 Beech SW4 DHC8 DH8A B727 B712 Beech SW4 DHC8 DH8B B727 B721 Cassna ASTR DHC8 DH8C B737-100 B732 Cassna C25A DHC8 E120 B737-400 B733 <td>A340</td> <td>A346</td> <td>Beech</td> <td>F406</td> <td>DHC8</td> <td>ATP</td>	A340	A346	Beech	F406	DHC8	ATP
ATR72 AN22 Beech P180 DHC8 C160 ATR72 AN70 Beech PAY1 DHC8 C212 ATR72 C130 Beech PAY2 DHC8 C27J ATR72 C30J Beech PAY3 DHC8 C295 ATR72 II.18 Beech PAY4 DHC8 CL2T ATR72 II.38 Beech STAR DHC8 CN35 ATR72 II.38 Beech SW3 DHC8 D328 B727 B703 Beech SW4 DHC8 DH8A B727 B703 Beech SW4 DHC8 DH8A B727 B712 Beech SW4 DHC8 DH8B B727 B721 Cassna ASTR DHC8 DH8D B737-100 B732 Cassna C25A DHC8 E120 B737-400 B734 Cassna C25C DHC8 F27 B737-400 B735<	A340	C17	Beech	L410	DHC8	B190
ATR72 AN70 Beech PAY1 DHC8 C212 ATR72 C130 Beech PAY2 DHC8 C27J ATR72 C30J Beech PAY3 DHC8 C295 ATR72 IL18 Beech PAY4 DHC8 CL2T ATR72 IL38 Beech STAR DHC8 CN35 ATR72 P3 Beech SW3 DHC8 DS328 B727 B703 Beech SW4 DHC8 DH8A B727 B712 Beech SW4 DHC8 DH8B B727 B721 Cassna ASTR DHC8 DH8C B737 B722 Cassna BE40 DHC8 DH8D B737-100 B733 Cassna C25A DHC8 E120 B737-400 B734 Cassna C25C DHC8 F27 B737-400 B736 Cassna C500 DHC8 F50 B737-400 B738	ATR72	AN12	Beech	MU2	DHC8	BE12
ATR72 C130 Beech PAY2 DHC8 C27J ATR72 C30J Beech PAY3 DHC8 C295 ATR72 II.18 Beech PAY4 DHC8 CL2T ATR72 II.38 Beech STAR DHC8 CN35 ATR72 P3 Beech SW3 DHC8 D328 B727 B703 Beech SW4 DHC8 DH8A B727 B712 Beech SW4 DHC8 DH8B B727 B721 Cassna ASTR DHC8 DH8C B727 B722 Cassna BE40 DHC8 DH8D B737-100 B732 Cassna C25A DHC8 E120 B737-400 B733 Cassna C25C DHC8 F27 B737-400 B735 Cassna C500 DHC8 F50 B737-400 B736 Cassna C500 DHC8 F50 B737-400	ATR72	AN22	Beech	P180	DHC8	C160
ATR72 C30J Beech PAY3 DHC8 C295 ATR72 IIL18 Beech PAY4 DHC8 CL2T ATR72 II.38 Beech STAR DHC8 CN35 ATR72 P3 Beech SW3 DHC8 D328 B727 B703 Beech SW4 DHC8 DH8A B727 B712 Beech SW4 DHC8 DH8B B727 B712 Beech SW4 DHC8 DH8B B727 B721 Cassna ASTR DHC8 DH8C B727 B722 Cassna BE40 DHC8 DH8D B737-100 B732 Cassna C25A DHC8 E120 B737-100 B733 Cassna C25B DHC8 E121 B737-400 B734 Cassna C25C DHC8 F27 B737-400 B736 Cassna C500 DHC8 J531 B737-400	ATR72	AN70	Beech	PAY1	DHC8	C212
ATR72 IIL18 Beech PAY4 DHC8 CL2T ATR72 IIL38 Beech STAR DHC8 CN35 ATR72 P3 Beech SW3 DHC8 D328 B727 B703 Beech SW4 DHC8 DH8A B727 B712 Beech SW4 DHC8 DH8B B727 B721 Cassna ASTR DHC8 DH8C B727 B722 Cassna BE40 DHC8 DH8D B737-100 B732 Cassna C25A DHC8 E120 B737-100 B733 Cassna C25B DHC8 E121 B737-400 B733 Cassna C25C DHC8 F27 B737-400 B735 Cassna C500 DHC8 F50 B737-400 B736 Cassna C501 DHC8 JS31 B737-400 B738 Cassna C510 DHC8 JS32 B737-400	ATR72	C130	Beech	PAY2	DHC8	C27J
ATR72 IIL18 Beech PAY4 DHC8 CL2T ATR72 IIL38 Beech STAR DHC8 CN35 ATR72 P3 Beech SW3 DHC8 D328 B727 B703 Beech SW4 DHC8 DH8A B727 B712 Beech SW4 DHC8 DH8B B727 B721 Cassna ASTR DHC8 DH8C B727 B721 Cassna BE40 DHC8 DH8D B737 B792 Cassna BE40 DHC8 DH8D B737-100 B733 Cassna C25A DHC8 E120 B737-100 B733 Cassna C25B DHC8 E121 B737-400 B734 Cassna C500 DHC8 F50 B737-400 B736 Cassna C501 DHC8 JS31 B737-400 B738 Cassna C510 DHC8 JS32 B737-400	ATR72	C30J	Beech	PAY3	DHC8	C295
ATR72 P3 Beech SW3 DHC8 D328 B727 B703 Beech SW4 DHC8 DH8A B727 B712 Beech SW4 DHC8 DH8B B727 B721 Cassna ASTR DHC8 DH8C B727 B722 Cassna BE40 DHC8 DH8D B737-100 B732 Cassna C25A DHC8 E120 B737-100 B733 Cassna C25B DHC8 E121 B737-400 B733 Cassna C25C DHC8 F27 B737-400 B735 Cassna C500 DHC8 F50 B737-400 B736 Cassna C510 DHC8 JS31 B737-400 B738 Cassna C525 DHC8 JS32 B737-400 B738 Cassna C550 DHC8 JS32 B737-400 B739 Cassna C550 DHC8 SB20 B747-100-30	ATR72	IL18	Beech	PAY4	DHC8	
B727 B703 Beech SW4 DHC8 DH8A B727 B712 Beech SW4 DHC8 DH8B B727 B721 Cassna ASTR DHC8 DH8C B727 B722 Cassna BE40 DHC8 DH8D B737-100 B732 Cassna C25A DHC8 E120 B737-100 B733 Cassna C25B DHC8 E121 B737-400 B734 Cassna C25C DHC8 F27 B737-400 B735 Cassna C500 DHC8 F50 B737-400 B736 Cassna C501 DHC8 G159 B737-400 B737 Cassna C510 DHC8 JS31 B737-400 B738 Cassna C525 DHC8 JS32 B737-400 B739 Cassna C550 DHC8 SB20 B747-100-300 B742 Cassna C550 DHC8 SB20	ATR72	IL38	Beech	STAR	DHC8	CN35
B727 B712 Beech SW4 DHC8 DH8B B727 B721 Cassna ASTR DHC8 DH8C B727 B722 Cassna BE40 DHC8 DH8D B737-100 B732 Cassna C25A DHC8 E120 B737-100 B733 Cassna C25B DHC8 E121 B737-400 B734 Cassna C25C DHC8 F27 B737-400 B735 Cassna C500 DHC8 F50 B737-400 B736 Cassna C501 DHC8 G159 B737-400 B737 Cassna C510 DHC8 JS31 B737-400 B738 Cassna C525 DHC8 JS32 B737-400 B739 Cassna C550 DHC8 SB20 B747-100-300 B742 Cassna C550 DHC8 SF34 B747-100-300 B743 Cassna C560 DHC8 SH36	ATR72	P3	Beech	SW3	DHC8	D328
B727 B721 Cassna ASTR DHC8 DH8C B727 B722 Cassna BE40 DHC8 DH8D B737-100 B732 Cassna C25A DHC8 E120 B737-100 B733 Cassna C25B DHC8 E121 B737-400 B734 Cassna C25C DHC8 F27 B737-400 B735 Cassna C500 DHC8 F50 B737-400 B736 Cassna C501 DHC8 G159 B737-400 B737 Cassna C510 DHC8 JS31 B737-400 B738 Cassna C525 DHC8 JS32 B737-400 B738 Cassna C550 DHC8 SB20 B747-100-300 B742 Cassna C550 DHC8 SF34 B747-100-300 B743 Cassna C560 DHC8 SH36 B747-100-300 IL76 Cassna C56X F100 A148	B727	B703	Beech	SW4	DHC8	DH8A
B727 B722 Cassna BE40 DHC8 DH8D B737-100 B732 Cassna C25A DHC8 E120 B737-100 B733 Cassna C25B DHC8 E121 B737-400 B734 Cassna C25C DHC8 F27 B737-400 B735 Cassna C500 DHC8 F50 B737-400 B736 Cassna C501 DHC8 G159 B737-400 B737 Cassna C510 DHC8 JS31 B737-400 B738 Cassna C525 DHC8 JS32 B737-400 B739 Cassna C550 DHC8 SB20 B747-100-300 B742 Cassna C550 DHC8 SF34 B747-100-300 B743 Cassna C560 DHC8 SH36 B747-100-300 IL76 Cassna C56X F100 A148 B747-100-300 IL86 Cassna E50P F100 C680	B727	B712	Beech	SW4	DHC8	DH8B
B737-100 B732 Cassna C25A DHC8 E120 B737-100 B733 Cassna C25B DHC8 E121 B737-400 B734 Cassna C25C DHC8 F27 B737-400 B735 Cassna C500 DHC8 F50 B737-400 B736 Cassna C501 DHC8 G159 B737-400 B737 Cassna C510 DHC8 JS31 B737-400 B738 Cassna C525 DHC8 JS32 B737-400 B739 Cassna C550 DHC8 SB20 B747-100-300 B742 Cassna C550 DHC8 SF34 B747-100-300 B743 Cassna C560 DHC8 SH36 B747-100-300 IL76 Cassna C56X F100 A148 B747-100-300 IL86 Cassna E50P F100 C680 B747-100-300 IL96 Cassna E55P F100 C750<	B727	B721	Cassna	ASTR	DHC8	DH8C
B737-100 B732 Cassna C25A DHC8 E120 B737-100 B733 Cassna C25B DHC8 E121 B737-400 B734 Cassna C25C DHC8 F27 B737-400 B735 Cassna C500 DHC8 F50 B737-400 B736 Cassna C501 DHC8 G159 B737-400 B737 Cassna C510 DHC8 JS31 B737-400 B738 Cassna C525 DHC8 JS32 B737-400 B739 Cassna C550 DHC8 SB20 B747-100-300 B742 Cassna C550 DHC8 SF34 B747-100-300 B743 Cassna C560 DHC8 SH36 B747-100-300 IL76 Cassna C650 F100 A148 B747-100-300 IL86 Cassna E50P F100 C680 B747-100-300 IL96 Cassna E55P F100 C750<	B727				DHC8	
B737-100 B733 Cassna C25B DHC8 E121 B737-400 B734 Cassna C25C DHC8 F27 B737-400 B735 Cassna C500 DHC8 F50 B737-400 B736 Cassna C501 DHC8 G159 B737-400 B737 Cassna C510 DHC8 JS31 B737-400 B738 Cassna C525 DHC8 JS32 B737-400 B739 Cassna C550 DHC8 SB20 B747-100-300 B742 Cassna C551 DHC8 SF34 B747-100-300 B743 Cassna C560 DHC8 SH36 B747-100-300 IL76 Cassna C56X F100 A148 B747-100-300 IL86 Cassna E50P F100 C680 B747-100-300 IL96 Cassna E55P F100 C750 B747-400*1.5 A225 Cassna EA50 F100 C	B737-100	B732	Cassna	C25A	DHC8	E120
B737-400 B735 Cassna C500 DHC8 F50 B737-400 B736 Cassna C501 DHC8 G159 B737-400 B737 Cassna C510 DHC8 JS31 B737-400 B738 Cassna C525 DHC8 JS32 B737-400 B739 Cassna C550 DHC8 SB20 B747-100-300 B742 Cassna C551 DHC8 SF34 B747-100-300 B743 Cassna C560 DHC8 SH36 B747-100-300 C5 Cassna C56X F100 A148 B747-100-300 IL76 Cassna C650 F100 A158 B747-100-300 IL86 Cassna E50P F100 C680 B747-100-300 IL96 Cassna E55P F100 C750 B747-400*1.5 A225 Cassna EA50 F100 CL30		B733	Cassna	C25B	DHC8	E121
B737-400 B735 Cassna C500 DHC8 F50 B737-400 B736 Cassna C501 DHC8 G159 B737-400 B737 Cassna C510 DHC8 JS31 B737-400 B738 Cassna C525 DHC8 JS32 B737-400 B739 Cassna C550 DHC8 SB20 B747-100-300 B742 Cassna C551 DHC8 SF34 B747-100-300 B743 Cassna C560 DHC8 SH36 B747-100-300 C5 Cassna C56X F100 A148 B747-100-300 IL76 Cassna C650 F100 A158 B747-100-300 IL86 Cassna E50P F100 C680 B747-100-300 IL96 Cassna E55P F100 C750 B747-400*1.5 A225 Cassna EA50 F100 CL30	B737-400	B734	Cassna	C25C	DHC8	F27
B737-400 B736 Cassna C501 DHC8 G159 B737-400 B737 Cassna C510 DHC8 JS31 B737-400 B738 Cassna C525 DHC8 JS32 B737-400 B739 Cassna C550 DHC8 SB20 B747-100-300 B742 Cassna C551 DHC8 SF34 B747-100-300 B743 Cassna C560 DHC8 SH36 B747-100-300 C5 Cassna C56X F100 A148 B747-100-300 IL76 Cassna C650 F100 A158 B747-100-300 IL86 Cassna E50P F100 C680 B747-100-300 IL96 Cassna E55P F100 C750 B747-400*1.5 A225 Cassna EA50 F100 CL30				C500	DHC8	F50
B737-400 B737 Cassna C510 DHC8 JS31 B737-400 B738 Cassna C525 DHC8 JS32 B737-400 B739 Cassna C550 DHC8 SB20 B747-100-300 B742 Cassna C551 DHC8 SF34 B747-100-300 B743 Cassna C560 DHC8 SH36 B747-100-300 C5 Cassna C56X F100 A148 B747-100-300 IL76 Cassna C650 F100 A158 B747-100-300 IL86 Cassna E50P F100 C680 B747-100-300 IL96 Cassna E55P F100 C750 B747-400*1.5 A225 Cassna EA50 F100 CL30						G159
B737-400 B738 Cassna C525 DHC8 JS32 B737-400 B739 Cassna C550 DHC8 SB20 B747-100-300 B742 Cassna C551 DHC8 SF34 B747-100-300 B743 Cassna C560 DHC8 SH36 B747-100-300 C5 Cassna C56X F100 A148 B747-100-300 IL76 Cassna C650 F100 A158 B747-100-300 IL86 Cassna E50P F100 C680 B747-100-300 IL96 Cassna E55P F100 C750 B747-400*1.5 A225 Cassna EA50 F100 CL30						JS31
B737-400 B739 Cassna C550 DHC8 SB20 B747-100-300 B742 Cassna C551 DHC8 SF34 B747-100-300 B743 Cassna C560 DHC8 SH36 B747-100-300 C5 Cassna C56X F100 A148 B747-100-300 IL76 Cassna C650 F100 A158 B747-100-300 IL86 Cassna E50P F100 C680 B747-100-300 IL96 Cassna E55P F100 C750 B747-400*1.5 A225 Cassna EA50 F100 CL30						
B747-100-300 B742 Cassna C551 DHC8 SF34 B747-100-300 B743 Cassna C560 DHC8 SH36 B747-100-300 C5 Cassna C56X F100 A148 B747-100-300 IL76 Cassna C650 F100 A158 B747-100-300 IL86 Cassna E50P F100 C680 B747-100-300 IL96 Cassna E55P F100 C750 B747-400*1.5 A225 Cassna EA50 F100 CL30						
B747-100-300 B743 Cassna C560 DHC8 SH36 B747-100-300 C5 Cassna C56X F100 A148 B747-100-300 IL76 Cassna C650 F100 A158 B747-100-300 IL86 Cassna E50P F100 C680 B747-100-300 IL96 Cassna E55P F100 C750 B747-400*1.5 A225 Cassna EA50 F100 CL30						
B747-100-300 C5 Cassna C56X F100 A148 B747-100-300 IL76 Cassna C650 F100 A158 B747-100-300 IL86 Cassna E50P F100 C680 B747-100-300 IL96 Cassna E55P F100 C750 B747-400*1.5 A225 Cassna EA50 F100 CL30						
B747-100-300 IL76 Cassna C650 F100 A158 B747-100-300 IL86 Cassna E50P F100 C680 B747-100-300 IL96 Cassna E55P F100 C750 B747-400*1.5 A225 Cassna EA50 F100 CL30						
B747-100-300 IL86 Cassna E50P F100 C680 B747-100-300 IL96 Cassna E55P F100 C750 B747-400*1.5 A225 Cassna EA50 F100 CL30	B747-100-300			C650		A158
B747-100-300 IL96 Cassna E55P F100 C750 B747-400*1.5 A225 Cassna EA50 F100 CL30	B747-100-300					
B747-400*1.5 A225 Cassna EA50 F100 CL30	B747-100-300				F100	
	B747-400*1.5			EA50	F100	
	B747-400	A124		F2TH	F100	
B747-400 B744 Cassna F900 F100 E135	B747-400		Cassna	F900	F100	
B747-400 B748 Cassna FA10 F100 E145	B747-400		Cassna	FA10	F100	E145
B757 B752 Cassna FA50 F100 E170	B757		Cassna	FA50	F100	E170
B757 B753 Cassna FA7X F100 E190	B757		Cassna	FA7X	F100	E190

Name of the repre-	ICAO code	Name of the rep-	ICAO code	Name of the rep-	ICAO code
sentative AC	of the AC	resentative AC	of the AC	resentative AC	of the AC
B757	SU95	Cassna	G150	F100	F100
B757	T204	Cassna	H25A	F100	F70
B767-300	B762	Cassna	H25B	F100	F70
B767-300	B763	Cassna	H25C	F100	FA20
B777	B772	Cassna	HA4T	F100	G250
B777	B788	Cassna	LJ24	F100	G280
BAC111	BA11	Cassna	LJ31	F100	GALX
BAC111	GLF2	Cassna	LJ35	F100	GL5T
BAC111	GLF3	Cassna	LJ40	F100	GLEX
BAC111	GLF6	Cassna	LJ45	F100	GLF5
BAC111	YK40	Cassna	LJ55	F100	J328
BAe146	B461	Cassna	LJ60	F28	A743
BAe146	B462	Cassna	MU30	F28	AN72
BAe146	B463	Cassna	PRM1	F28	GLF4
BAe146*0.5	L29B	Cassna	SBR1	MD81	MD81
Beech*0.5	A270	CRJ145	CRJ1	MD81	MD82
Beech*0.5	B36T	CRJ145	CRJ2	MD81	MD83
Beech*0.5	AN3	CRJ145	CRJ7	MD81	MD87
Beech*0.5	C10T	CRJ145	CRJ9	MD81	MD88
Beech*0.5	C208	DC10	MD11	MD81	MD90
Beech*0.5	E500	DC8	C135	RJ85	RJ1H
Beech*0.5	P46T	DC8	IL62	RJ85	RJ70
Beech*0.5	TBM7	DC8	K35R	RJ85	RJ85
Beech*0.5	TBM8	DC9	DC91	T134	T134
Beech*0.5	PC12	DC9	DC93	T154	T154
Beech	AC90	DC9	DC95		

^{1 -} The conversion factor of double-engine aircrafts into single-engine ones is 0.5.

Table A2.16. Departure statistics for domestic aviation in the period of 2007-2018

Aircraft	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018
type		2008	2009	2010	2011		2013		2013		2017	2010
A310	2		1	1		4		1		1		
A318					2	7	2	4	4	3	4	5
A319	116	102	70	68	77	156	122	26	21	9	13	29
A320	972	1691	1107	1070	1380	1091	215	63	28	49	47	30
A321					134	190	45	25		13	26	49
A332					1							
A343	1	3			1	1		1		2	1	2
AT43		2	12	12	7	1100	484	2				
AT45						1						
AT72	11 421	5 479	1826	1 765	1 759	5 244	7 561	3 407	2 203	2 702	3398	3183
B732	122	877				46	4					
B733	1 051	1 149	955	923	1 213	2 321	1 581	947	1 156	975	484	709
B734	1 622	2 172	1544	1 493	2 211	2 015	1 155	867	142	7	17	99
B735	1 337	2 361	2836	2 742	3 602	3 596	3 453	1 200	1 675	1 776	735	179
B737	1	1	3	3	3					1	3	5
B738	1	4	350	338	359	539	1 132	1 307	1 485	2 410	3247	3509
B742	57	39	35	34	36	37	32	96	34	20	21	34
B744	11	16	9	9	12	5	11	13	10	15	6	5
B752			1	1	1	2	11					
B762						3						
B763	2		4	4	5	17	50		2	2		6
BA11	8547	4947	1985	1919	1204	662	431	283	275	189	135	356
BE20	413	350	336	325	292	199	214	121	69	74	64	73
C130	74	77	76	73	75	49	40	34	59	48	48	65
C550	120	303	962	930	1 920	3 034	4 035	2 112	844	579	393	309
CRJ1			8	8	4	4						
CRJ2		224	502	485	566	548	657	214	63	17	8	10
CRJ9			2	2								
D228	1722	546	325	314	100	68	40	16	6	17	25	30

Aircraft type	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018
D328		1			2							
DC87	9	36	18	17	6	15	14	2				
DC94	6865	6159	414	400	13	33			2			
DH8D					4	1	2	1	2	1	3	1
E120	3		1	1								
E145	1 188	6 070	12842	12 415	8 928	6 586	4 681	3 708	2 947	2 854	4864	5762
E170					1	1	1	1			2	
E190			271	262	401	532	346	280	687	1435	2123	2722
F100	69	100	592	572	507	1590	778	123	159	74	110	101
F28	113	121	100	97	120	151	150	91	138	104	140	136
F2TH	1 383	1 875	2119	2 049	2 210	2 407	2 057	1 212	555	459	521	416
F50					698	123						
MD82	163	216	292	282	112	89	14	1				12
MD83	53	46	183	177	49	92	83	31	14	60	55	29
PAY3	28	35	162	157	310	516	624	499	279	169	88	184
RJ85					576	71	18	17				
SB20		2	4	4	4	3	1					
SF34	78	3 053	3543	3 425	3 658	1 014	345	1 074	251	102	116	91
SW4	2	3							1			
T134	350	140	68	66	51	89	9	4		3	1	
T154	26	2	4	4	4	4		1				
STAR												12

Table A2.17. Departure statistics for international aviation in the period of 2007-2018

A : £4	1 4010 1	12.17.1	- Cparta		105 101	IIICIIIa	iioiiai a	viation n	the peri	04 01 200	1 2010	,
Aircraft	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018
type	4		7	9	60	20	1.40	10	3	7	1.4	20
A306 A310	55	<i>(5</i>	16		60	29 140	142 94	19 39			14	29
		65		20	77	,			95	151	119	63
A318	351	233	171	213	13	28	49	57	44	47	43	50
A319	2016	1895	2159	2686	2545	2893	4051	3489	2936	1796	2165	2037
A320	2317	3957	5058	6291	7916	8659	10604	7584	5004	5754	6872	11031 3
A321	357	823	1055	1312	3200	3954	4520	2441	705	2240	4837	4462
A332		7	2	2	5	7	191	243	93	160	390	342
A333			1	1		4	5	3	27	240	426	554
A343	6	29	5	6	7	5	5	83	27	21	27	33
A345					1			144		1		
A346						1			1			5
AT43	44	1032	925	1151	1525	1331	773	9	2	4	5	3
AT45	2	2	6	8	310	234	4	1	3			
AT72	2 438	1 488	762	948	899	1 256	806	377	542	309	394	371
B190	1	3			5		7	3				
B462	3	33	59	74	173	171	28	21	2	1	9	3
B712	1	1				8						
B721	3	1	2	2	1	2	1					
B722	5	2	2	2								
B732	416	218	2	2	2	1602	1659	1175				
B733	4 258	4 949	2733	3 399	4 218	4 731	3 751	2 554	2 332	3 816	3358	2977
B734	7 644	8 891	4404	5 478	5 936	5 355	2 871	1 073	472	724	884	1733
B735	5 602	7 227	6552	8 149	9 324	9 365	7 789	4 751	4 762	4 155	2903	1940
B736	254	244	264	328	425	31						
B737	390	425	383	477	629				649	128	203	649
B738	1 533	1 994	3128	3 891	4 216	6 526	10 963	10 963	12 299	16 469	21753	26489
B742	297	320	171	213	143	103	83	51	37	38	23	38
B743	18	1	9	11	2	47	79	2				
B744	129	113	70	87	81	62	72	64	101	125	162	151
B747												6
B752	213	270	181	225	300	807	1401	1007	2278	245	52	59
B753	11	12	15	19	12	14	13	14	19	26	31	4
B762	15	29	4	5	16	13	5	3				
B763	1120	1323	739	919	1319	1119	310	503	853	876	936	1869
L			t		t	1	1	<u> </u>	1	1	1	t

Aircraft	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018
type	2007											
B772		9	2	3	2	3	3	1	3	7	7	618
B773												15
B77W								1			5	
BA11	1047	517	148	184	126	142	88	81	45	58	49	189
BE20	128	129	88	109	112	103	96	39	47	47	61	24
C130	1081	1137	865	1076	1078	683	337	205	163	116	141	148
C550	695	872	853	1 061	1 401	1 640	1 612	1 061	606	477	408	382
CRJ1	229	230	68	84	72	80	85	65	28	44	57	28
CRJ2	1536	1310	999	1243	1220	2059	2157	813	303	327	300	239
CRJ9	410	681	778	968	541	568	903	591	398	703	987	1314
D228	147	32	137	170	91	30	21	11	3	8	4	4
D328	4	3	3	4	3	1	1		3	1	3	
DC85			1	1	2				1			
DC87	43	43	23	29	18	14	15	4	2	1		
DC94	2317	1166	588	731	38	42	1	5	2	3	2	
DH8A		2	3	4	11		5					
DH8C		1	1	1								
DH8D	285	249	292	363	1202	1308	981	958	759	832	1463	1681
E120	34	20	97	121	144	169	218	282	52			
E145	1 520	2 666	5390	6 704	6 715	5 026	3 083	2 523	2 052	2 087	1838	1979
E170	463	496	580	722	743	1080	979	1198	1356	1507	1905	612
E175												1158
E190	4	85	1028	1279	1288	1470	2612	3678	4320	4392	5351	5561
F100	1053	1363	1862	2316	2944	2602	3045	1760	1693	1080	483	233
F27			10	12								
F28	110	106	95	118	154	219	283	117	131	98	143	206
F2TH	3 186	3 176	2281	2 837	3 105	3 466	3 275	2 116	1 497	1 670	1698	1578
F50	318	228	2	3	3	8			1			
JS31	1		2	2		3						
MD11			1	1		1		1	1			
MD82	1194	1496	731	909	667	212	27	17	4	3	6	429
MD83	322	343	93	116	232	209	505	351	181	635	1356	1101
PAY3	101	109	96	119	133	135	168	124	111	63	46	115
RJ85	29	5	9	11	446	231	69	229	155	234	147	
SB20	529	1167	637	792	507	323	59				1	
SF34	324	433	280	348	249	374	311	315	329	340	382	301
STAR					- :-							4
SH36							1					•
SW4	30	17	18	22	15	14	3		1	1	1	3
TBM8	- 50	- /	-10		10				•	•	-	3
T134	2334	577	39	49	61	41	38	6				5
T154	1583	1525	109	136	144	32	78	4	1		1	
1157	1505	1525	107	150	177	54	70	7	1			

Table A2.18. Statistics of distance flown by domestic aviation in the period of 2007-2018, thd

кm												
Air- craft type	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018
A310	1.2	0.0	0.5	0.5	0.0	1.0	0.0	0.6	0.0	0.5	0.0	0.0
A318	0.0	0.0	0.0	0.0	1.5	2.3	1.3	2.2	1.9	1.5	2.4	1.1
A319	69.6	61.0	39.3	38.1	38.3	83.5	66.5	13.8	9.4	3.6	6.0	12.9
A320	586.2	1143.0	720.4	696.4	884.7	687.6	113.4	30.7	13.0	21.1	18.4	11.4
A321	0.0	0.0	0.0	0.0	83.8	122.5	24.2	14.7	0.0	5.7	10.6	15.2
A332	0.0	0.0	0.0	0.0	0.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0
A343	0.7	2.1	0.0	0.0	0.2	0.6	0.0	0.4	0.0	1.1	0.5	0.8
AT43	0.0	1.0	3.5	3.5	2.2	573.8	307.2	0.9	0.0	0.0	0.0	0.0
AT45	0.0	0.0	0.0	0.0	0.0	0.5	0.0	0.0	0.0	0.0	0.0	0.0
AT72	6261.4	2802.3	912.4	881.9	927.2	2926.8	4270.5	1843.0	1077.7	1260.3	1568.9	1528.4
B732	74.3	600.7	0.0	0.0	0.0	26.8	2.7	0.0	0.0	0.0	0.0	0.0
B733	624.6	669.7	579.3	559.8	702.0	1353.1	946.3	453.6	532.5	444.8	215.9	324.2

Air-												
craft	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018
type												
B734	942.7	1232.7	953.1	921.6	1301.7	1124.8	678.7	438.4	64.4	2.9	2.9	32.9
B735	774.6	1205.7	1735.7	1678.1	2022.0	2097.1	2029.7	592.2	791.7	842.0	333.9	82.2
B737	0.7	0.5	1.2	1.2	1.9	0.0	0.0	0.0	0.0	0.5	1.5	2.0
B738	0.5	1.9	228.4	220.6	225.3	320.2	650.8	674.9	732.6	1156.6	1561.6	1701.6
B742	23.0	10.8	11.2	10.8	13.6	14.2	10.5	38.5	19.4	5.7	7.6	13.7
B744	4.1	6.9	1.5	1.5	2.8	1.5	3.6	3.1	0.7	2.2	0.6	1.1
B752	0.0	0.0	0.7	0.7	0.5	0.3	4.7	0.0	0.0	0.0	0.0	0.0
B762	0.0	0.0	0.0	0.0	0.0	1.8	0.0	0.0	0.0	0.0	0.0	0.0
B763	1.3	0.0	1.2	1.2	2.6	8.0	27.9	0.0	1.1	1.1	0.0	3.3
BA11	4298.0	2414.2	937.2	906.0	563.2	300.1	193.0	155.6	152.0	98.6	65.5	173.0
BE20	198.0	167.4	171.5	165.8	144.9	105.0	121.5	51.6	27.0	30.2	26.3	31.7
C130	25.9	30.7	21.1	20.3	29.6	15.2	12.2	9.9	13.7	12.0	8.9	10.3
C550	62.5	160.0	529.0	511.5	1063.2	1646.5	2160.3	1034.7	386.0	281.2	192.7	143.6
CRJ1	0.0	0.0	4.8	4.8	1.9	1.9	0.0	0.0	0.0	0.0	0.0	0.0
CRJ2	0.0	132.0	296.1	286.1	323.4	322.0	409.6	122.2	28.8	7.3	2.2	4.8
CRJ9	0.0	0.0	0.8	0.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
D228	817.8	274.6	154.3	149.0	42.8	34.0	16.0	4.8	2.6	4.1	5.6	2.4
D328	0.0	0.5	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
DC87	5.4	18.6	9.4	8.9	4.0	7.2	6.8	1.1	0.0	0.0	0.0	0.0
DC94	3745.6	3446.5	251.2	242.7	5.0	16.1	0.0	0.0	0.3	0.0	0.0	0.0
DH8D	0.0	0.0	0.0	0.0	1.2	0.4	1.1	0.9	1.1	0.5	1.7	0.4
E120	2.1	0.0	0.7	0.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
E145	641.8	3132.7	6751.9	6527.4	4502.9	3288.7	2354.8	1755.4	1453.8	1359.7	2288.9	2510.8
E170	0.0	0.0	0.0	0.0	0.3	0.2	0.5	0.5	0.0	0.0	0.5	0.0
E190	0.0	0.0	163.8	158.4	241.7	313.3	180.2	132.9	314.7	682.3	1001.8	1272.9
F100	34.8	51.4	307.8	297.4	261.9	679.1	391.4	46.9	49.3	26.2	45.3	41.2
F28	60.2	51.6	48.4	47.0	59.9	64.8	73.0	33.3	58.6	40.9	56.8	60.1
F2TH	692.7	985.8	1099.9	1063.6	1159.2	1315.2	1133.8	591.3	252.2	213.5	248.1	193.1
F50	0.0	0.0	0.0	0.0	379.1	67.1	0.0	0.0	0.0	0.0	0.0	0.0
MD82	86.9	127.6	190.4	183.9	52.0	57.8	9.6	0.0	0.0	0.0	0.0	3.5
MD83	27.7	22.9	114.5	110.8	21.0	53.6	40.1	13.2	6.4	25.9	21.2	11.8
PAY3	18.8	17.5	57.8	56.0	122.8	198.7	234.7	189.4	131.1	77.4	37.8	75.4
RJ85	0.0	0.0	0.0	0.0	319.5	41.2	9.6	9.6	0.0	0.0	0.0	0.0
SB20	0.0	1.1	1.0	1.0	0.8	0.8	0.7	0.0	0.0	0.0	0.0	0.0
SF34	40.7	1743.1	1758.3	1699.7	1907.0	567.1	175.7	537.9	107.2	32.6	43.9	39.9
SW4	1.2	1.4	0.0	0.0	0.0	0.0	0.0	0.0	0.4	0.0	0.0	0.0
T134	185.1	74.5	35.4	34.4	25.7	42.8	5.3	0.9	0.0	0.7	0.8	0.0
T154	14.1	1.0	0.9	0.9	1.5	0.2	0.0	0.6	0.0	0.0	0.0	0.0
STAR	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4.7

Table A2.19. Statistics of distance flown by international aviation in the period of 2007-2018,

tho	l km		. Statisti			· · · · · · · · · · · · · · · · · · ·				F		,
Aircraft type	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018
A306	9.9	0.0	121.5	21.8	146.7	71.1	148.4	12.8	6.3	9.0	17.0	29.5
A310	165.8	179.7	278.0	62.4	172.5	248.6	162.9	52.7	101.0	232.9	145.6	65.4
A318	781.1	517.2	1132.2	475.2	30.0	66.9	107.5	127.1	107.6	98.9	96.2	122.0
A319	3301.9	2903.5	10472.9	4018.8	3790.1	4058.5	5406.9	5074.5	4401.1	2781.7	3246.1	2798.8
A320	4177.8	7364.1	32668.7	11984.9	15457.2	16613.4	18583.5	12588.7	8867.0	10192.9	12094.6	19301.0
A321	625.5	1355.1	6242.6	1664.0	5417.2	6468.7	7049.8	3752.1	856.1	3789.9	8893.0	8834.6
A332	0.0	15.4	38.5	5.2	15.1	17.1	424.6	618.9	121.2	371.1	842.2	644.1
A333	0.0	0.0	11.0	1.4	0.0	12.4	4.7	3.9	34.1	277.0	491.7	660.3
A343	8.8	53.1	146.7	22.2	13.9	11.2	10.0	195.9	72.2	32.2	45.9	55.6
A345	0.0	0.0	0.0	0.0	0.8	0.0	0.0	550.1	0.0	2.5	0.0	0.0
A346	0.0	0.0	0.0	0.0	0.0	3.1	0.0	0.0	1.7	0.0	0.0	13.7
AT43	44.2	997.0	1041.2	1035.1	1344.4	1168.0	682.2	14.8	2.6	5.2	5.3	2.0
AT45	0.7	0.7	4.0	2.9	194.3	148.5	5.3	0.4	3.7	0.0	0.0	0.0
AT72	2654.5	1614.9	2734.3	1058.8	929.9	1044.2	860.7	409.3	582.4	304.7	400.4	379.0
B190	0.8	4.3	0.0	0.0	8.6	0.0	8.1	4.2	0.0	0.0	0.0	0.0

Hard S.D	craft	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018
		5.0	22.6	140.2					20.6				5.8
B721 10.3 2.2 2.9 4.4 4.2 3.6 6.5 9.0 0.0 0.0 0.0 B732 43.7 206.7 10.6 2.6 4.3 2725.7 225.3 40.0 0.0													0.0
B722													0.0
B732 437.7 206.7 10.6 2.6 4.3 2725.7 2292.3 176.3 0.0 0.0 0.0 0.0 B734 1328.7 1840.8 1959.4 9832.5 3766.6 260.0 1418.2 230.6 4817.0 365.2 B734 1328.7 1840.9 2999.8 4961.5 1118.6 180.0 1818.2 630.0 118.2 123.3 375.2 180.0 0													0.0
B733 7583.0 18453.1 16554.1 5823.3 7166.6 766.7 616.19 4149.3 320.76 4187.0 362.2 1393.1 1383.0 363.5 1381.8 363.0 1481.8 363.0 1185.0 1228.3 1278.2 1875.5 780.0 1481.8 619.0 491.2 3574.2 1873.8 1873.8 1891.1 260.5 201.0 311.8 423.2 353.3 10.0 0.0													0.0
B734 13289.71 154641-9 20950.4 98736 7808 49580.6 1818.8 634.0 1188.2 1303.73 35742 B735 7804.0 9799.8 301.59 1116.0 12738.3 315.0 423.2 353.0 0.0													3218.6
B735 78040 999.8 3401.5 11168.0 12728.3 1298.5 10075.5 656.01 611.90 4912.3 3574.2 B736 248.5 268.5 971.2 331.0 423.2 33.3 0.0<													3227.9
B736 248.5 268.5 971.2 331.0 423.2 33.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 107.3 259.3 266.3 183.8 1991.1 266.5 20261.4 715.1 8503.7 13356.4 2257.3 2225.5 2955.7 2995.1 4218.9 426.8 1874.2 424.4 0.8 115.1 11.5 1.6 22.3 202.4 134.3 74.8 82.9 0.2 0.0	35	7804.0	9799.8	34015.9	11168.0	12728.3	12598.5	10075.5	6569.1		4912.3	3574.2	2208.4
B738 1991.1 2669.5 2061.4 7155.1 8503.7 1335.64 2257.3 2275.7 2395.7 3291.0 42189.6 66.6 67.4 0.0	36	248.5	263.5	971.2	331.0	423.2		0.0	0.0	0.0	0.0	0.0	0.0
B742 5560 607.8 5510.7 490.8 3562 225.3 202.4 13.33 74.8 82.9 62.6 B743 24.4 0.08 161.6 11.5 1.6 62.3 113.9 4.9 0.0 0.	37	442.1	510.1	2100.3	771.9	950.9	0.0	0.0	0.0	1107.3	259.2	366.3	1852.5
B743 24.4 0.8 101.6 11.5 1.6 62.3 113.9 4.9 0.0 0.0 0.0 0.0 10.7 295.4 289.1 168.1 224.1 172.4 206.2 273.4 407.6 B73.7 0.0 0	38	1991.1	2669.5	20261.4	7155.1	8503.7	13356.4	22579.3	22755.7	24995.7	32931.0	42189.4	48543.5
B744 405.6 348.8 2820.5 295.4 289.1 168.1 224.1 172.4 206.2 273.4 407.6 B747 0.0 </td <td>42</td> <td>566.0</td> <td>607.8</td> <td>5510.7</td> <td>490.8</td> <td>356.2</td> <td>225.3</td> <td>202.4</td> <td>134.3</td> <td>74.8</td> <td>82.9</td> <td>62.6</td> <td>70.7</td>	42	566.0	607.8	5510.7	490.8	356.2	225.3	202.4	134.3	74.8	82.9	62.6	70.7
B747	43	24.4	0.8	161.6	11.5	1.6	62.3	113.9	4.9	0.0	0.0	0.0	0.0
B752 527.4 677.7 226.8 882.8 619.7 997.3 1680.2 1178.8 233.4 356.4 105.1 B753 23.1 25.7 157.8 36.2 19.5 30.3 28.6 31.7 43.0 56.0 67.3 B762 31.4 63.9 97.5 11.3 36.2 33.1 11.8 3.6 0.0 0.0 0.0 0.0 B773 30.0 20.0 22.1 44.5 17.8 10.2 4.4 11.8 2.3 10.9 16.8 14.4 B773 0.0 <td< td=""><td>44</td><td>405.6</td><td>348.8</td><td>2820.5</td><td>295.4</td><td>289.1</td><td>168.1</td><td>224.1</td><td>172.4</td><td>206.2</td><td>273.4</td><td>407.6</td><td>404.9</td></td<>	44	405.6	348.8	2820.5	295.4	289.1	168.1	224.1	172.4	206.2	273.4	407.6	404.9
B753	47		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	18.6
B762 31.4 63.9 57.5 11.3 36.2 33.1 11.8 3.6 0.0 0.0 0.0 B763 7858.3 8576.9 32068.4 6793.9 8488.3 7213.7 1288.6 2951.5 4529.6 5850.9 6723.7 B773 0.0 0.2 0.0 18.1	52	527.4	677.7	2265.8	582.8	619.7	997.3	1680.2	1178.8	2335.4	356.4	105.1	93.9
B763													9.0
B772													0.0
B773 0.0 <td></td> <td>7831.0</td>													7831.0
B77W D.O S.8 BAII D.156.4 489.3 450.8 175.8 116.3 114.3 88.9 81.8 46.3 76.2 73.4 73.4 73.5 73.5 73.5 73.4 73.5													4258.8
BA11													18.8
BE20 163.7 159.4 62.2 134.4 143.9 120.5 116.5 44.8 57.0 70.7 79.6 C130 1659.2 1597.0 4590.5 1395.8 1326.2 776.7 368.3 334.2 254.7 193.0 209.6 C550 913.7 1141.0 932.5 1434.4 1931.7 2214.2 2156.4 1341.9 129.2 198.4 489.1 CRIJ 199.1 160.8 111.1 69.4 58.7 45.8 52.4 31.3 14.4 33.8 43.9 CRIJ 2390.6 19860 2198.9 1617.2 1450.6 2395.1 2279.1 680.9 293.6 333.7 339.1 339.1 339.1 339.1 339.1 339.1 339.1 339.1 229.0 205.6 333.7 339.1 229.0 205.6 333.7 339.1 229.0 205.6 333.7 339.1 229.0 205.6 335.8 12.8 2.0 0.0 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.0</td></t<>													0.0
C130 1659.2 1597.0 4590.5 1395.8 1326.2 776.7 368.3 343.2 254.7 193.0 209.6 C550 913.7 1141.0 932.5 1434.4 1931.7 2214.2 2156.4 1341.9 729.1 534.7 489.1 CRI 199.1 1608 111.1 69.4 88.7 48.8 24.2 31.3 14.4 338.8 439.9 CRI 2390.6 1986.0 2198.9 1617.2 1450.6 2395.1 2279.1 680.9 293.6 333.7 339.1 CRI 2390.6 1399.0 3138.4 1675.1 979.7 947.2 1245.2 738.8 420.7 820.1 1096.3 D228 92.2 23.4 80.1 128.5 67.6 24.5 18.0 73.8 2.8 5.4 2.8 DC85 0.0 0.0 22.6 3.5 12.4 0.0 0.0 0.0 3.1 1.2 2.9 <													318.2
C550 913.7 1141.0 932.5 1434.4 1931.7 2214.2 2156.4 1341.9 729.1 534.7 489.1 CRI1 199.1 160.8 111.1 69.4 58.7 45.8 52.4 31.3 14.4 33.8 43.9 CRI2 2390.6 1986.0 2198.9 1617.2 1450.6 2395.1 2279.1 680.9 293.6 333.7 333.7 339.1 CRI9 842.0 1399.0 3138.4 1675.1 979.7 947.2 1245.2 738.8 420.7 820.1 1096.3 D228 92.2 23.4 80.1 128.5 67.6 24.5 18.0 7.8 2.8 5.4 2.8 DC85 0.0 0.0 22.6 3.5 12.4 0.0 0.0 0.0 3.1 12.2 2.9 DC87 100.8 84.4 264.4 55.8 41.1 38.6 27.5 8.7 4.4 1.8 0.0 <													29.1
CRII 199.1 160.8 111.1 69.4 58.7 45.8 52.4 31.3 14.4 33.8 43.9 CRI2 2390.6 1986.0 2198.9 1617.2 1450.6 2395.1 2279.1 680.9 293.6 333.7 339.1 D228 92.2 23.4 80.1 128.5 67.6 24.5 18.0 7.8 2.8 5.4 2.8 D328 7.3 5.3 7.5 6.2 4.0 0.7 0.4 0.0 3.1 1.2 2.9 DC85 0.0 0.0 22.6 3.5 12.4 0.0 0.0 0.0 3.1 1.2 2.9 DC85 0.0 0.0 22.6 3.5 12.4 0.0 0.0 0.0 3.1 1.2 2.9 DC85 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 DBA 3827.2 1738.6 4078.3 1041.2													238.3 471.8
CRJ2 2390.6 1986.0 2198.9 1617.2 1450.6 2395.1 2279.1 680.9 293.6 333.7 339.1 CRJ9 842.0 1399.0 3138.4 1675.1 979.7 947.2 1245.2 738.8 420.7 820.1 1096.3 D228 92.2 23.4 80.1 128.5 67.6 24.5 18.0 7.8 2.8 5.4 2.8 D328 7.3 5.3 7.5 6.2 4.0 0.7 0.4 0.0 3.1 1.2 2.9 DC85 0.0 0.0 22.6 3.5 12.4 0.0 0.0 0.0 1.8 0.0 0.0 DC87 100.8 84.4 264.4 55.8 41.1 38.6 27.5 8.7 4.4 1.8 0.0 DC94 3238.7 173.8 4078.3 1041.2 67.2 70.1 1.8 5.3 3.4 65.5 2.4 DH8A 0.0													21.0
CRJ9 842.0 1399.0 3138.4 1675.1 979.7 947.2 1245.2 738.8 420.7 820.1 1096.3 D228 92.2 23.4 80.1 128.5 67.6 24.5 18.0 7.8 2.8 5.4 2.8 D328 7.3 5.3 7.5 6.2 4.0 0.7 0.4 0.0 3.1 1.2 2.9 DC85 0.0 0.0 22.6 3.5 12.4 0.0 0.0 0.0 1.8 0.0 0.0 DC94 3287.2 1738.6 4078.3 1041.2 67.2 70.1 1.8 5.3 3.4 6.5 2.4 DBBA 0.0 4.3 8.4 5.5 14.6 0.0 6.9 0.0 0													313.6
D228													1432.7
D328 7.3 5.3 7.5 6.2 4.0 0.7 0.4 0.0 3.1 1.2 2.9 DC85 0.0 0.0 22.6 3.5 12.4 0.0 0.0 0.0 1.8 0.0 0.0 DC87 100.8 84.4 264.4 55.8 41.1 38.6 27.5 8.7 4.4 1.8 0.0 DC94 3287.2 1738.6 4078.3 1041.2 67.2 70.1 1.8 5.3 3.4 6.5 2.4 DH8A 0.0 4.3 8.4 55.5 14.6 0.0 6.9 0.0<													3.7
DC85 0.0 0.0 22.6 3.5 12.4 0.0 0.0 0.0 1.8 0.0 0.0 DC87 100.8 84.4 264.4 55.8 41.1 38.6 27.5 8.7 4.4 1.8 0.0 DC94 3287.2 1738.6 4078.3 1041.2 67.2 70.1 1.8 5.3 3.4 6.5 2.4 DH8A 0.0 4.3 8.4 5.5 14.6 0.0 6.9 0.0 0.0 0.0 0.0 DH8C 0.0 0.6 2.0 0.6 0.0 </td <td></td> <td>0.0</td>													0.0
DC87 100.8 84.4 264.4 55.8 41.1 38.6 27.5 8.7 4.4 1.8 0.0 DC94 3287.2 1738.6 4078.3 1041.2 67.2 70.1 1.8 5.3 3.4 6.5 2.4 DH8A 0.0 4.3 8.4 5.5 14.6 0.0 6.9 0.0 0.0 0.0 0.0 DH8C 0.0 0.6 2.0 0.6 0.0 <td></td> <td>0.0</td>													0.0
DC94 3287.2 1738.6 4078.3 1041.2 67.2 70.1 1.8 5.3 3.4 6.5 2.4 DH8A 0.0 4.3 8.4 5.5 14.6 0.0 6.9 0.0 0.0 0.0 0.0 DH8C 0.0 0.6 2.0 0.6 0.0													0.0
DH8C 0.0 0.6 2.0 0.6 0.0 <td></td> <td>0.0</td>													0.0
DH8D 183.9 169.6 700.6 263.4 1069.2 1165.3 871.4 838.4 664.9 709.1 1242.6 DHC8 0.0	[8A	0.0	4.3	8.4	5.5	14.6	0.0	6.9	0.0	0.0	0.0	0.0	0.0
DHC8 0.0 <td>18C</td> <td>0.0</td> <td>0.6</td> <td>2.0</td> <td>0.6</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td>	18C	0.0	0.6	2.0	0.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
E120 19.7 8.9 152.7 50.5 67.5 79.1 97.2 125.3 23.1 0.0 0.0 E145 2263.4 3909.8 11634.8 8589.2 8010.3 6083.7 4661.0 3459.5 2922.7 2942.1 2552.9 E170 398.7 453.1 1309.0 628.3 807.7 1134.2 912.1 951.4 1019.6 1164.9 1464.2 E175 0.0 0	I8D	183.9	169.6	700.6	263.4	1069.2	1165.3	871.4	838.4	664.9	709.1	1242.6	1328.5
E145 2263.4 3909.8 11634.8 8589.2 8010.3 6083.7 4661.0 3459.5 2922.7 2942.1 2552.9 E170 398.7 453.1 1309.0 628.3 807.7 1134.2 912.1 951.4 1019.6 1164.9 1464.2 E175 0.0 1421.5 1421.4 187.0 14	IC8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4.8
E170 398.7 453.1 1309.0 628.3 807.7 1134.2 912.1 951.4 1019.6 1164.9 1464.2 E175 0.0 0	20	19.7	8.9	152.7	50.5	67.5	79.1	97.2	125.3	23.1	0.0	0.0	0.0
E175 0.0 <td>45</td> <td>2263.4</td> <td>3909.8</td> <td>11634.8</td> <td>8589.2</td> <td>8010.3</td> <td>6083.7</td> <td>4661.0</td> <td>3459.5</td> <td>2922.7</td> <td>2942.1</td> <td>2552.9</td> <td>2715.9</td>	45	2263.4	3909.8	11634.8	8589.2	8010.3	6083.7	4661.0	3459.5	2922.7	2942.1	2552.9	2715.9
E190 5.1 174.3 4720.5 2156.7 1888.9 1809.6 3861.2 5648.8 5994.1 5769.8 6696.0 F100 1650.8 2008.5 8887.9 3354.0 4216.1 3722.3 4421.5 2519.5 2361.5 1529.6 884.9 F27 0.0 0.0 20.7 12.4 0.0 148.7 207.7 7 7 7 7 7 7 7 184.9 189.0 148.7 207.7 7 7 7 7 7 8 241.8 533.0 2373.0 2578.0 2574.1 1 0.0 0.0 0.0 0.0	70	398.7	453.1	1309.0	628.3	807.7	1134.2	912.1	951.4	1019.6	1164.9	1464.2	583.9
F100 1650.8 2008.5 8887.9 3354.0 4216.1 3722.3 4421.5 2519.5 2361.5 1529.6 884.9 F27 0.0 0.0 20.7 12.4 0.0 148.7 207.7 2578.0 2578.0 2578.0 2574.1 250.0 421.4 281.0 6.3 5.4 2.8 13.9 0.0 0.0 1.2 0.0			0.0			0.0	0.0	0.0	0.0	0.0	0.0	0.0	952.2
F27 0.0 0.0 20.7 12.4 0.0 1.48.7 207.7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 8 9 1.48.7 207.7 8 1.4 207.7 1.4 2.0 2.373.0 2578.0 2574.1 1.7 1.7 1.0 0.0													7018.8
F28 217.4 187.1 368.4 170.3 241.8 353.0 407.7 184.9 189.0 148.7 207.7 F2TH 5106.5 4997.0 4539.2 4619.3 5144.4 5703.4 5447.9 3447.0 2373.0 2578.0 2574.1 F50 421.4 281.0 6.3 5.4 2.8 13.9 0.0 0.0 1.2 0.0 0.0 JS31 0.8 0.0 1.2 1.4 0.0 4.2 0.0 0.0 0.0 0.0 0.0 MD11 0.0 0.0 19.6 1.7 0.0 1.4 0.0 2.0 1.7 0.0 0.0 MD82 2505.3 2899.5 5932.0 1755.1 1257.3 468.9 46.8 38.3 9.4 6.1 15.7 MD83 817.6 628.3 833.3 233.5 525.4 405.3 1005.0 679.8 286.0 1240.6 2637.7 PAY3													586.2
F2TH 5106.5 4997.0 4539.2 4619.3 5144.4 5703.4 5447.9 3447.0 2373.0 2578.0 2574.1 F50 421.4 281.0 6.3 5.4 2.8 13.9 0.0 0.0 1.2 0.0 0.0 JS31 0.8 0.0 1.2 1.4 0.0 4.2 0.0 0.0 0.0 0.0 0.0 MD11 0.0 0.0 19.6 1.7 0.0 1.4 0.0 2.0 1.7 0.0 0.0 MD82 2505.3 2899.5 5932.0 1755.1 1257.3 468.9 46.8 38.3 9.4 6.1 15.7 MD83 817.6 628.3 833.3 233.5 525.4 405.3 1005.0 679.8 286.0 1240.6 2637.7 PAY3 133.6 120.0 33.9 135.7 147.1 166.8 162.4 98.7 89.3 55.7 54.9 RJ85 <													0.0
F50 421.4 281.0 6.3 5.4 2.8 13.9 0.0 0.0 1.2 0.0 0.0 JS31 0.8 0.0 1.2 1.4 0.0 4.2 0.0 0.0 0.0 0.0 0.0 MD11 0.0 0.0 19.6 1.7 0.0 1.4 0.0 2.0 1.7 0.0 0.0 MD82 2505.3 2899.5 5932.0 1755.1 1257.3 468.9 46.8 38.3 9.4 6.1 15.7 MD83 817.6 628.3 833.3 233.5 525.4 405.3 1005.0 679.8 286.0 1240.6 2637.7 PAY3 133.6 120.0 33.9 135.7 147.1 166.8 162.4 98.7 89.3 55.7 54.9 RJ85 39.6 7.7 40.8 15.6 558.1 318.6 105.9 308.7 209.7 323.1 194.8 SB20 321.7													333.6
JS31 0.8 0.0 1.2 1.4 0.0 4.2 0.0 0.0 0.0 0.0 0.0 MD11 0.0 0.0 19.6 1.7 0.0 1.4 0.0 2.0 1.7 0.0 0.0 MD82 2505.3 2899.5 5932.0 1755.1 1257.3 468.9 46.8 38.3 9.4 6.1 15.7 MD83 817.6 628.3 833.3 233.5 525.4 405.3 1005.0 679.8 286.0 1240.6 2637.7 PAY3 133.6 120.0 33.9 135.7 147.1 166.8 162.4 98.7 89.3 55.7 54.9 RJ85 39.6 7.7 40.8 15.6 558.1 318.6 105.9 308.7 209.7 323.1 194.8 SB20 321.7 831.2 737.8 491.8 321.8 194.2 41.3 0.0 0.0 0.0 0.0 SF34 242.													2470.4
MD11 0.0 0.0 19.6 1.7 0.0 1.4 0.0 2.0 1.7 0.0 0.0 MD82 2505.3 2899.5 5932.0 1755.1 1257.3 468.9 46.8 38.3 9.4 6.1 15.7 MD83 817.6 628.3 833.3 233.5 525.4 405.3 1005.0 679.8 286.0 1240.6 2637.7 PAY3 133.6 120.0 33.9 135.7 147.1 166.8 162.4 98.7 89.3 55.7 54.9 RJ85 39.6 7.7 40.8 15.6 558.1 318.6 105.9 308.7 209.7 323.1 194.8 SB20 321.7 831.2 737.8 491.8 321.8 194.2 41.3 0.0 0.0 0.0 0.0 SF34 242.8 329.7 279.7 295.7 212.3 325.0 265.5 272.7 275.8 248.7 260.1 STAR													0.0
MD82 2505.3 2899.5 5932.0 1755.1 1257.3 468.9 46.8 38.3 9.4 6.1 15.7 MD83 817.6 628.3 833.3 233.5 525.4 405.3 1005.0 679.8 286.0 1240.6 2637.7 PAY3 133.6 120.0 33.9 135.7 147.1 166.8 162.4 98.7 89.3 55.7 54.9 RJ85 39.6 7.7 40.8 15.6 558.1 318.6 105.9 308.7 209.7 323.1 194.8 SB20 321.7 831.2 737.8 491.8 321.8 194.2 41.3 0.0 0.0 0.0 0.0 SF34 242.8 329.7 279.7 295.7 212.3 325.0 265.5 272.7 275.8 248.7 260.1 STAR 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0													0.0
MD83 817.6 628.3 833.3 233.5 525.4 405.3 1005.0 679.8 286.0 1240.6 2637.7 PAY3 133.6 120.0 33.9 135.7 147.1 166.8 162.4 98.7 89.3 55.7 54.9 RJ85 39.6 7.7 40.8 15.6 558.1 318.6 105.9 308.7 209.7 323.1 194.8 SB20 321.7 831.2 737.8 491.8 321.8 194.2 41.3 0.0 0.0 0.0 0.0 SF34 242.8 329.7 279.7 295.7 212.3 325.0 265.5 272.7 275.8 248.7 260.1 STAR 0.0 0													919.8
PAY3 133.6 120.0 33.9 135.7 147.1 166.8 162.4 98.7 89.3 55.7 54.9 RJ85 39.6 7.7 40.8 15.6 558.1 318.6 105.9 308.7 209.7 323.1 194.8 SB20 321.7 831.2 737.8 491.8 321.8 194.2 41.3 0.0 0.0 0.0 0.0 SF34 242.8 329.7 279.7 295.7 212.3 325.0 265.5 272.7 275.8 248.7 260.1 STAR 0.0<													2238.8
RJ85 39.6 7.7 40.8 15.6 558.1 318.6 105.9 308.7 209.7 323.1 194.8 SB20 321.7 831.2 737.8 491.8 321.8 194.2 41.3 0.0 0.0 0.0 0.0 SF34 242.8 329.7 279.7 295.7 212.3 325.0 265.5 272.7 275.8 248.7 260.1 STAR 0.0 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>143.7</td></td<>													143.7
SB20 321.7 831.2 737.8 491.8 321.8 194.2 41.3 0.0 0.0 0.0 0.0 SF34 242.8 329.7 279.7 295.7 212.3 325.0 265.5 272.7 275.8 248.7 260.1 STAR 0.0													0.0
SF34 242.8 329.7 279.7 295.7 212.3 325.0 265.5 272.7 275.8 248.7 260.1 STAR 0.0 <td></td> <td>0.0</td>													0.0
STAR 0.0 <td></td> <td>235.7</td>													235.7
SH36 0.0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td>3.5</td>										1			3.5
SW4 33.3 25.2 17.6 26.8 22.9 16.0 2.5 0.0 2.1 2.2 0.8 TBM8 0.0 0.													0.0
TBM8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.													3.7
													2.7
T134 2813.5 665.9 182.5 56.0 87.2 61.4 62.6 6.6 0.0 0.0 0.0		2813.5	665.9	182.5	56.0	87.2	61.4	62.6	6.6	0.0	0.0	0.0	0.0

Aircraft type	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018
T154	2178.8	2023.7	1368.5	252.4	240.4	56.1	102.9	4.0	0.9	0.0	0.0	0.0

Table A2.20. Estimated fuel consumption by domestic aviation in 2007-2018, tons

Table A2.21. Estimated fuel consumption by international aviation in 2007-2018, tons

Air-craft type 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 A306 70.8 0.0 17.0 156.2 1049.6 508.4 1179.8 125.1 45.8 71.7 A310 926.2 1015.8 49.9 347.4 1011.8 1520.6 933.8 344.1 705.0 1471.1 A318 2319.0 1536.3 381.5 1410.3 88.7 196.1 300.9 377.6 315.0 296.8 A319 10478.4 9384.9 3230.3 13071.7 12357.5 13469.0 17076.1 16641.8 14331.5 8992.4 A320 14366.8 25159.0 9636.0 40760.3 52315.6 56437.7 59886.2 44137.2 30629.1 35210.3 A321 2710.0 5946.9 1338.0 7774.1 23680.5 28478.2 29250.7 16746.2 4044.8 16567.0 A332 0.0 117.0 5.2	2017 137.6 975.5	2018
A306 70.8 0.0 17.0 156.2 1049.6 508.4 1179.8 125.1 45.8 71.7 A310 926.2 1015.8 49.9 347.4 1011.8 1520.6 933.8 344.1 705.0 1471.1 A318 2319.0 1536.3 381.5 1410.3 88.7 196.1 300.9 377.6 315.0 296.8 A319 10478.4 9384.9 3230.3 13071.7 12357.5 13469.0 17076.1 16641.8 14331.5 8992.4 A320 14366.8 25159.0 9636.0 40760.3 52315.6 56437.7 59886.2 44137.2 30629.1 35210.3 A321 2710.0 5946.9 1338.0 7774.1 23680.5 28478.2 29250.7 16746.2 4044.8 16567.0		
A318 2319.0 1536.3 381.5 1410.3 88.7 196.1 300.9 377.6 315.0 296.8 A319 10478.4 9384.9 3230.3 13071.7 12357.5 13469.0 17076.1 16641.8 14331.5 8992.4 A320 14366.8 25159.0 9636.0 40760.3 52315.6 56437.7 59886.2 44137.2 30629.1 35210.3 A321 2710.0 5946.9 1338.0 7774.1 23680.5 28478.2 29250.7 16746.2 4044.8 16567.0	975.5	249.7
A319 10478.4 9384.9 3230.3 13071.7 12357.5 13469.0 17076.1 16641.8 14331.5 8992.4 A320 14366.8 25159.0 9636.0 40760.3 52315.6 56437.7 59886.2 44137.2 30629.1 35210.3 A321 2710.0 5946.9 1338.0 7774.1 23680.5 28478.2 29250.7 16746.2 4044.8 16567.0	713.3	459.7
A320 14366.8 25159.0 9636.0 40760.3 52315.6 56437.7 59886.2 44137.2 30629.1 35210.3 A321 2710.0 5946.9 1338.0 7774.1 23680.5 28478.2 29250.7 16746.2 4044.8 16567.0	285.4	356.6
A321 2710.0 5946.9 1338.0 7774.1 23680.5 28478.2 29250.7 16746.2 4044.8 16567.0	10509.6	9324.3
		66850.6
A332 0.0 117.0 5.2 38.4 108.7 127.6 3018.5 4596.0 1055.6 2806.2	38211.8	37497.5
	6450.1	5077.9
A333 0.0 0.0 1.4 11.0 0.0 86.6 41.4 32.0 284.4 2381.4	4226.9	5616.2
A343 81.5 467.9 18.5 177.0 120.7 94.9 80.6 1651.2 597.3 295.1	411.3	499.9
A345 0.0 0.0 0.0 8.1 0.0 0.0 4058.1 0.0 19.4	0.0	0.0
A346 0.0 0.0 0.0 0.0 0.0 33.4 0.0 0.0 19.8 0.0	0.0	105.1
AT43 54.3 1233.6 831.9 1296.2 1689.4 1468.9 796.0 17.2 3.1 6.2	6.4	2.7
AT45 1.3 1.3 2.2 5.4 301.4 229.4 6.6 0.8 5.0 0.0	0.0	0.0
AT72 8569.9 5214.5 851.1 3407.4 3015.6 3502.5 2570.5 1320.3 1880.3 994.9 B190 0.6 2.9 0.0 0.0 5.7 0.0 5.8 2.9 0.0 0.0	1241.9	1231.7
B190 0.6 2.9 0.0 0.0 5.7 0.0 5.8 2.9 0.0 0.0 B462 18.1 101.3 80.5 374.6 898.1 899.2 143.5 108.7 11.8 6.6	0.0 48.7	0.0 21.0
B402 18.1 101.3 80.3 374.0 898.1 899.2 143.3 108.7 11.8 0.0 B712 7.3 2.2 0.0 0.0 57.1 0.0 0.0 0.0 0.0	0.0	0.0
B712 7.3 2.2 0.0 0.0 0.0 37.1 0.0 0.0 0.0 0.0 B721 51.2 11.6 4.4 23.0 20.3 19.4 31.0 0.0 0.0 0.0	0.0	0.0
B721 31.2 11.0 4.4 23.0 20.3 19.4 31.0 0.0 0.0 0.0 B722 53.4 25.4 4.0 25.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0	0.0
B732 1879.1 916.8 2.6 10.6 16.0 10397.0 8477.1 6907.8 0.0 0.0	0.0	0.0
B733 26727.4 30041.1 4683.9 20701.1 25530.5 27515.6 20836.4 14888.8 11919.7 16519.1		12763.3
B734 51788.3 60057.0 7745.5 37449.2 38604.1 34496.2 17959.6 6013.6 2585.5 4509.5	5411.0	12455.4
B735 29355.1 37114.1 8979.4 42191.3 48121.9 47814.7 36266.2 24765.3 23516.4 19346.1		8795.9
B736 915.2 939.9 266.4 1206.6 1549.6 123.8 0.0 0.0 0.0 0.0	0.0	0.0
B737 1645.8 1868.3 619.8 2622.5 3285.1 0.0 0.0 0.0 3711.4 838.8	1212.3	5671.1
B738 7694.7 10231.5 5752.1 25413.6 29661.8 46440.5 72896.1 78823.0 86906.5 114768.		172323.7
B742 8164.7 8773.8 394.0 6861.4 4925.8 3179.6 2598.2 1842.6 1067.7 1168.7	854.3	1026.0
B743 396.7 14.9 9.4 198.7 30.0 1017.4 1701.4 73.6 0.0 0.0	0.0	0.0
B744 5170.8 4365.0 237.6 3908.3 3634.8 2122.3 2630.0 2111.5 2719.8 3484.3	5048.1	4983.5
B747 0.0 <td>0.0</td> <td>346.8</td>	0.0	346.8
B752 2562.7 3286.1 468.8 2815.2 3099.1 5565.3 8858.7 6672.6 13733.1 1909.7	527.3	493.0
B753 125.6 139.6 28.6 200.1 111.1 164.2 143.0 170.3 231.1 303.5	364.3	48.7
B762 202.0 407.9 9.0 71.9 230.0 207.6 68.9 26.1 0.0 0.0	0.0	0.0
B763 46150.9 50632.7 5463.2 39786.3 50123.7 42599.3 7289.1 17556.1 27144.6 34477.2		47890.2
B772 0.0 190.3 5.2 66.6 81.0 42.2 88.3 19.7 88.5 145.0	128.2	32969.3
B773 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	0.0	207.1
B77W 0.0 0.0 0.0 0.0 0.0 0.0 19.1 0.0 0.0	65.2	0.0
BA11 3329.8 1579.6 141.4 567.2 380.2 454.3 264.0 256.3 144.8 226.7	205.3	893.9
BE20 93.6 91.7 108.5 77.5 82.5 69.3 65.2 26.0 33.0 39.5 C130 6691.0 6485.1 1122.1 5700.7 5441.2 3201.6 1404.7 1378.5 1027.5 772.1	45.1	16.8 959.4
C130 6691.0 6485.1 1122.1 5700.7 5441.2 3201.6 1404.7 1378.5 1027.5 772.1 C550 747.3 934.8 1153.2 1167.0 1567.0 1801.3 1632.0 1104.8 606.8 452.8	837.8 404.8	390.7
CRJ1 393.7 345.6 56.2 140.5 119.1 107.2 113.7 79.6 35.4 68.9	86.6	43.2
CRJ2 3887.6 3248.4 1299.8 2744.5 2516.8 4174.3 3840.4 1317.7 542.9 604.1	585.6	532.0
CRJ9 1917.0 3185.8 1346.3 3928.3 2278.8 2233.5 2837.5 1848.3 1097.6 2084.9	2821.7	3709.6
D228 75.8 18.2 103.6 99.4 52.6 18.3 13.0 6.2 2.0 4.2	2.1	2.7
D328 11.0 8.1 4.7 10.0 7.0 1.8 1.6 0.0 6.3 2.2	5.9	0.0
DC85 0.0 0.0 3.5 22.6 76.3 0.0 0.0 12.6 0.0	0.0	0.0
DC87 575.0 503.1 44.3 334.8 236.7 213.1 159.9 50.6 25.6 11.0	0.0	0.0
DC94 16068.3 8413.9 837.5 5088.8 316.9 333.9 7.7 28.0 16.3 29.4	12.1	0.0
DH8A 0.0 7.4 4.2 11.2 30.0 0.0 13.9 0.0 0.0 0.0	0.0	0.0
DH8C 0.0 2.0 0.6 2.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0	0.0
DH8D 650.3 581.5 211.9 871.7 3173.6 3456.1 2479.1 2508.9 1988.6 2151.1	3745.4	4191.3
DHC8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0	12.4
E120 57.7 31.9 40.5 190.2 232.6 272.8 341.3 450.2 83.0 0.0	0.0	0.0
E145 3717.8 6435.1 6905.7 14517.9 13791.4 10453.6 7347.8 5773.5 4836.0 4884.5	4228.4	4537.0
E170 1041.1 1157.0 504.7 1635.5 1943.6 2763.5 2189.4 2575.6 2828.5 3182.0	3952.4	1469.5
E175 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	0.0	2539.5
E190 14.9 461.4 1733.5 5944.6 5345.8 5354.3 10228.6 15844.9 17204.5 16846.4	19648.9	20687.3

Air- craft type	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018
F100	5231.9	6431.2	2696.5	10789.1	13603.7	12038.2	13455.1	8133.5	7685.4	4971.1	2698.0	1717.2
F27	0.0	0.0	10.3	25.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
F28	570.8	500.0	137.1	475.3	663.6	964.2	1096.3	504.1	524.1	409.4	572.2	913.3
F2TH	6356.1	6245.1	3714.0	5734.2	6358.2	7065.6	6257.4	4275.4	2955.7	3220.8	3210.1	3080.7
F50	824.8	570.2	3.6	9.4	6.5	24.5	0.0	0.0	2.4	0.0	0.0	0.0
JS31	0.6	0.0	1.4	1.2	0.0	3.0	0.0	0.0	0.0	0.0	0.0	0.0
MD11	0.0	0.0	1.7	19.6	0.0	16.8	0.0	21.8	19.6	0.0	0.0	0.0
MD82	10434.0	12217.4	1411.5	7395.3	5319.0	1935.3	188.6	158.0	38.4	25.7	63.6	3816.2
MD83	3541.5	2840.7	187.2	1041.5	2307.8	1817.2	4160.4	3050.4	1325.4	5558.0	11823.7	9980.6
PAY3	62.0	49.8	109.4	50.9	51.2	61.2	58.7	62.4	33.5	23.5	20.2	67.3
RJ85	127.9	24.2	12.7	50.0	1834.1	1026.0	313.0	998.7	678.0	1040.4	632.4	0.0
SB20	604.0	1489.4	395.6	917.8	596.9	366.6	69.9	0.0	0.0	0.0	0.0	0.0
SF34	289.5	392.2	237.9	347.8	249.3	381.3	291.0	319.9	324.1	297.7	295.6	279.6
STAR	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.2
SH36	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0
SW4	27.2	19.5	21.9	21.5	17.6	0.0	2.2	0.0	1.6	1.6	0.7	3.0
TBM8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.9
T134	11275.2	2709.5	44.6	228.8	330.9	228.8	214.2	27.1	0.0	0.0	0.0	0.0
T154	15991.2	15007.4	202.3	1718.4	1679.5	387.1	718.7	32.7	7.8	0.0	0.0	0.0

At the time of the estimation, data on AC flights for 1990-2006 had not been preserved. So the replacement method was used to restore the entire time series, where the substitute parameter for estimation of fuel consumed the passenger flow data were used. Thus fuel distribution was performed on the basis of data on the number of passengers transported by domestic and international aircrafts. The baseline year for the replacement method was the earliest year for which the DDB is preserved - 2007 based on which specific GHG emission indicators were applied for 1990-2006.

It should be noted that fuel consumption in 1990 was adopted on the basis of the FEB [2]. When estimating fuel consumption for 1991-2006 the fact was taken into account that the structure of the fleet of 1990-2006 gradually changed as a result the specific consumption of fuels by ACs decreased.

A2.8 The methodology to estimate leakage at transportation and distribution of natural gas

To calculate leaks during transportation and distribution of natural gas the national method was developed based on proposals of the National Academy of Sciences of Ukraine and the Bureau of Complex Analysis and Forecasts «BIAF».

In accordance with the method, carbon dioxide emissions from transportation of natural gas through main pipelines were determined by the formula:

$$Q_{T_{CO_2}} = C_{CO_2} \cdot \rho_{CO_2} \cdot K_T \cdot P_T \cdot 10^3, \tag{A12}$$

where: $Q_{T_{CO2}}$ - carbon dioxide emissions during transportation of natural gas, kt;

 C_{CO_2} - carbon content in natural gas, %;

 ρ_{CO_2} - density of carbon dioxide under normal conditions (2.143 kg/m³);

 K_T - natural gas leak rate in transit, billion m³/Mt;

 P_T - volume of natural gas transportation, Mt.

Methane emissions from transportation through main pipelines were determined in a similar manner:

$$Q_{T_{CH4}} = C_{CH_4} \cdot \rho_{CH_4} \cdot K_T \cdot P_T \cdot 10^3, \tag{A13}$$

where: C_{CH_4} - methane content in natural gas, %;

 ρ_{CH_4} - density of methane under normal conditions (0.714 kg/m³);

The input activity data, to which the emission factors C_{CH_4} , ρ_{CH_4} , ρ_{CO_2} , ρ_{CO_2} , K_D were applied (the values are shown in Table A2.22) were natural gas transportation volumes through main pipelines. These data are presented in the publication of the State Statistics Committee of Ukraine - "The Statistical Yearbook of Ukraine". Information available for the entire time series of 1990-2018.

The leakage volume was calculated on the basis of statistical reporting form No. 4-MTP, field 2 of section 4 (which corresponds to loss of gas in transit) and field 1, section 3 (which corresponds to production and technology natural gas consumption for non-energy purposes in its transportation) of state statistical reporting form No. 4-MTP for economic activity 49.5 "Gas transportation through pipelines".

In the national statistics for the period of 1991-1996 there was no data on natural gas losses and its production and technical use as a result of its transportation. In the period up to 2002 only the data on losses were indicated as well as in the energy balance of Ukraine for 1990. Therefore, for the period of 1990-2002 by using complete data for the estimations for 2003-2015 and the available data for 1990-2002 based on expert assessments [24, 25] estimations of leaks in this type of activity throughout the estimation series were conducted by means of extrapolation.

For the calculation of greenhouse gas emissions in transportation of natural gas through main pipelines in accordance with [1] a 2-step approach was used.

Carbon dioxide emissions from gas distribution networks were determined based on the formula:

$$Q_{D_{CO_2}} = C_{CO_2} \cdot \rho_{CO_2} \cdot K_D \cdot P_D \cdot 10^3, \tag{A14}$$

where: $Q_{D_{CO2}}$ - carbon dioxide emissions from gas distribution networks, kt;

 C_{CO_2} - carbon content in natural gas, %;

 ρ_{CO_2} - density of carbon dioxide under normal conditions (2.143 kg/m³);

 K_D - natural gas leak in gas distribution networks factor, billion m³/mln m³;

 P_D - natural gas consumption, billion m³.

Methane emissions from gas distribution systems are determined in a similar way:

$$Q_{D_{CH4}} = C_{CH_4} \cdot \rho_{CH_4} \cdot K_D \cdot P_D \cdot 10^3, \tag{A15}$$

where: C_{CH_4} - methane content in natural gas, %;

 ρ_{CH_4} - density of methane under normal conditions (0.714 kg/m³);

As input activity data, to which the emission factors C_{CH_4} , ρ_{CH_4} , C_{CO_2} , ρ_{CO_2} , K_D were applied (the values are presented in Table A2.22), volumes of natural gas consumption were used, estimated as the sum of field 2, section 4 (which corresponds to natural gas losses in its consumption) and field 1, section 3 (which corresponds to the production and technological consumption of natural gas for non-energy goals at its consumption) of state statistical reporting form No. 4-MTP for economic activity 35.22 "Gas distribution and supply".

In the national statistics for the period of 1991-1996, there was no data on natural gas losses and its production and technical use from gas distribution systems and in the period up to 2002 only the data on losses were indicated, as well as in the energy balance of Ukraine for 1990. Therefore, for the period of 1990-2002, by using complete data for the estimations for 2003-2015 and the available data for 1990-2002, based on expert assessments, estimations of leaks in this type of activity throughout the estimation series were conducted by means of extrapolation.

To calculate greenhouse gas emissions from gas distribution systems, a Tier 2 approach was used.

The above method allows for GHG emissions in category 1.B.2.c.1.ii Venting. Gas, which are included in emissions at transportation and distribution of natural gas.

Table A2.22. Parameters of natural gas transportation and distribution in Ukraine, 1990-2018

Transportation, P_T		Con- sump-	The leak factor in transporta-	The leak factor in distribution,	Greenhouse gas emissions in trans-	Greenhouse gas emissions from gas distri-		
Year	Mt	tion, P_D	tion, K_T	K_D	portation, Q_T	bution systems, Q_D		
		bln m ³	bln m³/Mt	bln m ³ /Mt	kt CO2-eq.	kt CO2-eq.		
1990*	182.0	115.42	0.00146	0.00764	4553.54	15155.55		
1991*	178.0	111.57	0.00171	0.00851	5239.02	16313.46		
1992*	184.0	109.59	0.00187	0.00928	5908.15	17471.37		
1993*	177.0	95.53	0.00217	0.01135	6598.22	18629.28		
1994*	172.0	83.60	0.00246	0.01377	7280.11	19787.19		
1995*	174.0	81.89	0.00265	0.01488	7908.38	20945.10		
1996*	174.0	80.49	0.00288	0.01598	8619.39	22103.01		
1997*	165.0	76.46	0.00312	0.01770	8847.78	23260.93		
1998*	169.0	68.92	0.00336	0.02062	9752.84	24418.84		
1999	161.0	69.49	0.00360	0.02239	9949.05	26734.66		
2000	150.0	66.70	0.00329	0.01993	8471.30	22837.00		
2001	148.2	64.10	0.00297	0.02127	7560.59	23422.56		
2002	151.0	65.88	0.00184	0.01777	4769.74	20120.57		
2003	158.0	72.80	0.00162	0.01707	4388.99	21358.65		
2004	164.0	72.48	0.00154	0.01537	4333.40	19142.69		
2005	164.0	73.10	0.00152	0.01427	4274.98	17919.71		
2006	156.0	71.00	0.00139	0.01424	3719.68	17378.43		
2007	142.5	66.82	0.00244	0.01501	5962.56	17234.71		
2008	143.2	63.57	0.00219	0.01337	5394.28	14600.52		
2009	114.0	50.21	0.00262	0.01407	5132.40	12141.34		
2010	121.0	55.99	0.00218	0.01202	4539.36	11559.86		
2011	127.0	56.56	0.00189	0.01252	4114.09	12163.01		
2012	108.0	53.42	0.00071	0.01151	1321.41	10527.05		
2013	106.0	49.73	0.00101	0.00893	1836.19	7589.29		
2014	82.0	41.91	0.00150	0.01042	2116.03	7490.11		
2015	79.8	35.45	0.00057	0.01386	769.84	8271.99		
2016	90.3	36.33	0.00140	0.01623	2107.95	9884.70		
2017	102.9	37.09	0.00039	0.01984	663.91	12424.10		
2018	96.2	35.32	0.00040	0.02386	650.12	14209.34		

^{*-}expert estimation

A2.9 Activity data

The array of estimated data on energy use of fuels in CRF category Energy Industries 1.A for 2018 is presented in tables A2.23, A2.24.

Table A2.23. Fuel use by IPCC categories in physical units (stationary combustion) in 2018, tons

Name of fuel	1.A.1. a. Main activity Electricity and Heat Production	1.A.1.b. Oil refinery	1.A.1.c. Solid Fuel Production and Other Industries	1.A.2.a. Iron and Steel	.A.2.b. Non-Ferrous Metals	1.A.2.c. Chemicals	1.A.2.d. Pulp. Paper. and Print	1.A.2.e. Food Processing. Bevererages. and Tobacco	1.A.2.f. Non-Metal Mineral <mark>s</mark>	1.A.2.g. Other Industries	4.a. Commercial/Institutional Sector	1.A.4.b. Residential Sector	1.a.4.c. Agriculture/For- estry/Fishery/Fishing
TT 1 1	· ·				1	1055.71					1.A.4.a.		1
Hard coal	32108770.51		236214.60	2122260.00	196168.82	4255.74	43.40	54330.93	1095732.40	26179.94	83017.09	349157.52	12313.15
Briquettes, pellets from hard coal	6316.22		133.70					13.30	1412.80	5.90	614.16	13.50	0.20
Brown coal	2573.20		749.00			153.50	6.50		36.20	29.60	44.55		
Briquettes, pellets from brown coal	395.70									2.70	32.50		
Non-agglom- erated fuel peat	35664.70		141.60			84.50			602.10	28106.60	136.81	21.20	
Briquettes, pellets from peat	87664.06		504.30	18.30			120.20	2614.70	355.90	2110.00	19625.70	100380.10	1131.70
Crude oil, including oil from bituminous materials			2527.60		90.60	78.13				14.48			140.90
Gas conden- sate	95.10		2088.90			158.60					276.80		351.40
Natural gas	8860717.91	27304.96	957565.96	1539087.59	158914.04	200206.13	16915.76	156578.17	408191.49	622539.88	816857.00	8772603.54	107835.61
Charcoal	704.30				108.00					68.20	24.30		
Firewood	1102145.21		33448.45	238.81		779.07	1650.81	44773.05	5697.52	121972.41	139271.60	1561705.62	53039.76
Fuel bri- quettes and pellets from wood and other natural materials	328284.78		2701.00	12.80	78.47	389.73	255.20	4745.10	21086.50	10170.24	12312.71	3870.80	5767.70

Biodiesel												
from oils,												
sugar and												
starch crops												
Other types												
of source	1941446.72	64329.20	9350.62		370.36	158.90	18165.71	22744.56	28780.06	6719.84	50394.70	29339.20
fuels												
Coke and												
semi-coke	0.00				5 04.50		1001 50	2 5020 22	4 52 70 5 00	0.00		125.00
from hard	9.90				781.50		4891.60	26028.22	162786.88	0.90		437.00
coal, gaseous coke												
Hard, brown												
coal, and			15488.38	215.12			2151.16		2151.16			
peat resins			10 .00.00	210.112			2101110		2101110			
Pitch and									17.60			
pitch coke									17.60			
Aviation gas-												
oline												
Motor gaso- line	5.40	4556.60										
Motor fuel												
composite												
with bioetha-												
nol 5% -												
30%												
Fuel for jet												
engines of												
the gasoline type												
Oil distil-												
lates, other												
light frac-	323.40											
tions												
Light oil dis-												
tillates for												
production of												
motor gaso-												
line Fuel for jet												
engines of												
the kerosene		6.50										
type												
Kerosene		185.66										
Gas oils	2667.91	45193.20										
Medium oil	10836.30											
distillates,	10030.30											

other me- dium frac- tions													
Heavy fuel black oils	207513.86	26673.04	27138.60	1600.68	466.32	158.43		590.82	2688.73	3878.87	7580.93		1476.95
Petroleum oils, heavy oil distillates					238.30			30.80		785.40		212.30	864.30
Propane and butane, liq- uefied	194.80		1227.90	178.70	18791.70	257.09	576.30	1634.02	8064.03	9551.85	6738.38	10383.81	14854.24
Ethylene, propylene, petroleum gases, other			30401.30	3.80	49.60	2.00			31.30	163.50	2.78		3.00
Petroleum coke (includ- ing shale)	158.90								2.00	5.30			
Other types of oil prod- ucts	23326.71	68052.05	46746.80	346.70		13.30		72.00	210.60	1158.50	1497.70		35.80
Other fuel processing products	1099103.50		1171.99	1218.07	3.03	92.19	1.70	170.68	28769.55	37098.41	1965.90	2736.90	172.70
Coke oven gas produced as a byprod- uct	630090.05		698502.471	936865.03	193.75	2855.13		5710.26	7994.36	42145.95	6511.28		

Table A2.24. Fuel use by IPCC categories in physical units (mobile combustion) in 2018, tons

Table A2.24. Fuel use by If CC ca	legomes in p		,,,,,,		
Name of fuel	1.A.3.a. Civil Aviation	1.A.3.b. Road transport	1.A.3.c. Railways	1.A.3.d. Water Transport	1.A.3.e. Other types of transport
Hard coal					
Briquettes, pellets from hard coal					
Brown coal					
Briquettes, pellets from brown coal					
Non-agglomerated fuel peat					
Briquettes, pellets from peat					
Crude oil, including oil from bituminous materi-					
als					
Gas condensate					
Natural gas					1276321.19
Charcoal					
Firewood					
Fuel briquettes and pellets from wood and other natural materials					
Briquettes from made of scobs					
Biodiesel from oils, sugar and starch crops		251.44			46.59
Other types of source fuels					
Coke and semi-coke from hard coal, gaseous					
coke					
Hard, brown coal, and peat resins					
Pitch and pitch coke Aviation gasoline	22449.4				
Motor gasoline	22 44 9.4	1973401.49			66494.38
Motor fuel composite with bioethanol 5% -		17/3401.47			00474.38
30%					
Fuel for jet engines of the gasoline type					
Oil distillates, other light fractions					827.21
White spirit and other special gasolines					5.05
Light oil distillates for production of motor gaso-					
line					
Fuel for jet engines of the kerosene type	32364.02				

Ukraine's Greenhouse Gas Inventory 1990-2018

Kerosene				1286.29
Gas oils	4030606.27	161302.34	23087.84	1601690.53
Medium oil distillates, other medium fractions				6907.76
Heavy fuel black oils			443.89	
Petroleum oils, heavy oil distillates				2222.55
Propane and butane, liquefied	1732132.30			
Ethylene, propylene, petroleum gases, other				
Petroleum coke (including shale)				
Other types of oil products				
Other fuel processing products				
Coke oven gas produced as a byproduct				

A2.10 Other matters related to activity data in Energy sector in 2014-2018

Since 2014 the temporarily occupied by the Russian Federation territory of Ukraine (refers to the territory of the Autonomous Republic of Crimea, the city of Sevastopol and certain districts of Donetsk and Luhansk regions) is under overall control of the Russian occupation administration. This fact complicates, and sometimes makes impossible, the process of data collecting so fuel consumption at the above mentioned territories wasn't included in official statistics for 2014 - 2018.

In order to ensure completeness of the GHG emission reporting and to be compliance with the main principles of reporting stated in the Reporting Guidelines according to the decision 24/CP.19, namely the full geographical coverage of the sources and sinks of an Annex I Party, input data for 2014 were adjusted by conducting an analytical study "Development of Proposals and Recommendations on Incorporation of GHG Emission and Absorption in the Special Status Territories (4 Administrative Units) by IPCC Sectors" [26], status of which is "confidential".

Revaluation of data for 2015, 2016, 2017, 2018 was also performed using the results of the study [26], as well as, indicative trends and socio-economic parameters in 2015, 2016, 2017, 2018.

Main principles of the data revaluation are presented below.

2014 year. To estimate the activity data that were not included in national and regional energy statistics various scientific approaches were used in work [26].

Certain districts of Donetsk and Luhansk regions. In this case, at the stage 1 regional form 4-MTP was analyzed for 2013 and 2014 and the activity data by different IPCC 2006 categories in energy sector was evaluated. At the stage 2 the indicative difference by different IPCC 2006 categories was evaluated and examined being upper limit of potential underestimation (PUL) of activity data in official data sources. At the stage 3 scientifically based decreasing coefficients (DC) for all potential upper limits by IPCC 2006 categories were evaluated. At the stage 4 revaluation of activity data, including fuel consumption, was performed based on PULs and DCs. Received revaluated data (RD) was added to the activity data at the national level estimated using official statistics by different IPCC 2006 categories. Also, uncertainties for all RDs were evaluated based on expert approaches. Obviously, the uncertainties for all RDs are much higher than for official statistical data that led to certain increase of overall uncertainties.

The Autonomous Republic of Crimea and the city of Sevastopol. At the stage 1 regional form 4-MTP was analyzed for 2013 and the activity data equal to PULs by different IPCC 2006 categories in energy sector was evaluated. At the stage 2 scientifically based DCs for all potential upper limits by IPCC 2006 categories was evaluated based on indicative trends and socio-economic parameters in 2014 according to alternative national and international data sources. Stage 4 is similar to previous approach.

2015, 2016, 2017, 2018 years. Certain districts of Donetsk and Luhansk regions. Taking into account the limitation of reliable information and the fact that civilians' livelihood was closely related with the territory controlled by the Government of Ukraine the common trends of official energy statistics were equal to DCs, wherein the PULs where equal to RDs in 2014.

The Autonomous Republic of Crimea and the city of Sevastopol. The PULs were equal to RDs in 2014. To identify DCs indicative trends and socio-economic parameters in 2015, 2016, 2017, 2018 were used for different IPCC 2006 categories according to alternative national and international data sources.

ANNEX 3

A3.1 Industrial Processes and Product Use (CRF Sector 2)

A3.1.1 Results of GHG inventory in the Industrial Processes and Product Use sector

Table A3.1.1.1 Greenhouse gas emissions in the category Industrial Processes and product use, kt $CO_{2\text{-eq}}$.

Gas	CO ₂	CH ₄	N ₂ O	HFCs	PFCs	SF ₆	Total
1990	110687.58	1393.13	5671.54	0.00	235.82	0.0076	117988.08
1991	94725.80	1147.55	5016.39	0.00	188.20	0.0191	101077.96
1992	91695.63	1064.10	4320.85	0.00	142.35	0.0305	97222.96
1993	74550.79	809.70	3662.54	0.00	143.57	0.0591	79166.66
1994	63223.84	628.23	2976.58	0.00	161.22	0.0649	66989.95
1995	54917.44	519.37	2370.74	0.00	178.06	0.0677	57985.68
1996	52789.56	502.24	2778.20	0.00	143.24	0.0696	56213.31
1997	58099.28	587.18	3054.92	6.43	146.99	0.128	61894.94
1998	56701.93	598.13	2459.18	13.02	120.64	0.194	59893.10
1999	59159.95	638.23	2633.97	14.14	101.81	0.307	62548.41
2000	63310.89	698.79	3005.28	15.73	115.74	0.421	67146.85
2001	67044.94	1464.65	2928.35	29.02	112.08	0.463	71579.50
2002	68535.14	2193.47	3579.39	64.24	98.66	1.070	74471.97
2003	71209.95	2873.93	3815.51	105.18	77.15	1.991	78083.72
2004	74053.20	3665.84	3264.40	187.23	93.34	3.078	81267.08
2005	73295.70	3130.25	3765.06	285.06	142.33	4.467	80622.86
2006	77594.47	3046.32	3801.67	402.25	111.16	4.274	84960.16
2007	83454.82	3028.88	4946.64	561.10	154.71	5.198	92151.34
2008	81796.22	1711.28	4482.69	647.21	174.24	9.338	88820.97
2009	64758.41	695.66	2203.16	663.74	53.95	9.366	68384.28
2010	69642.62	1124.14	2934.70	743.83	26.67	9.710	74481.67
2011	73715.35	2579.32	3724.32	819.97	0.00	8.414	80847.375
2012	70766.31	2196.90	3491.63	840.73	0.00	10.990	77306.559
2013	67968.30	951.57	2605.90	881.22	0.00	12.543	72419.523
2014	58051.92	683.58	2264.50	847.82	0.00	16.726	61864.552
2015	53373.52	596.84	1697.46	775.29	0.00	19.642	56462.743
2016	54566.84	648.54	2022.39	887.30	0.00	24.312	58149.385
2017	47635.24	1510.79	1578.05	1 009.48	0.00	28.461	51762.020
2018	50550.84	3094.75	1497.52	1 349.26	0.00	33.291	56525.650

Table A3.1.1.2 Greenhouse gas emissions from Cement Production (CRF category 2.A.1)

Year	1990	1991	1992	1993	1994	1995	1996
Cement production, kt	22729.10	21744.50	20121.10	15011.60	11434.70	7626.80	5020.60
Clinker production, kt	17455.70	16559.20	16084.60	11879.00	9267.30	6339.20	4027.40
Emission factor, tons of CO2/ton of clinker	0.528	0.528	0.529	0.528	0.528	0.527	0.526
Correction factor for CKD, p.u.	1.02	1.02	1.02	1.02	1.02	1.02	1.02
Implied emission factor, tons of CO2/ton of	0.5386	0.5296	0.5206	0.5296	0.5296	0.5275	0.5265
clinker	0.3380	0.5386	0.5396	0.5386	0.5386	0.5375	0.5365
CO2 emissions, kt	9400.94	8918.12	8678.92	6397.55	4990.99	3407.57	2160.78
SO ₂ emission factor, kg/t	0.3	0.3	0.3	0.3	0.3	0.3	0.3
SO2 emissions, kt	6.8187	6.5234	6.0363	4.5035	3.4304	2.2880	1.5062
Year	1997	1998	1999	2000	2001	2002	2003
Cement production, kt	5101.00	5591.20	5828.10	5311.40	5786.30	7156.50	8922.70
Clinker production, kt	4510.50	5215.40	4742.79	4239.06	4647.77	5291.62	6784.10
Emission factor, tons of CO2/ton of clinker	0.525	0.524	0.524	0.523	0.522	0.522	0.522
Correction factor for CKD, p.u.	1.02	1.02	1.02	1.02	1.02	1.02	1.02
Implied emission factor, tons of CO2/ton of	0.5255	0.5245	0.5245	0.5225	0.5224	0.5224	0.5224
clinker	0.5355	0.5345	0.5345	0.5335	0.5324	0.5324	0.5324
CO2 emissions, kt	2415.37	2787.52	2534.92	2261.37	2474.65	2817.47	3612.12
SO ₂ emission factor, kg/t	0.3	0.3	0.3	0.3	0.3	0.3	0.3
SO2 emissions, kt	1.5303	1.6774	1.7484	1.5934	1.7359	2.1470	2.67681

Year	2004	2005	2006	2007	2008	2009	2010	2011
Cement production, kt	10647.84	12164.54	13739.18	15018.83	14918.20	9503.37	9472.12	10579.64
Clinker production, kt	8117.40	9181.00	10522.00	11757.40	11981.30	5038.30	5583.90	7484.60
Emission factor, tons of CO2/ton of	0.515	0.511	0.511	0.514	0.515	0.504	0.506	0.511
clinker	0.515	0.511	0.511	0.514	0.515	0.504	0.506	0.511
Correction factor for CKD, p.u.	1.02	1.02	1.02	1.02	1.02	1.02	1.02	1.02
Implied emission factor, tons of	0.5252	0.5212	0.5212	0.5242	0.5252	0.5141	0.5161	0.5312
CO2/ton of clinker	0.5253	0.5212	0.5212	0.5243	0.5253	0.5141	0.5161	0.5212
CO2 emissions, kt	4264.07	4785.32	5484.27	6164.16	6293.77	2590.08	2881.96	3901.12
SO ₂ emission factor, kg/t	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3
SO2 emissions, kt	3.194352	3.649362	4.121754	4.505649	4.47546	2.851011	2.841636	3.173892
Year	2012	2013	2014	2015	2016	2017	2018	
Cement production, kt	9842.70	9856.50	8854.35	8848.75	9098.70	9449.5	9464.6	
Clinker production, kt	6279.198	6404.20	6064.639	6062.925	6687.396	6526.13	6850.37	
Emission factor, tons of CO ₂ /ton of	0.512	0.520	0.522	0.520	0.521	0.522	0.522	
clinker	0.512	0.520	0.533	0.530	0.531	0.532	0.532	
Correction factor for CKD, p.u.	1.02	1.02	1.02	1.02	1.02	1.02	1.02	
Implied emission factor, tons of	0.5226	0.5204	0.5440	0.5406	0.5417	0.542	0.542	
CO2/ton of clinker	0.5226	0.5304	0.5440	0.5406	0.5417	0.543	0.543	
CO2 emissions, kt	3281.46	3396.78	3299.19	3277.519	3622.85	3543.39	3718.58	
SO ₂ emission factor, kg/t	0.3	0.3	0.3	0.3	0.3	0.3	0.3	7
SO2 emissions, kt	2.95281	2.95695	2.65	2.65	2.73	2.83	2.84	

Table A3.1.1.3 Greenhouse gas emissions from Lime Production (CRF category 2.A.2)

Year	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003
Amount of lime produced, kt	8676.60	7648.30	7484.10	5923.80	4662.70	3901.90	3339.40	3534.60	3352.30	3386.70	3631.40	4366.60	4456.10	4895.90
Amount of quick lime, kt	3902.60	3440.09	3366.23	2664.43	2097.21	1755.01	1502.01	1589.81	1507.81	1523.29	1633.35	1964.03	2004.29	2202.10
Amount of slaked lime, kt	4774.00	4208.21	4117.87	3259.37	2565.49	2146.89	1837.39	1944.79	1844.49	1863.41	1998.05	2402.57	2451.81	2693.80
Amount of calcium quick lime, kt	3317.21	2924.08	2861.30	2264.77	1782.63	1491.76	1276.71	1351.34	1281.64	1294.80	1388.35	1669.43	1703.65	1871.79
Amount of dolomite quick lime, kt	585.39	516.01	504.93	399.66	314.58	263.25	225.30	238.47	226.17	228.49	245.00	294.60	300.64	330.32
Amount of slaked lime in dry mass, kt	3437.28	3029.91	2964.87	2346.75	1847.15	1545.76	1322.92	1400.25	1328.03	1341.66	1438.60	1729.85	1765.30	1939.54
Amount of lime in dry mass, kt	7339.88	6470.00	6331.10	5011.18	3944.36	3300.77	2824.93	2990.06	2835.84	2864.95	3071.95	3693.88	3769.59	4141.64
Amount of CaO in quick calcium lime, kt	3167.94	2792.49	2732.54	2162.85	1702.41	1424.63	1219.26	1290.53	1223.96	1236.53	1325.87	1594.30	1626.98	1787.55
Amount of MgO in quick calcium lime, kt	46.44	40.94	40.06	31.71	24.96	20.88	17.87	18.92	17.94	18.13	19.44	23.37	23.85	26.20
Amount of CaO in quick dolomite lime, kt	327.82	288.97	282.76	223.81	176.17	147.42	126.17	133.54	126.66	127.96	137.20	164.98	168.36	184.98
Amount of MgO in quick dolomite lime, kt	231.23	203.83	199.45	157.87	124.26	103.98	88.99	94.20	89.34	90.25	96.78	116.37	118.75	130.47
Amount of CaO and MgO in quick lime, kt	2577.96	2272.43	2223.65	1760.06	1385.36	1159.32	992.19	1050.19	996.02	1006.24	1078.95	1297.39	1323.98	1454.65
Stoichiometric values for CaO	0.785	0.785	0.785	0.785	0.785	0.785	0.785	0.785	0.785	0.785	0.785	0.785	0.785	0.785
Stoichiometric values for MgO	0.913	0.913	0.913	0.913	0.913	0.913	0.913	0.913	0.913	0.913	0.913	0.913	0.913	0.913
LKD	1.02	1.02	1.02	1.02	1.02	1.02	1.02	1.02	1.02	1.02	1.02	1.02	1.02	1.02
CO ₂ emissions from calcium quick lime, kt	2579.81	2274.07	2225.25	1761.32	1386.36	1160.15	992.90	1050.94	996.74	1006.97	1079.73	1298.32	1324.94	1455.70
CO ₂ emissions from dolomite quick lime, kt	477.82	421.19	412.15	326.22	256.77	214.88	183.90	194.65	184.61	186.51	199.98	240.47	245.40	269.62
CO ₂ emissions from slaked lime, kt	2064.17	1819.54	1780.48	1409.28	1109.26	928.27	794.45	840.88	797.52	805.70	863.91	1038.82	1060.11	1164.74
Emission factor from quick lime, t/t	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78
Emission factor from slaked lime, t/t	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60
Total CO ₂ emissions, kt	5121.81	4514.80	4417.87	3496.82	2752.40	2303.29	1971.25	2086.48	1978.87	1999.17	2143.62	2577.61	2630.44	2890.05
Total emission factor, t/t	0.698	0.698	0.698	0.698	0.698	0.698	0.698	0.698	0.698	0.698	0.698	0.698	0.698	0.698

Year	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018
Amount of lime produced, kt	5301.67	5341.74	5450.25	5687.77	5127.97	4100.74	4241.08	4578.70	4482.50	3968.30	3183.80	3022.35	3324.90	2901.73	3113.19
Amount of quick lime, kt	2384.61	2719.18	2671.66	2811.51	2407.59	2403.38	2494.77	4101.10	4047.80	3739.50	2884.89	2758.35	2946.66	2529.15	2765.36
Amount of slaked lime, kt	2917.06	2622.56	2778.59	2876.25	2720.38	1697.36	1746.31	477.60	434.70	228.80	298.91	264.00	378.24	372.58	347.82
Amount of calcium quick lime, kt	2026.92	2311.30	2270.91	2389.78	2046.45	2042.87	2120.55	3485.94	3440.63	3178.58	2452.15	2344.59	2504.66	2149.77	2350.56
Amount of dolomite quick lime, kt	357.69	407.88	400.75	421.73	361.14	360.51	374.22	615.17	607.17	560.93	432.73	413.75	442.00	379.37	414.80
Amount of slaked lime in dry mass, kt	2100.28	1888.24	2000.58	2070.90	1958.67	1222.10	1257.34	343.87	312.98	164.74	215.22	190.08	272.33	268.26	250.43
Amount of lime in dry mass, kt	4484.89	4607.42	4672.24	4882.41	4366.26	3625.48	3752.11	4444.97	4360.78	3904.24	3100.10	2948.43	3218.99	2797.41	3015.80
Amount of CaO in quick calcium lime, kt	1935.71	2207.29	2168.72	2282.24	1954.36	1950.94	2025.13	3329.07	3285.80	3035.54	2341.81	2239.09	2391.95	2053.03	2244.79
Amount of MgO in quick calcium lime, kt	28.38	32.36	31.79	33.46	28.65	28.60	29.69	48.80	48.17	44.50	34.33	32.82	35.07	30.10	32.91
Amount of CaO in quick dolomite lime, kt	200.31	228.41	224.42	236.17	202.24	201.88	209.56	344.49	340.02	314.12	242.33	231.70	247.52	212.45	232.29
Amount of MgO in quick dolomite lime, kt	141.29	161.11	158.30	166.58	142.65	142.40	147.82	242.99	239.83	221.57	170.93	163.43	174.59	149.85	163.85
Amount of CaO and MgO in quick lime, kt	1575.21	1416.18	1500.44	1553.18	1469.01	916.57	943.01	257.90	234.74	123.55	161.41	142.56	204.25	201.19	187.82
Stoichiometric values for CaO	0.785	0.785	0.785	0.785	0.785	0.785	0.785	0.785	0.785	0.785	0.785	0.785	0.785	0.785	0.785
Stoichiometric values for MgO	0.913	0.913	0.913	0.913	0.913	0.913	0.913	0.913	0.913	0.913	0.913	0.913	0.913	0.913	0.913
LKD	1.02	1.02	1.02	1.02	1.02	1.02	1.02	1.02	1.02	1.02	1.02	1.02	1.02	1.02	1.02
CO ₂ emissions from calcium quick lime, kt	1576.35	1797.51	1766.10	1858.55	1591.54	1588.75	1649.17	2711.03	2675.80	2472.00	1907.05	1823.41	1947.89	1671.89	1828.05
CO ₂ emissions from dolomite quick lime, kt	291.96	332.93	327.11	344.23	294.78	294.26	305.45	502.12	495.60	457.85	353.21	337.72	360.78	309.66	338.58
CO ₂ emissions from slaked lime, kt	1261.27	1133.94	1201.40	1243.63	1176.23	733.90	755.07	206.50	187.95	98.93	129.24	114.15	163.54	161.10	150.39
Emission factor from quick lime, t/t	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78
Emission factor from slaked lime, t/t	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60
Total CO ₂ emissions, kt	3129.58	3264.38	3294.61	3446.41	3062.55	2616.92	2709.68	3419.66	3359.35	3028.77	2389.51	2275.28	2472.21	2142.65	2317.02
Total emission factor, t/t	0.698	0.709	0.705	0.706	0.701	0.722	0.722	0.769	0.770	0.776	0.771	0.772	0.768	0.766	0.768

Table A3.1.1.4 Greenhouse gas emissions from Glass Production (CRF category 2.A.3)

Year	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004
Total glass production, kt	995.01	990.35	913.39	810.72	686.71	653.35	491.10	414.86	397.93	406.34	407.32	1053.87	1085.80	990.52	999.05
Limestone use, kt	23.29	23.09	19.84	15.50	10.25	8.84	10.89	7.67	6.95	7.31	7.35	76.72	78.07	74.04	74.40
Dolomite use, kt	198.17	197.29	182.60	163.00	139.33	132.97	98.08	83.53	80.30	81.90	82.09	168.08	174.17	155.98	157.61
Limestone and dolomite use, kt	221.47	220.38	202.43	178.50	149.58	141.81	108.97	91.19	87.25	89.21	89.44	244.80	252.24	230.03	232.02
Use of soda in glass production, kt	166.17	166.38	157.47	145.93	123.61	117.60	91.10	76.13	73.30	75.99	75.36	201.94	199.87	180.72	181.84
CO ₂ emissions from use of limestone, kt	10.19	10.11	8.73	6.78	4.50	3.89	4.76	3.34	3.04	3.16	3.20	33.75	34.33	32.58	32.74
CO ₂ emissions from use of dolomite, kt	94.08	94.03	86.50	75.72	65.17	61.86	45.79	39.05	37.62	38.54	38.61	79.06	82.82	74.21	75.27
CO ₂ emissions from use of soda, kt	68.96	69.05	65.35	60.56	51.30	48.81	37.81	31.59	30.42	31.53	31.27	83.81	82.95	75.00	75.46
CO ₂ emission factor for limestone use, t/t	0.43763	0.438	0.440	0.438	0.439	0.440	0.437	0.436	0.437	0.432	0.436	0.440	0.440	0.440	0.440
CO ₂ emission factor for dolomite use, t/t	0.475	0.477	0.474	0.465	0.468	0.465	0.467	0.468	0.469	0.471	0.470	0.470	0.476	0.476	0.478
CO ₂ emissions from glass production, kt	173.23	173.20	160.59	143.06	120.96	114.55	88.35	73.99	71.08	73.23	73.09	196.62	200.10	181.79	183.47
CO ₂ emission factor for glass production, t/t	0.174	0.175	0.176	0.176	0.176	0.175	0.180	0.178	0.179	0.180	0.179	0.187	0.184	0.184	0.184
NMVOC emission factor for glass production, t/t	0.0045	0.0045	0.0045	0.0045	0.0045	0.0045	0.0045	0.0045	0.0045	0.0045	0.0045	0.0045	0.0045	0.0045	0.0045
NMVOC emissions from glass production, kt	4.48	4.46	4.11	3.65	3.09	2.94	2.21	1.87	1.79	1.83	1.83	4.74	4.89	4.46	4.50
Year	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	
Total glass production, kt	993.02	1090.96	1218.02	1328.01	988.05	1190.22	1434.95	1377.747	1364.436	1316.39	1181.29	1231.49	1331.84	1315.86	
Limestone use, kt	74.15	81.55	91.44	100.75	76.17	91.60	112.62	107.42	106.35	103.35	92.54	96.57	104.72	103.45	
Dolomite use, kt	156.46	171.80	191.40	207.61	153.22	184.73	220.47	212.41	210.39	202.89	182.27	189.91	205.10	202.66	
Limestone and dolomite use, kt	230.61	253.35	282.85	308.36	229.39	276.33	333.08	319.83	316.74	306.24	274.81	286.49	309.82	306.11	
Use of soda in glass production, kt	179.24	199.35	221.82	245.78	182.51	217.76	262.71	254.87	253.13	239.85	219.69	227.56	243.57	238.62	
CO ₂ emissions from use of limestone, kt	32.63	35.88	40.25	44.34	33.52	40.32	49.23	46.28	45.50	44.46	40.39	42.14	45.70	45.70	
CO ₂ emissions from use of dolomite, kt	74.88	82.34	91.93	99.46	73.31	88.25	104.05	99.68	99.27	95.17	87.33	91.70	98.85	98.86	
CO ₂ emissions from use of soda, kt	74.38	82.73	92.06	102.00	75.74	90.37	109.03	105.77	105.05	99.54	91.17	94.44	101.08	99.03	
CO ₂ emission factor for limestone use, t/t	0.440	0.440	0.440	0.440	0.440	0.440	0.437	0.431	0.428	0.430	0.436	0.436	0.436	0.440	
CO ₂ emission factor for dolomite use, t/t	0.479	0.479	0.480	0.479	0.478	0.478	0.472	0.469	0.472	0.466	0.479	0.483	0.482	0.470	
CO ₂ emissions from glass production, kt	181.89	200.95	224.23	245.80	182.57	218.94	262.30	251.73	249.82	239.17	217.55	228.10	245.43	239.65	
CO ₂ emission factor for glass production, t/t	0.183	0.184	0.184	0.185	0.185	0.184	0.183	0.183	0.184	0.182	0.185	0.185	0.184	0.182	
NMVOC emission factor for glass production, t/t	0.0045	0.0045	0.0045	0.0045	0.0045	0.0045	0.0045	0.0045	0.0045	0.0045	0.0045	0.0045	0.0045	0.0045	
NMVOC emissions from glass production, kt	4.47	4.91	5.48	5.98	4.45	5.36	6.46	6.20	6.13	5.92	5.32	5.54	5.99	5.92	

Table A3.1.1.5 Greenhouse gas emissions from carbonate use (CRF category 2.A.4.a Ceramics)

Year	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004
Ceramics production, kt	6373.46	5202.02	4902.82	4591.59	4267.19	3985.11	3730.43	3808.91	3910.67	3985.83	4061.39	4100	4373.33	4800.11	5666.2
Emission factor from ceramics production, t/t	0.01754	0.01754	0.01754	0.01754	0.01754	0.01754	0.01754	0.01754	0.01754	0.01754	0.01754	0.01754	0.01754	0.01754	0.01754
CO ₂ emissions from ceramics production, kt	111.77	91.22	85.98	80.52	74.83	69.88	65.42	66.79	68.58	69.90	71.22	71.90	76.69	84.18	99.36
Year	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	
Ceramics production, kt	5865.63	6365.78	7184.51	6880.34	3661.69	3447.1	3975.03	3568.945	3822.23	4038.21	3949.01	3646.71	3843.82	3808.71	
Emission factor from ceramics production, t/t	0.01754	0.01754	0.01754	0.01754	0.01754	0.01754	0.01754	0.01754	0.01754	0.01754	0.01754	0.01754	0.01754	0.01754	
CO ₂ emissions from ceramics production, kt	102.86	111.63	125.99	120.65	64.21	60.45	69.71	62.59	67.03	70.81	69.25	63.95	67.41	66.79	

Table A3.1.1.6 Greenhouse gas emissions from carbonate use (CRF category 2.A.4.b Other Soda Ash Use)

Year	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004
Amount of soda ash used, kt	720.033	625.12	684.93	443.770	532.19	357.39	145.37	221.62	191.57	185.57	239.89	113.88	153.0	123.37	220.36
CO ₂ emission factor, t/t	0.415	0.415	0.415	0.415	0.415	0.415	0.415	0.415	0.415	0.415	0.415	0.415	0.415	0.415	0.415
CO ₂ emissions, kt	298.81	259.42	284.24	184.16	220.85	148.32	60.32	91.97	79.50	77.013	99.55	47.26	63.52	51.199	91.450
Year	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	
Amount of soda ash used, kt	253.26	211.40	226.35	254.01	140.75	108.00	138.31	98.37	52.44	34.79	3.92	19.59	77.22	45.71	
CO ₂ emission factor, t/t	0.415	0.415	0.415	0.415	0.415	0.415	0.415	0.415	0.415	0.415	0.415	0.415	0.415	0.415	
CO ₂ emissions, kt	105.107	87.73	93.93	105.41	58.41	44.82	57.40	40.826	21.76	14.44	1.63	8.13	32.045	18.97	

Table A3.1.1.7 Greenhouse gas emissions from Ammonia Production (CRF category 2.B.1)

Year	1990	1991	1992	1993	1994	1995	1996
Amount of ammonia produced, kt	4863.90	4603.60	4719.30	3916.50	3539.50	3776.30	4017.20
Natural gas consumption of, mln m3	6122.5476	5841.0937	6193.6565	5003.9750	4697.8722	4687.2946	5179.1550
Carbon content in natural gas, t/TJ	15.18	15.18	15.18	15.18	15.18	15.18	15.18
Net calorific value of fuel combustion, TJ/mln m ³	0.03335	0.03338	0.03339	0.03340	0.03340	0.03340	0.03340
Stoichiometric ratio between CO ₂ and C mol. weight	3.6667	3.6667	3.6667	3.6667	3.6667	3.6667	3.6667
Urea production, kt	2678	2756	2671	2511	2592	2702	2972
Stoichiometric ratio of CO ₂ to urea	0.733	0.733	0.733	0.733	0.733	0.733	0.733
CO ₂ emission factor, t/t	1.9332	1.9184	2.0243	1.9051	1.9308	1.7834	1.8548
CO emission factor, t/t	0.000006	0.000006	0.000006	0.000006	0.000006	0.000006	0.000006
NMVOC emission factor, t/t	0.00009	0.00009	0.00009	0.00009	0.00009	0.00009	0.00009
NO _x emission factor, t/t	0.001	0.001	0.001	0.001	0.001	0.001	0.001
SO ₂ emission factor, t/t	0.00003	0.00003	0.00003	0.00003	0.00003	0.00003	0.00003
CO ₂ emissions, kt	9402.9155	8831.7366	9553.4814	7461.4610	6833.9246	6734.5032	7451.1490
CO emissions, kt	0.0292	0.0276	0.0283	0.0235	0.0212	0.0227	0.0241
NMVOC emissions, kt	0.4378	0.4143	0.4247	0.3525	0.3186	0.3399	0.3615
NO _x emissions, t/t	4.8639	4.6036	4.7193	3.9165	3.5395	3.7763	4.0172
SO ₂ emissions, kt	0.1459	0.1381	0.1416	0.1175	0.1062	0.1133	0.1205
Year	1997	1998	1999	2000	2001	2002	2003
Amount of ammonia produced, kt	4132.20	3984.00	4541.20	4351.30	4500.00	4488.60	4674.40
Natural gas consumption of, mln m3	5062.3066	4809.0764	5387.3959	5138.8962	5297.4191	5254.5684	5491.3449
Carbon content in natural gas, t/TJ	15.18	15.18	15.18	15.18	15.18	15.18	15.18
				0.02240	0.03340		0.02240
Net calorific value of fuel combustion, TJ/mln m3	0.03340	0.03340	0.03340	0.03340	0.03340	0.03340	0.03340
Net calorific value of fuel combustion, TJ/mln m3 Stoichiometric ratio between CO ₂ and C mol. weight	0.03340 3.6667	3.6667	0.03340 3.6667	3.6667	3.6667	3.6667	3.6667
/	3.6667 2808	3.6667 2347	3.6667 3015	3.6667 3291	3.6667 3258	3.6667 3232	3.6667 3490
Stoichiometric ratio between CO ₂ and C mol. weight	3.6667	3.6667	3.6667	3.6667	3.6667	3.6667	3.6667
Stoichiometric ratio between CO ₂ and C mol. weight Urea production, kt	3.6667 2808	3.6667 2347	3.6667 3015	3.6667 3291	3.6667 3258	3.6667 3232	3.6667 3490
Stoichiometric ratio between CO ₂ and C mol. weight Urea production, kt Stoichiometric ratio of CO ₂ to urea	3.6667 2808 0.733 1.7797 0.000006	3.6667 2347 0.733 1.8125 0.000006	3.6667 3015 0.733 1.7191 0.000006	3.6667 3291 0.733 1.6415 0.000006	3.6667 3258 0.733 1.6581 0.000006	3.6667 3232 0.733	3.6667 3490 0.733 1.6370 0.000006
Stoichiometric ratio between CO ₂ and C mol. weight Urea production, kt Stoichiometric ratio of CO ₂ to urea CO ₂ emission factor, t/t	3.6667 2808 0.733 1.7797	3.6667 2347 0.733 1.8125	3.6667 3015 0.733 1.7191	3.6667 3291 0.733 1.6415	3.6667 3258 0.733 1.6581	3.6667 3232 0.733 1.6488	3.6667 3490 0.733 1.6370
Stoichiometric ratio between CO ₂ and C mol. weight Urea production, kt Stoichiometric ratio of CO ₂ to urea CO ₂ emission factor, t/t CO emission factor, t/t	3.6667 2808 0.733 1.7797 0.000006 0.00009	3.6667 2347 0.733 1.8125 0.000006 0.00009	3.6667 3015 0.733 1.7191 0.000006	3.6667 3291 0.733 1.6415 0.000006	3.6667 3258 0.733 1.6581 0.000006 0.00009	3.6667 3232 0.733 1.6488 0.000006	3.6667 3490 0.733 1.6370 0.000006 0.00009
Stoichiometric ratio between CO ₂ and C mol. weight Urea production, kt Stoichiometric ratio of CO2 to urea CO ₂ emission factor, t/t CO emission factor, t/t NMVOC emission factor, t/t	3.6667 2808 0.733 1.7797 0.000006 0.00009 0.001	3.6667 2347 0.733 1.8125 0.000006 0.00009	3.6667 3015 0.733 1.7191 0.000006 0.00009	3.6667 3291 0.733 1.6415 0.000006 0.00009 0.001 0.00003	3.6667 3258 0.733 1.6581 0.000006 0.00009	3.6667 3232 0.733 1.6488 0.000006 0.00009	3.6667 3490 0.733 1.6370 0.000006 0.00009
Stoichiometric ratio between CO ₂ and C mol. weight Urea production, kt Stoichiometric ratio of CO ₂ to urea CO ₂ emission factor, t/t CO emission factor, t/t NMVOC emission factor, t/t NO _x emission factor, t/t	3.6667 2808 0.733 1.7797 0.000006 0.00009 0.001 0.00003 7353.9921	3.6667 2347 0.733 1.8125 0.000006 0.00009 0.001 0.00003 7221.1029	3.6667 3015 0.733 1.7191 0.000006 0.00009 0.001 0.00003 7806.7515	3.6667 3291 0.733 1.6415 0.000006 0.00009	3.6667 3258 0.733 1.6581 0.000006 0.00009	3.6667 3232 0.733 1.6488 0.000006 0.00009 0.001 0.00003 7400.7107	3.6667 3490 0.733 1.6370 0.000006 0.00009 0.001 0.00003 7651.8607
Stoichiometric ratio between CO ₂ and C mol. weight Urea production, kt Stoichiometric ratio of CO2 to urea CO ₂ emission factor, t/t CO emission factor, t/t NMVOC emission factor, t/t NO _x emission factor, t/t SO ₂ emission factor, t/t	3.6667 2808 0.733 1.7797 0.000006 0.00009 0.001	3.6667 2347 0.733 1.8125 0.000006 0.00009 0.001	3.6667 3015 0.733 1.7191 0.000006 0.00009 0.001 0.00003	3.6667 3291 0.733 1.6415 0.000006 0.00009 0.001 0.00003	3.6667 3258 0.733 1.6581 0.000006 0.00009 0.001	3.6667 3232 0.733 1.6488 0.000006 0.00009 0.001 0.00003	3.6667 3490 0.733 1.6370 0.000006 0.00009 0.001 0.00003
Stoichiometric ratio between CO ₂ and C mol. weight Urea production, kt Stoichiometric ratio of CO2 to urea CO ₂ emission factor, t/t CO emission factor, t/t NMVOC emission factor, t/t NO _x emission factor, t/t SO ₂ emission factor, t/t CO ₂ emission factor, t/t	3.6667 2808 0.733 1.7797 0.000006 0.00009 0.001 0.00003 7353.9921	3.6667 2347 0.733 1.8125 0.000006 0.00009 0.001 0.00003 7221.1029	3.6667 3015 0.733 1.7191 0.000006 0.00009 0.001 0.00003 7806.7515	3.6667 3291 0.733 1.6415 0.000006 0.00009 0.001 0.00003 7142.4758	3.6667 3258 0.733 1.6581 0.000006 0.00009 0.001 0.00003 7461.4029	3.6667 3232 0.733 1.6488 0.000006 0.00009 0.001 0.00003 7400.7107	3.6667 3490 0.733 1.6370 0.000006 0.00009 0.001 0.00003 7651.8607
Stoichiometric ratio between CO ₂ and C mol. weight Urea production, kt Stoichiometric ratio of CO2 to urea CO ₂ emission factor, t/t CO emission factor, t/t NMVOC emission factor, t/t NO _x emission factor, t/t SO ₂ emission factor, t/t CO ₂ emissions, kt CO emissions, kt	3.6667 2808 0.733 1.7797 0.000006 0.00009 0.001 0.00003 7353.9921 0.0248	3.6667 2347 0.733 1.8125 0.000006 0.00009 0.001 0.00003 7221.1029 0.0239	3.6667 3015 0.733 1.7191 0.000006 0.00009 0.001 0.00003 7806.7515 0.0272	3.6667 3291 0.733 1.6415 0.000006 0.00009 0.001 0.00003 7142.4758 0.0261	3.6667 3258 0.733 1.6581 0.000006 0.00009 0.001 0.00003 7461.4029 0.0270	3.6667 3232 0.733 1.6488 0.000006 0.00009 0.001 0.00003 7400.7107 0.0269	3.6667 3490 0.733 1.6370 0.000006 0.00009 0.001 0.00003 7651.8607 0.0280

Year	2004	2005	2006	2007	2008	2009	2010	2011
Amount of ammonia produced, kt	4717.10	5217.50	5152.20	5142.90	4892.00	3037.61	4166.12	5261.96
Natural gas consumption of, mln m3	5483.1217	5862.7091	5747.9875	5627.3098	5412.8268	3530.1028	4724.4701	5876.5076
Carbon content in natural gas, t/TJ	15.18	15.19	15.22	15.16	15.17	15.2	15.17	15.12924
Net calorific value of fuel combustion, TJ/mln m ³	0.03340	0.03340	0.03340	0.03340	0.03364	0.03340	0.03340	0.03396
Stoichiometric ratio between CO ₂ and C mol. weight	3.6667	3.6667	3.6667	3.6667	3.6667	3.6667	3.6667	3.6667
Urea production, kt	3619	3866	3742	3807	3593	3171	3005	3961
Stoichiometric ratio of CO ₂ to urea	0.733	0.733	0.733	0.733	0.733	0.733	0.733	0.733
CO ₂ emission factor, t/t	1.5989	1.5475	1.5474	1.4891	1.5318	1.3984	1.5784	1.5521
CO emission factor, t/t	0.000006	0.000006	0.000006	0.000006	0.000006	0.000006	0.000006	0.000006
NMVOC emission factor, t/t	0.00009	0.00009	0.00009	0.00009	0.00009	0.00009	0.00009	0.00009
NO _x emission factor, t/t	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
SO ₂ emission factor, t/t	0.00003	0.00003	0.00003	0.00003	0.00003	0.00003	0.00003	0.00003
CO ₂ emissions, kt	7542.0205	8073.9157	7972.4868	7658.5198	7493.7142	4247.8115	6575.7378	8166.9227
CO emissions, kt	0.0283	0.0313	0.0309	0.0309	0.0294	0.0182	0.0250	0.0316
NMVOC emissions, kt	0.4245	0.4696	0.4637	0.4629	0.4403	0.2734	0.3750	0.4736
NO _x emissions, t/t	4.7171	5.2175	5.1522	5.1429	4.8920	3.0376	4.1661	5.2620
SO ₂ emissions, kt	0.1415	0.1565	0.1546	0.1543	0.1468	0.0911	0.1250	0.1579
Year	2012	2013	2014	2015	2016	2017	2018	
Amount of ammonia produced, kt	5049.41	4237.12	2983.93	2640.647	2044.20	1191.02	976.475	
Natural gas consumption of, mln m3	5661.0519	4677.6674	3225.9762	2779.1304	2152.89	1297.895	1008.994	
Carbon content in natural gas, t/TJ	15.14023	15.16761	15.1214	15.2137	15.260	15.202	15.225	
Net calorific value of fuel combustion, TJ/mln m3	0.03409	0.03413	0.03394	0.03457	0.03453	0.03441	0.03453	
Stoichiometric ratio between CO2 and C mol. weight	3.6667	3.6667	3.6667	3.6667	3.6667	3.6667	3.6667	
Urea production, kt	3888	2929	2154.1	2127	2042	1201.5	912.9	
Stoichiometric ratio of CO2 to urea	0.733	0.733	0.733	0.7330	0.7330	0.7330	0.7330	
CO ₂ emission factor, t/t	1.5571	1.5886	1.5051	1.4393	1.3026	1.3511	1.307	
CO emission factor, t/t	0.000006	0.000006	0.000006	0.000006	0.000006	0.000006	0.000006	
NMVOC emission factor, t/t	0.00009	0.00009	0.00009	0.00009	0.00009	0.00009	0.00009	
NO _x emission factor, t/t	0.001	0.001	0.001	0.001	0.001	0.001	0.001	
SO ₂ emission factor, t/t	0.00003	0.00003	0.00003	0.00003	0.00003	0.00003	0.00003	
502 chilistion factor, vt	0.00005							
CO ₂ emissions, kt	7862.2471	6731.2582	4491.1118	3800.794	2662.892	1609.175	1275.903	
		6731.2582 0.0254	4491.1118 0.0179	3800.794 0.0158	2662.892 0.0123	1609.175 0.0071	1275.903 0.0059	-
CO ₂ emissions, kt	7862.2471							-
CO ₂ emissions, kt CO emissions, kt	7862.2471 0.0303	0.0254	0.0179	0.0158	0.0123	0.0071	0.0059	_

Table A3.1.1.8 Greenhouse gas emissions from Nitric Acid Production

Year	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004
Nitric acid production, kt	2700.0	2386.80	2073.60	1760.40	1447.20	1134.00	1344.00	1471.00	1198.0	1295.00	1452.00	1407.00	1715.00	1726.0	1482.60
N ₂ O emission factor, t/t	0.007	0.007	0.007	0.007	0.007	0.007	0.007	0.007	0.007	0.007	0.007	0.007	0.007	0.007	0.007
(Medium pressure units)	(CS)	(CS)	(CS)	(CS)	(CS)	(CS)	(CS)	(CS)	(CS)	(CS)	(CS)	(CS)	(CS)	(CS)	(CS)
N ₂ O emission factor, t/t	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005
(Low pressure units)	(D)	(D)	(D)	(D)	(D)	(D)	(D)	(D)	(D)	(D)	(D)	(D)	(D)	(D)	(D)
NO _x emission factor, t/t	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
N ₂ O emissions, kt	12.442	11.004	9.533	8.032	6.644	5.191	6.195	6.740	5.557	5.972	6.768	6.557	7.923	7.913	6.888
NO _x emissions, kt	27.00	23.87	20.74	17.60	14.47	11.34	13.44	14.71	11.98	12.95	14.52	14.07	17.15	17.26	14.83
Year	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	
Year Nitric acid production, kt	2005 1757.40	2006 1761.20	2007 2294.50	2008 2121.20	2009 1451.81	2010 1796.00	2011 2309.53	2012 2336.96	2013 1791.12	2014 1569.40	2015 1157.02	2016 1399.83	2017 1069.1	2018 1011.19	
															-
Nitric acid production, kt	1757.40	1761.20	2294.50	2121.20	1451.81	1796.00	2309.53	2336.96	1791.12	1569.40	1157.02	1399.83	1069.1	1011.19	
Nitric acid production, kt N ₂ O emission factor, t/t	1757.40 0.007	1761.20 0.007	2294.50 0.007	2121.20 0.007	1451.81 0.0045	1796.00 0.0045	2309.53 0.0045	2336.96 0.0045	1791.12 0.0045	1569.40 0.0045	1157.02 0.0045	1399.83 0.0045	1069.1 0.0045	1011.19 0.0045	
Nitric acid production, kt N ₂ O emission factor, t/t (Medium pressure units)	1757.40 0.007 (CS)	1761.20 0.007 (CS)	2294.50 0.007 (CS)	2121.20 0.007 (CS)	1451.81 0.0045 (CS)	1796.00 0.0045 (CS)	2309.53 0.0045 (CS)	2336.96 0.0045 (CS)	1791.12 0.0045 (CS)	1569.40 0.0045 (CS)	1157.02 0.0045 (CS)	1399.83 0.0045 (CS)	1069.1 0.0045 (CS)	1011.19 0.0045 (CS)	
Nitric acid production, kt N ₂ O emission factor, t/t (Medium pressure units) N ₂ O emission factor, t/t	1757.40 0.007 (CS) 0.005	1761.20 0.007 (CS) 0.005	2294.50 0.007 (CS) 0.005	2121.20 0.007 (CS) 0.005	1451.81 0.0045 (CS) 0.005	1796.00 0.0045 (CS) 0.005	2309.53 0.0045 (CS) 0.005	2336.96 0.0045 (CS) 0.005	1791.12 0.0045 (CS) 0.005	1569.40 0.0045 (CS) 0.005	1157.02 0.0045 (CS) 0.005	1399.83 0.0045 (CS) 0.005	1069.1 0.0045 (CS) 0.005	1011.19 0.0045 (CS) 0.005	
Nitric acid production, kt N ₂ O emission factor, t/t (Medium pressure units) N ₂ O emission factor, t/t (Low pressure units)	1757.40 0.007 (CS) 0.005 (D)	1761.20 0.007 (CS) 0.005 (D)	2294.50 0.007 (CS) 0.005 (D)	2121.20 0.007 (CS) 0.005 (D)	1451.81 0.0045 (CS) 0.005 (D)	1796.00 0.0045 (CS) 0.005 (D)	2309.53 0.0045 (CS) 0.005 (D)	2336.96 0.0045 (CS) 0.005 (D)	1791.12 0.0045 (CS) 0.005 (D)	1569.40 0.0045 (CS) 0.005 (D)	1157.02 0.0045 (CS) 0.005 (D)	1399.83 0.0045 (CS) 0.005 (D)	1069.1 0.0045 (CS) 0.005 (D)	1011.19 0.0045 (CS) 0.005 (D)	

Table A3.1.1.9 Greenhouse gas emissions from Adipic Acid Production

Year	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	
Amount of adipic acid produced, kt	59.1	57.7	32.9	16.7	16.7	16	24.9	28.4	28.4	21.7	50.9	48.9	43.1	61.4	65.8	
N ₂ O emission factor, t/t	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	
Thermal destruction factor	0.985	0.985	0.985	0.985	0.985	0.985	0.985	0.985	0.985	0.985	0.985	0.985	0.985	0.985	0.985	
Thermal use factor	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	
NO _x emission factor, t/t	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.008	
NMVOC emission factor, t/t	0.0433	0.0433	0.0433	0.0433	0.0433	0.0433	0.0433	0.0433	0.0433	0.0433	0.0433	0.0433	0.0433	0.0433	0.0433	
CO emission factor, t/t	0.0004	0.0004	0.0004	0.0004	0.0004	0.0004	0.0004	0.0004	0.0004	0.0004	0.0004	0.0004	0.0004	0.0004	0.0004	
N ₂ O emissions, kt	0.78987	0.77116	0.43971	0.22320	0.22320	0.21384	0.33279	0.37957	0.37957	0.29002	0.68028	0.65355	0.57603	0.820611	0.879417	
NO _x emissions, kt	0.4728	0.4616	0.2632	0.1336	0.1336	0.128	0.1992	0.2272	0.2272	0.1736	0.4072	0.3912	0.3448	0.4912	0.5264	
NMVOC emissions, kt	2.55903	2.49841	1.42457	0.72311	0.72311	0.6928	1.07817	1.22972	1.22972	0.93961	2.20397	2.11737	1.86623	2.65862	2.84914	
CO emissions, kt	0.02364	0.02308	0.01316	0.00668	0.00668	0.0064	0.00996	0.01136	0.01136	0.00868	0.02036	0.01956	0.01724	0.02456	0.02632	
Year	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018		
Amount of adipic acid produced, kt	48.7	52.1	58.3	29.3	4.2	52.9	61.49	13.002								
N ₂ O emission factor, t/t	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3								
Thermal destruction factor	0.985	0.985	0.985	0.985	0.985	0.985	0.985	0.985								
Thermal use factor	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97								
NO _x emission factor, t/t	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.008								
NMVOC emission factor, t/t	0.0433	0.0433	0.0433	0.0433	0.0433	0.0433	0.0433	0.0433			Not	producte	d			
CO emission factor, t/t	0.0004	0.0004	0.0004	0.0004	0.0004	0.0004	0.0004	0.0004				_				
N ₂ O emissions, kt	0.650876	0.6963	0.7792	0.3916	0.0561	0.707	0.8218	0.1738	38							
NO _x emissions, kt	0.3896	0.4168	0.4664	0.2344	0.0336	0.4232	0.4919	0.1040								
NMVOC emissions, kt	2.10871	2.2559	2.5244	1.2687	0.1819	2.2906	2.6625	0.5630								
CO emissions, kt	0.01948	0.0208	0.0233	0.0117	0.0017	0.0212	0.0246	0.0052								

Table A3.1.1.10 Greenhouse gas emissions from Petrochemical Production

Year	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003
CO ₂ emission factor for carbon black, t/t	2.62	2.62	2.62	2.62	2.62	2.62	2.62	2.62	2.62	2.62	2.62	2.62	2.62	2.62
CO ₂ emission factor for ethylene, t/t	1.73	1.73	1.73	1.73	1.73	1.73	1.73	1.73	1.73	1.73	1.73	1.73	1.73	1.73
Geographical correction factor for ethylene	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1
CO ₂ emission factor for methanol, t/t	0.67	0.67	0.67	0.67	0.67	0.67	0.67	0.67	0.67	0.67	0.67	0.67	0.67	0.67
CO ₂ emission factor for vinyl chloride monomer, t/t	0.294	0.294	0.294	0.294	0.294	0.294	0.294	0.294	0.294	0.294	0.294	0.294	0.294	0.294
CH ₄ emission factor for carbon black, t/t	0.0287	0.0287	0.0287	0.0287	0.0287	0.0287	0.0287	0.0287	0.0287	0.0287	0.0287	0.0287	0.0287	0.0287
CH ₄ emission factor for ethylene, t/t	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003
CH ₄ emission factor for methanol, t/t	0.0023	0.0023	0.0023	0.0023	0.0023	0.0023	0.0023	0.0023	0.0023	0.0023	0.0023	0.0023	0.0023	0.0023
CH ₄ emission factor for vinyl chloride monomer, t/t	0.47	0.47	0.47	0.47	0.47	0.47	0.47	0.47	0.47	0.47	0.47	0.47	0.47	0.47
SO ₂ emission factor for carbon black, t/t	0.022	0.022	0.022	0.022	0.022	0.022	0.022	0.022	0.022	0.022	0.022	0.022	0.022	0.022
SO ₂ emission factor for sulphuric acid, t/t	0.00905	0.00905	0.00905	0.00905	0.00905	0.00905	0.00905	0.00905	0.00905	0.00905	0.00905	0.00905	0.00905	0.00905
NO _x emission factor for carbon black, t/t	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015
NMVOC emission factor for carbon black, t/t	0.0007	0.0007	0.0007	0.0007	0.0007	0.0007	0.0007	0.0007	0.0007	0.0007	0.0007	0.0007	0.0007	0.0007
NMVOC emission factor for ethylene, t/t	0.0006	0.0006	0.0006	0.0006	0.0006	0.0006	0.0006	0.0006	0.0006	0.0006	0.0006	0.0006	0.0006	0.0006
NMVOC emission factor for vinyl chloride monomer, t/t	0.0025	0.0025	0.0025	0.0025	0.0025	0.0025	0.0025	0.0025	0.0025	0.0025	0.0025	0.0025	0.0025	0.0025
CO emission factor for carbon black, t/t	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03
NMVOC emission factor for polystyrene, t/t	0.00012	0.00012	0.00012	0.00012	0.00012	0.00012	0.00012	0.00012	0.00012	0.00012	0.00012	0.00012	0.00012	0.00012
NMVOC emission factor for propylene, t/t	0.0014	0.0014	0.0014	0.0014	0.0014	0.0014	0.0014	0.0014	0.0014	0.0014	0.0014	0.0014	0.0014	0.0014
NMVOC emission factor for polyethylene, t/t	0.0023	0.0023	0.0023	0.0023	0.0023	0.0023	0.0023	0.0023	0.0023	0.0023	0.0023	0.0023	0.0023	0.0023
NMVOC emission factor for phthalic anhydride from naphthalene fraction, t/t	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006
NMVOC emission factor for phthalic anhydride from o-xylene, t/t	0.0013	0.0013	0.0013	0.0013	0.0013	0.0013	0.0013	0.0013	0.0013	0.0013	0.0013	0.0013	0.0013	0.0013
NMVOC emission factor for polypropylene, t/t	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004
NOx emissions for carbon black, kt	3.9	3.1635	2.35905	1.67715	0.9975	0.7725	0.7575	0.999	1.026	0.813	0.645	1.071	0.8955	1.29
CO emissions for carbon black, kt	7.8	6.327	4.7181	3.3543	1.995	1.545	1.515	1.998	2.052	1.626	1.29	2.142	1.791	2.58
Total CO ₂ emissions, kt	1962.330	1776.533	1378.781	920.161	1503.824	560.459	343.052	479.015	477.214	305.353	317.422	442.359	679.86	786.38
Total CH ₄ emissions, kt	10.270	8.735	6.808	4.797	4.508	2.403	1.880	2.467	2.507	1.909	1.693	31.530	59.393	84.871
Total NMVOC emissions, kt	0.684	0.637	0.484	0.342	0.637	0.342	0.265	0.372	0.436	0.295	0.294	0.739	1.131	1.291
Total SO ₂ emissions, kt	51.0695	42.5231	30.6099	19.1389	16.3593	15.5496	15.3828	14.4791	13.7585	13.7990	10.3218	10.9828	9.7751	12.145

Year	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018
CO ₂ emission factor for carbon black, t/t	2.62	2.62	2.62	2.62	2.62	2.62	2.62	2.62	2.62	2.62	2.62	2.62	2.62	2.62	2.62
CO ₂ emission factor for ethylene, t/t	1.73	1.73	1.73	1.73	1.73	1.73	1.73	1.73	1.73	1.73	1.73	1.73	1.73	1.73	1.73
Geographical correction factor for ethylene	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1
CO ₂ emission factor for methanol, t/t	0.67	0.67	0.67	0.67	0.67	0.67	0.67	0.67	0.67	0.67	0.67	0.67	0.67	0.67	0.67
CO ₂ emission factor for vinyl chloride monomer, t/t	0.294	0.294	0.294	0.294	0.294	0.294	0.294	0.294	0.294	0.294	0.294	0.294	0.294	0.294	0.294
CH ₄ emission factor for carbon black, t/t	0.0287	0.0287	0.0287	0.0287	0.0287	0.0287	0.0287	0.0287	0.0287	0.0287	0.0287	0.0287	0.0287	0.0287	0.0287
CH ₄ emission factor for ethylene, t/t	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003
CH ₄ emission factor for methanol, t/t	0.0023	0.0023	0.0023	0.0023	0.0023	0.0023	0.0023	0.0023	0.0023	0.0023	0.0023	0.0023	0.0023	0.0023	0.0023
CH ₄ emission factor for vinyl chloride monomer, t/t	0.47	0.47	0.47	0.47	0.47	0.47	0.47	0.47	0.47	0.47	0.47	0.47	0.47	0.47	0.47
SO ₂ emission factor for carbon black, t/t	0.022	0.022	0.022	0.022	0.022	0.022	0.022	0.022	0.022	0.022	0.022	0.022	0.022	0.022	0.022
SO ₂ emission factor for sulphuric acid, t/t	0.00905	0.00905	0.00905	0.00905	0.00905	0.00905	0.00905	0.00905	0.00905	0.00905	0.00905	0.00905	0.00905	0.00905	0.00905
NO _x emission factor for carbon black, t/t	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015
NMVOC emission factor for carbon black, t/t	0.0007	0.0007	0.0007	0.0007	0.0007	0.0007	0.0007	0.0007	0.0007	0.0007	0.0007	0.0007	0.0007	0.0007	0.0007
NMVOC emission factor for ethylene, t/t	0.0006	0.0006	0.0006	0.0006	0.0006	0.0006	0.0006	0.0006	0.0006	0.0006	0.0006	0.0006	0.0006	0.0006	0.0006
NMVOC emission factor for vinyl chloride monomer, t/t	0.0025	0.0025	0.0025	0.0025	0.0025	0.0025	0.0025	0.0025	0.0025	0.0025	0.0025	0.0025	0.0025	0.0025	0.0025
CO emission factor for carbon black, t/t	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03
NMVOC emission factor for polystyrene, t/t	0.00012	0.00012	0.00012	0.00012	0.00012	0.00012	0.00012	0.00012	0.00012	0.00012	0.00012	0.00012	0.00012	0.00012	0.00012
NMVOC emission factor for propylene, t/t	0.0014	0.0014	0.0014	0.0014	0.0014	0.0014	0.0014	0.0014	0.0014	0.0014	0.0014	0.0014	0.0014	0.0014	0.0014
NMVOC emission factor for polyethylene, t/t	0.0023	0.0023	0.0023	0.0023	0.0023	0.0023	0.0023	0.0023	0.0023	0.0023	0.0023	0.0023	0.0023	0.0023	0.0023
NMVOC emission factor for phthalic anhydride from naphthalene fraction, t/t	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006
NMVOC emission factor for phthalic anhydride from o-xylene, t/t	0.0013	0.0013	0.0013	0.0013	0.0013	0.0013	0.0013	0.0013	0.0013	0.0013	0.0013	0.0013	0.0013	0.0013	0.0013
NMVOC emission factor for polypropylene, t/t	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004
NOx emissions for carbon black, kt	1.5015	1.7385	1.6035	1.8135	1.617	0.8805	1.1355	0.8803	1.2898	1.1775	1.0561	0.8280	1.081	1.161	1.341
CO emissions for carbon black, kt	3.003	3.477	3.207	3.627	3.234	1.761	2.271	1.7606	2.5797	2.355	2.1123	1.6560	2.162	2.321	2.683
Total CO ₂ emissions, kt	899.97	866.65	917.15	919.37	579.81	216.98	334.74	657.90	606.76	236.35	199.73	144.62	188.88	411.147	666.299
Total CH ₄ emissions, kt	114.91	93.759	88.443	85.063	36.993	1.902	17.136	73.922	59.008	8.558	2.073	1.5842	2.069	39.839	102.757
Total NMVOC emissions, kt	1.579	1.388	1.402	1.442	0.813	0.446	0.599	1.263	0.787	0.116	0.050	0.0389	0.051	0.487	1.031
Total SO ₂ emissions, kt	15.098	17.084	15.863	17.655	15.756	9.3459	13.39	15.198	14.280	12.330	6.7526	5.7986	6.326	6.783	8.117

Table A3.1.1.11 Greenhouse gas emissions from Steel Production (CRF category 2.C.1.1)

Year	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004
Steel production, kt	52635.4	44994.5	41759.2	32609.7	24081.2	22307.9	22332.9	25628.5	24446.5	27392.2	31781.0	33522.1	34546.4	37524.1	38718.5
Specific pig iron consumption for steel production, t/t	0.671	0.681	0.693	0.706	0.726	0.724	0.730	0.741	0.739	0.744	0.742	0.746	0.729	0.744	0.759
Specific scrap consumption for steel production, t/t	0.367	0.370	0.372	0.372	0.355	0.357	0.351	0.342	0.343	0.339	0.340	0.336	0.338	0.337	0.328
Carbon content in steel, %	0.218	0.219	0.219	0.219	0.216	0.217	0.216	0.215	0.215	0.214	0.214	0.214	0.214	0.214	0.213
CO ₂ emission factor, t/t	0.103	0.106	0.109	0.109	0.114	0.115	0.114	0.112	0.111	0.112	0.112	0.113	0.112	0.115	0.117
CO ₂ emissions, kt	5417.9	4777.2	4536.2	3569.7	2753.3	2559.5	2556.8	2864.8	2706.0	3080.5	3553.6	3795.1	3879.3	4314.0	4547.5
NO _x emissions, kt	0.69	0.61	0.58	0.46	0.29	0.26	0.26	0.27	0.27	0.28	0.31	0.32	0.35	0.39	0.37
CO emissions, kt	0.08	0.07	0.06	0.05	0.04	0.04	0.04	0.04	0.04	0.05	0.05	0.06	0.06	0.07	0.07
NMVOC emissions, kt	0.72	0.63	0.59	0.45	0.30	0.29	0.28	0.30	0.29	0.32	0.37	0.38	0.39	0.43	0.41
SO ₂ emissions, kt	0.2200	0.1999	0.1920	0.1494	0.0856	0.0761	0.0729	0.0703	0.0697	0.0680	0.0774	0.0739	0.0857	0.0957	0.0795
Year	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	
Steel production, kt	38615.5	40891.8	42828.5	37082.3	29848.0	32681.8	34762.0	32497.9	32673.02	27144.06	22997.61	24196.00	21049.27	20994.48	
Specific pig iron consumption for steel production, t/t	0.769	0.775	0.772	0.789	0.805	0.794	0.776	0.803	0.819	0.823	0.842	0.847	0.809	0.816	
Specific scrap consumption for steel production, t/t	0.330	0.329	0.323	0.328	0.297	0.297	0.329	0.301	0.288	0.282	0.263	0.253	0.286	0.286	
Carbon content in steel, %	0.213	0.213	0.213	0.213	0.210	0.212	0.212	0.210	0.211	0.211	0.210	0.210	0.213	0.213	
CO ₂ emission factor, t/t	0.122	0.123	0.122	0.125	0.128	0.126	0.123	0.127	0.125	0.128	0.133	0.136	0.130	0.130	
CO ₂ emissions, kt	4711.3	5028.0	5244.0	4646.4	3816.4	4119.4	4286.5	4142.9	4068.1	3482.9	3066.4	3279.9	2736.1	2724.7	
NO _x emissions, kt	0.38	0.41	0.43	0.41	0.38	0.44	0.52	0.44	0.49	0.42	0.32	0.34	0.35	0.35	
CO emissions, kt	0.07	0.08	0.08	0.07	0.07	0.08	0.09	0.09	0.09	0.07	0.06	0.07	0.05	0.05	
NMVOC emissions, kt	0.41	0.43	0.46	0.38	0.22	0.27	0.27	0.21	0.22	0.19	0.16	0.15	0.17	0.17	

Table A3.1.1.12 Greenhouse gas emissions from Iron Production (CRF category 2.C.1.2)

Year	1990	1991	1992	1993	1994	1995	1996
Iron production, kt	44927.4	36632.1	35350.0	27108.0	20180.3	17998.4	17831.5
Sinter production, kt	60926.5	51109.2	49473.2	40110.8	30376.8	26277.9	25817.8
Carbon content in iron, %	4.37	4.43	4.45	4.40	4.40	4.50	4.45
Carbon content in iron, kt	1963.33	1622.80	1573.08	1192.75	887.93	809.93	793.50
Use of coke for iron production, kt	23586.9	19653.1	19152.6	15766	12927.5	11400.9	11140.2
Carbon content in coke, %	85.29	85.23	85.17	85.11	85.05	84.99	84.94
Use of coal for iron production, kt	0.00	0.00	0.00	0.00	0.00	47.50	34.60
Carbon content in coal, %	0.00	0.00	0.00	0.00	0.00	71.95	71.95
Use of natural gas for iron production, mln m ³	5.55	5.32	5.10	4.89	4.69	4.49	4.30
CO ₂ emission factor when natural gas is used, t CO ₂ /10 ³ m ³	1.847	1.849	1.849	1.850	1.850	1.850	1.850
CO ₂ emission factor at iron production, t/t	1.48	1.51	1.53	1.65	1.84	1.82	1.79
CO ₂ emissions, kt	66571.25	55476.03	54052.45	44837.15	37068.74	32694.18	31883.88
Emissions of CH ₄ (iron), kt	40.43466	32.96889	31.815	24.3972	18.16227	16.19856	16.04835
Emissions of CH ₄ (sinter), kt	4.64819	3.78996	3.65731	2.80459	2.08785	1.85715	1.82231
NO _x emissions, kt	3.414482	2.784039	2.6866	2.06020	1.533702	1.3678784	1.355194
CO emissions, kt	58.40562	47.62173	45.955	35.2404	26.23439	23.39792	23.18095
NMVOC emissions, kt	4.49274	3.66321	3.535	2.7108	2.01803	1.79984	1.78315
SO ₂ emissions, kt	89.8548	73.2642	70.7	54.216	40.3606	35.9968	35.663
Year	1997	1998	1999	2000	2001	2002	2003
Iron production, kt	20616.0	20936.7	23009.8	25698.7	26378.5	27633.3	29529.0
Sinter production, kt	29573.9	31539.0	35781.7	38801.3	41287.9	42991.6	44935.6
Carbon content in iron, %	4.29	4.26	4.30	4.29	4.32	4.38	4.39
Carbon content in iron, kt	884.43	891.90	989.42	1102.47	1139.55	1210.34	1296.32
Use of coke for iron production, kt	12562.2	12201.6	12825.9	14108.1	14737.5	15196.6	15405.9
Carbon content in coke, %	84.88	84.82	84.76	84.76	84.8	84.94	84.85
Use of coal for iron production, kt	19.50	49.70	52.00	46.30	47.7	31.10	66.10
Carbon content in coal, %	71.95	71.95	71.95	71.78	72.3	74.93	75.72
Use of natural gas for iron production, mln m3	4.12	3.95	3.79	3.63	3.48	3.33	3.41
CO ₂ emission factor when natural gas is used, t CO ₂ /10 ³ m ³	1.850	1.850	1.850	1.850	1.850	1.850	1.850
CO ₂ emission factor at iron production, t/t	1.74	1.66	1.58	1.55	1.58	1.56	1.47
CO ₂ emissions, kt	35912.17	34815.46	36377.97	39932.78	41804.27	42980.78	43365.8
Emissions of CH ₄ (iron), kt	18.5544	18.84303	20.70882	23.12883	23.740	24.8699	26.5761
Emissions of CH ₄ (sinter), kt	2.16334	2.27654	2.57550	2.84505	2.99613	3.10714	3.14549
NO _x emissions, kt	1.566816	1.5911892	1.7487448	1.9531012	2.0047	2.10013	2.2442
					34.292	35.92329	38.3877
CO emissions, kt	26.8008	27.21771	29.91274	33.40831	34.292	33.92329	30.3011
CO emissions, kt NMVOC emissions, kt	26.8008 2.0616	27.21771 2.09367	29.91274	2.56987	2.6378	2.76333	2.9529

Year	2004	2005	2006	2007	2008	2009	2010	2011
Iron production, kt	30977.6	30746.1	32929.3	35649.7	30991.3	25683.1	27365.8	28877.0
Sinter production, kt	48134.0	48582.8	49002.8	51216.8	44553.1	35863.3	39492.6	40219.6
Carbon content in iron, %	4.40	4.50	4.50	4.50	4.50	4.50	4.50	4.50
Carbon content in iron, kt	1363.01	1383.57	1481.82	1604.24	1394.61	1155.74	1231.46	1299.46
Use of coke for iron production, kt	15669.4	14955.8	16235.4	17713.4	17884.10	15624.0	15990.821	16126.9219
Carbon content in coke, %	84.59	84.94	85.02	84.85	84.94	84.85	84.85	85.2
Use of coal for iron production, kt	115.40	161.90	140.40	170.70	101.97	126.66	151.20	154.20
Carbon content in coal, %	77.73	78.34	78.95	79.57	80.18	80.79	80.44	79.8
Use of natural gas for iron production, mln m3	3.47	3.47	2.89	2.64	1.899	1.67	1.57	1.896
CO ₂ emission factor when natural gas is used, t CO ₂ /10 ³ m ³	1.850	1.851	1.855	1.848	1.862	1.852	1.849	1.874
CO ₂ emission factor at iron production, t/t	1.42	1.37	1.38	1.39	1.64	1.74	1.67	1.60
CO ₂ emissions, kt	43938.3	41977.7	45590.7	49730.04	50889.21	44749.37	45683.62	46076.51
Emissions of CH ₄ (iron), kt	27.8798	27.6715	29.6364	32.08473	27.89217	23.11479	24.62922	25.9893
Emissions of CH ₄ (sinter), kt	3.36938	3.40080	3.43020	3.58518	3.11872	2.51043	2.76448	2.81537
NO _x emissions, kt	2.35429	2.33670	2.50262	2.70937	2.35533	1.951915	2.0798008	2.194652
CO emissions, kt	40.2709	39.9699	42.8081	46.34461	40.28869	33.38803	35.57554	37.5401
NMVOC emissions, kt	3.09776	3.07461	3.29293	3.56497	3.09913	2.56831	2.73658	2.8877
SO ₂ emissions, kt	61.9552	61.4922	65.8586	71.2994	61.9826	51.3662	54.7316	57.754
Year	2012	2013	2014	2015	2016	2017	2018	
Iron production, kt	28486.6	29088.7	24800.9	21862.8	23559.5	20116.5	20531.2	
Sinter production, kt	42598.0	43624	38294.601	33575.718	34383	31000	31680	
Carbon content in iron, %	4.50	4.31	4.42	4.49	4.54	4.55	4.51	1
Carbon content in iron, kt	1281.89	1254.45	1096.7	981.26	1068.78	914.73	925.01	
Use of coke for iron production, kt	15661.86	15456.933	13417.59	12536.7	12872.72	11342.36	11897.95	
Carbon content in coke, %	85.3	84.8	84.2	84.2	84.9	84.3	84.9	
Use of coal for iron production, kt	139.28	117.75	110.01	91.30	108.79	111.18	142.04	
Carbon content in coal, %	80.5	77.9	76.3	79.6	79.6	78.99	78.99	
Use of natural gas for iron production, mln m3	1.757	1.701	3.4487	1.54	1.35	1.13	1.35	
							1.010	
CO ₂ emission factor when natural gas is used, t CO ₂ /10 ³ m ³	1.883	1.888	1.872	1.919	1.922	1.909	1.918	
CO ₂ emission factor when natural gas is used, t CO ₂ /10 ³ m ³ CO ₂ emission factor at iron production, t/t	1.883 1.57	1.888 1.51	1.872 1.52	1.919 1.62	1.922 1.55	1.909	1.918	
	1							-
CO ₂ emission factor at iron production, t/t	1.57	1.51	1.52	1.62	1.55	1.59	1.66	- - -
CO ₂ emission factor at iron production, t/t CO ₂ emissions, kt	1.57 44721.55	1.51 43820.07	1.52 37732.37	1.62 35 357.65	1.55 36 466.71	1.59 32 017.03	1.66 34 043.11	-
CO ₂ emission factor at iron production, t/t CO ₂ emissions, kt Emissions of CH ₄ (iron), kt	1.57 44721.55 25.63794	1.51 43820.07 26.17983	1.52 37732.37 22.32081	1.62 35 357.65 19.676	1.55 36 466.71 21.203	1.59 32 017.03 18.105	1.66 34 043.11 18.478	- - - -
CO ₂ emission factor at iron production, t/t CO ₂ emissions, kt Emissions of CH ₄ (iron), kt Emissions of CH ₄ (sinter), kt	1.57 44721.55 25.63794 2.98186	1.51 43820.07 26.17983 3.05368	1.52 37732.37 22.32081 2.68062	1.62 35 357.65 19.676 2.35030	1.55 36 466.71 21.203 2.407	1.59 32 017.03 18.105 2.17	1.66 34 043.11 18.478 2.22	- - - - -
CO ₂ emission factor at iron production, t/t CO ₂ emissions, kt Emissions of CH ₄ (iron), kt Emissions of CH ₄ (sinter), kt NO _x emissions, kt	1.57 44721.55 25.63794 2.98186 2.1649816	1.51 43820.07 26.17983 3.05368 2.2107412	1.52 37732.37 22.32081 2.68062 1.8848684	1.62 35 357.65 19.676 2.35030 1.6615	1.55 36 466.71 21.203 2.407 1.790	1.59 32 017.03 18.105 2.17 1.529	1.66 34 043.11 18.478 2.22 1.56	- - - - -

Table A3.1.1.13 Greenhouse gas emissions from Ferroalloys Production (CRF category 2.C.2)

Year	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004
Ferroalloys Production, kt	2135.5	1930.1	1026.5	1026.5	1026.5	1026.5	1026.5	1026.5	851.6	934.5	1279.7	1296.3	1288.3	1490.0	1912.3
CO ₂ emission factor, t/t	1.646	1.64	1.73	1.71	1.77	1.78	1.73	1.76	1.79	1.73	1.78	1.79	1.69	1.63	1.59
CH ₄ emission factor, t/t	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
CO ₂ emissions, kt	3515.98	3166.71	1775.44	1752.28	1812.80	1825.96	1774.47	1810.94	1521.35	1613.09	2281.50	2325.00	2173.34	2435.12	3043.30
CH ₄ emissions, kt	0.605	0.533	0.422	0.345	0.243	0.264	0.216	0.246	0.196	0.215	0.287	0.302	0.308	0.244	0.242
Year	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	
Ferroalloys Production, kt	1632.4	1709.6	1867.9	1662.8	1200.7	1671.3	1419.6	1300	1142.22	1362.47	1092.13	1218.32	1278.99	1244.79	
CO ₂ emission factor, t/t	1.60	1.61	1.69	1.71	1.61	1.68	1.60	1.64	1.67	1.76	1.73	1.62	1.51	1.56	
CH ₄ emission factor, t/t	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	
CO ₂ emissions, kt	2608.87	2755.29	3164.35	2849.91	1938.97	2801.74	2264.65	2132.67	1909.01	2396.61	1894.225	1972.62	1925.81	1947.03	
CH ₄ emissions, kt	0.157	0.122	0.167	0.154	0.159	0.155	0.111	0.089	0.152	0.132	0.093	0.105	0.096	0.076	

Table A3.1.1.14 Greenhouse gas emissions from Aluminium Production (CRF category 2.C.3)

Year	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004
CO ₂ emissions, kt	170.28	163.44	158.04	159.84	153.72	153.18	150.48	163.26	168.48	177.30	178.02	186.30	190.44	193.50	195.84
CF ₄ emissions, kt	0.0274	0.0219	0.0165	0.0167	0.0187	0.0207	0.0166	0.0171	0.0140	0.0118	0.0134	0.0130	0.0115	0.0090	0.0108
C ₂ F ₆ emissions, kt	0.0027	0.0022	0.0017	0.0017	0.0019	0.0021	0.0017	0.0017	0.0014	0.0012	0.0013	0.0013	0.0011	0.0009	0.0011
Year	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	
CO ₂ emissions, kt	201.60	200.16	201.89	200.79	89.38	44.84									
CF ₄ emissions, kt	0.0165	0.0129	0.0180	0.0202	0.0063	0.0031				Not produc	eted				
C ₂ F ₆ emissions, kt	0.0017	0.0013	0.0018	0.0020	0.0006	0.0003									

Table A3.1.1.15 Greenhouse gas emissions from Lubricant Use

Year	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004
Total consumption, TJ	20783.40	20783.40	15597.60	12904.20	9969.60	9125.40	19336.20	22793.40	16232.08	14094.21	12660.67	12452.74	12109.60	11733.44	12594.62
Carbon content, t C/TJ	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020
Oxydation factor at use, t/t	0.200	0.200	0.200	0.200	0.200	0.200	0.200	0.200	0.200	0.200	0.200	0.200	0.200	0.200	0.200
Stoichiometric ratio between CO ₂ and C mol. weight	3.667	3.667	3.667	3.667	3.667	3.667	3.667	3.667	3.667	3.667	3.667	3.667	3.667	3.667	3.667
Emissions of CO ₂ , kt	304.826	304.826	228.767	189.263	146.222	133.840	283.600	334.306	238.073	206.717	185.692	182.642	177.609	172.092	184.723
CO ₂ emission factor, t/t	0.590	0.590	0.590	0.590	0.590	0.590	0.590	0.590	0.590	0.590	0.590	0.590	0.590	0.590	0.590
Year	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	
Total consumption, TJ	12939.85	11619.79	14260.48	12667.34	9833.08	9735.32	10233.34	10105.13	9422.72	8619.21	7998.65	7795.84	9074.33	8889.41	
Carbon content, t C/TJ	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	
Oxydation factor at use, t/t	0.200	0.200	0.200	0.200	0.200	0.200	0.200	0.200	0.200	0.200	0.200	0.200	0.200	0.200	
Stoichiometric ratio between CO ₂ and C mol. weight	3.667	3.667	3.667	3.667	3.667	3.667	3.667	3.667	3.667	3.667	3.667	3.667	3.667	3.667	
Emissions of CO ₂ , kt	189.786	170.425	209.156	185.789	144.220	142.786	150.090	148.210	138.201	126.416	117.315	114.340	133.09	130.38	
CO ₂ emission factor, t/t	0.590	0.590	0.590	0.590	0.590	0.590	0.590	0.590	0.590	0.590	0.590	0.590	0.590	0.590	

Table A3.1.1.16 Greenhouse gas emissions from Paraffin Wax Use

Year	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004
Total consumption, TJ	8375.46	8354.36	4648.12	1708.46	1068.48	970.02	365.22	119.08	72.88	84.08	733.80	633.24	736.04	743.67	707.67
Carbon content, t C/TJ	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
Oxydation factor at use, t/t	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
Stoichiometric ratio between CO ₂ and C mol. weight	3.6667	3.6667	3.6667	3.6667	3.6667	3.6667	3.6667	3.6667	3.6667	3.6667	3.6667	3.6667	3.6667	3.6667	3.6667
Emissions of CO ₂ , kt	122.841	122.532	68.173	25.058	15.671	14.227	5.357	1.746	1.069	1.233	10.763	9.288	10.795	10.907	10.379
CO ₂ emission factor, t/t	0.5896	0.5896	0.5896	0.5896	0.5896	0.5896	0.5896	0.5896	0.5896	0.5896	0.5896	0.5896	0.5896	0.5896	0.5896
Year	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	
Total consumption, TJ	634.32	628.44	597.17	610.29	266.23	722.76	674.39	737.23	781.63	829.32	716.49	703.22	629.68	697.03	
Carbon content, t C/TJ	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	
Oxydation factor at use, t/t	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	
Stoichiometric ratio between CO ₂ and C mol. weight	3.6667	3.6667	3.6667	3.6667	3.6667	3.6667	3.6667	3.6667	3.6667	3.6667	3.6667	3.6667	3.6667	3.6667	
Emissions of CO ₂ , kt	9.303	9.217	8.758	8.951	3.905	10.601	9.891	9.891	11.464	12.163	10.509	10.314	9.235	10.223]
CO ₂ emission factor, t/t	0.5896	0.5896	0.5896	0.5896	0.5896	0.5896	0.5896	0.5896	0.5896	0.5896	0.5896	0.5896	0.5896	0.5896	

Table A3.1.1.17 Greenhouse gas emissions from product uses as substitutes for ozone-depleting substances

Year	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007
Domestic refrigeration, kt CO _{2-eq}				2.330	12.978	19.504	25.785	27.995	32.476	36.445	43.286
Comercial refrigeration, kt CO _{2-eq}				4.459	0.310	10.584	21.750	33.802	46.634	57.435	64.360
Industrial refrigeration, kt CO _{2-eq}					1.271	5.948	8.697	19.248	36.913	77.846	122.819
Transport refrigeration, kt CO _{2-eq}				0.185	0.349	0.439	0.857	1.733	2.475	3.429	2.655
Comercial air conditioning, kt CO _{2-eq}						0.034	0.125	0.182	0.544	1.110	4.227
Mobile air conditioning for automotive vehicles, kt CO _{2-eq}		0.512	0.855	1.742	4.730	9.578	17.288	33.561	43.545	61.870	101.722
Mobile air conditioning for railway transport, kt CO _{2-eq}				0.013	0.028	0.095	0.184	0.280	0.304	0.422	0.471
OPF, kt CO _{2-eq}						3.575	9.295	40.040	84.370	104.390	128.70
RPUF, kt CO _{2-eq}						0.00389	0.00778	0.02048	0.03604	0.04914	0.07351
RPUF (insulation by spraying, pouring, injection), kt CO _{2-eq}						0.1369	3.0398	4.7531	0.4368	6.0817	14.186
XPS, kt CO _{2-eq}						0.4032	0.8022	1.806	3.093	4.525	6.67095
Fire protection, kt CO _{2-eq}						0.215	0.704	1.124	2.027	6.937	8.968
Aerosols use, kt CO _{2-eq}	6.431	12.507	13.288	11.461	9.350	13.661	16.517	21.940	30.588	41.709	62.958
Total HFCs emissions, kt CO _{2-eq}	6.43	13.02	14.14	15.73	29.02	64.24	105.18	187.23	285.06	402.25	561.10
Year	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018
Domestic refrigeration, kt CO _{2-eq}	23.947	15.735	15.849	14.196	15.103	15.876	14.671	5.863	6.093	9.23	31.10
Comercial refrigeration, kt CO _{2-eq}	67.802	68.124	70.364	73.209	76.950	78.296	76.069	75.825	131.686	147.358	209.545
Industrial refrigeration, kt CO _{2-eq}	146.503	158.043	147.479	75.862	59.237	46.653	34.302	26.132	21.252	18.476	19.483
Transport refrigeration, kt CO _{2-eq}	5.629	3.932	4.857	8.160	11.210	11.606	10.630	7.013	6.198	13.226	18.252
Comercial air conditioning, kt CO _{2-eq}	11.721	13.392	17.251	67.390	109.230	148.817	181.097	219.248	266.789	331.841	513.958
Industrial air conditioning, kt CO _{2-eq}			42.722	124.993	136.416	136.768	130.541	127.739	130.291	138.797	177.384
Mobile air conditioning for automotive vehicles, kt CO _{2-eq}	154.855	152.428	150.672	155.619	166.974	167.584	154.503	143.918	123.457	112.112	107.644
Mobile air conditioning for railway transport, kt CO _{2-eq}	0.723	0.642	0.679	0.716	0.677	0.500	0.460	0.432	0.434	0.485	0.410
OPF, kt CO _{2-eq}	130.13	130.13	108.68	38.61	40.04	38.839	35.149	28.049	35.061	39.970	48.363
RPUF, kt CO _{2-eq}	0.10726	0.14187	0.18363	1.8007	2.0899	2.4313	2.232	1.836	2.246	2.537	3.027
RPUF (insulation by spraying, pouring, injection), kt CO _{2-eq}	11.550922	7.775032	34.2449	44.1896	18.6981	28.2897	27.322	24.253	29.076	32.90	38.876
XPS, kt CO _{2-eq}	8.88459	9.50235	9.867	12.5496	8.2892	8.0405	7.799	7.565	7.338	7.118	6.905
Fire protection, kt CO _{2-eq}	12.237	15.272	17.698	19.058	21.056	25.631	28.996	31.116	34.452	36.838	39.679
Aerosols use, kt CO _{2-eq}	73.121	88.620	123.288	183.618	174.764	171.885	144.054	76.298	92.926	118.596	134.631
Total HFCs emissions, kt CO _{2-eq}	647.21	663.74	743.83	819.97	840.73	881.22	847.82	775.29	887.30	1009.48	1349.26

Table A3.1.1.18 GHG emissions from use of sulfur hexafluoride

Year	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004
Amount of sulfur hexafluoride in the produced equipment, t	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.103	0.339	1.427
Amount of sulfur hexafluoride in the installed equipment, t	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.17	0.17	0.60	1.72	1.01
Amount of sulfur hexafluoride in the exploited equipment, t	0.07	0.17	0.27	0.52	0.57	0.59	0.62	1.12	1.70	2.69	3.02	3.39	5.95	7.17	8.67
Leaks in production of the equipment,%	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5
Leaks in installation of the equipment,%	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
Leaks in exploitation of the equipment,%	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500
Emissions from production of the equipment, kt CO ₂ -eq	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.114	0.391	1.763
Emissions from installation of the equipment, kt CO ₂ -eq	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0763	0.0763	0.276	0.782	0.457
Emissions from production and installation of the equipment, kt CO ₂ -eq	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.763	0.0763	0.391	1.173	2.089
Emissions from exploitation of the equipment, kt CO ₂ -eq	0.0076	0.019	0.0305	0.0591	0.0648	0.0677	0.0696	0.127	0.193	0.307	0.344	0.386	0.678	0.817	0.988
Total emissions, tons of CO ₂ -eq	0.0076	0.0191	0.0305	0.0591	0.0649	0.0677	0.0696	0.1278	0.1937	0.3072	0.4205	0.4632	1.0695	1.9912	3.0780

Year	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018
Amount of sulfur hexafluoride in the produced equipment, t	2.323	1.606	1.375	3.191	2.590	2.620	3.49	4.820	2.052	6.647	2.397	1.919	0.589	2.454
Amount of sulfur hexafluoride in the installed equipment, t	0.50	0.69	2.09	3.03	2.36	1.65	0.238	0.177	0.124	0.168	0.165	0.167	0.105	0.236
Amount of sulfur hexafluoride in the exploited equipment, t	13.91	18.66	23.51	37.90	46.76	52.37	69.386	90.872	107.479	139.398	169.242	210.68	248.65	288.63
Leaks in production of the equipment,%	5	5	5	5	5	5	5	5	5	5	5	5	5	5
Leaks in installation of the equipment,%	2	2	2	2	2	2	2	2	2	2	2	2	2	2
Leaks in exploitation of the equipment,%	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500
Emissions from production of the equipment, kt CO ₂ -eq	2.652	1.831	1.564	3.634	2.957	2.985	0.397	0.54948	0.2339	0.758	0.273	0.219	0.067	0.279
Emissions from installation of the equipment, kt CO ₂ -eq	0.2289	0.314	0.953	1.383	1.077	0.753	0.108	0.0807	0.0565	0.0765	0.0753	0.0761	0.048	0.107
Emissions from production and installation of the equipment, kt	2.881	2.146	2.518	5.017	4.035	3.739	0.506	0.6032	0.2905	0.834	0.348	0.295	0.115	0.387
CO ₂ -eq	2.001	2.140	2.316	3.017	4.033	3.739	0.500	0.0032	0.2903	0.654	0.546	0.293	0.113	0.367
Emissions from exploitation of the equipment, kt CO ₂ -eq	1.586	2.127	2.679	4.320	5.330	5.970	7.91	10.3594	12.2526	15.891	19.294	24.017	28.346	32.904
Total emissions, t CO ₂ -eq	4.4671	4.2740	5.1982	9.3381	9.3656	9.7100	8.4141	10.9896	12.5431	16.726	19.642	24.312	28.461	32.291

Table A3.1.1.19 Greenhouse gas emissions from Food and Beverages Industry

Year	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
Amount of meat and fish produced, kt	5419	4850	4079	3485	3089	2694	2558	2422	2286	2149
Amount of margarine produced, kt	917	743	552	485	360	405	252	202	210	282
Amount of mixed fodder produced, kt	1647	1454	1132	9730	7957	6439	4139	2226	2032	4635
Amount of bakery products produced, kt	6701	6685	6441	5444	4816	4114	3452	3060	2672	2510
Amount of confectionery products produced, kt	436	398	336	275	185	130	103	117	146	188
Amount of sugar produced, kt	6791	4786	3647	3993	3368	3894	3296	2034	1984	1858
Amount of cognac and brandy produced, 10 ³ hl	110	105	82	75	57	58	90	96	79	2316
Amount of vodka produced, 10 ³ hl	3090	3360	3670	4030	3630	3750	2480	2710	2160	211
Amount of wine produced, 10 ³ hl	2720	2670	2200	1750	1690	1850	1400	1200	1070	856
Amount of beer produced, 10 ³ hl	138001	13100	11000	9090	9090	7100	6030	6130	6840	8407
Emission factor for meat and fish, t/t	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003
Emission factor for margarine, t/t	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Emission factor for mixed fodder, t/t	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
Emission factor for bakery products, t/t	0.0045	0.0045	0.0045	0.0045	0.0045	0.0045	0.0045	0.0045	0.0045	0.0045
Emission factor for confectionery products, t/t	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
Emission factor for sugar, t/t	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Emission factor for cognac and brandy, kg/hl	0.0035	0.0035	0.0035	0.0035	0.0035	0.0035	0.0035	0.0035	0.0035	0.0035
Emission factor for vodka, kg/hl	0.0075	0.0075	0.0075	0.0075	0.0075	0.0075	0.0075	0.0075	0.0075	0.0075
Emission factor for wine, kg/hl	0.00008	0.00008	0.00008	0.00008	0.00008	0.00008	0.00008	0.00008	0.00008	0.00008
Emission factor for beer, kg/hl	0.000035	0.000035	0.000035	0.000035	0.000035	0.000035	0.000035	0.000035	0.000035	0.000035
Total NMVOC emissions from food production, kt	110.943	88.680	73.666	80.329	68.021	68.880	56.023	39.200	36.828	38.163
Total NMVOC emissions from beverage production, kt	28.608	26.240	28.373	30.946	27.878	28.725	19.238	20.972	16.802	10.051
Total food and beverages, kt	139.551	114.919	102.039	111.274	95.899	97.605	75.261	60.171	53.629	48.214

Year	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
Amount of meat and fish produced, kt	2013	1850	1941	1973	1826	1863	1952	581	689	806
Amount of margarine produced, kt	365	461	463	551	397	422	415	417	401	428
Amount of mixed fodder produced, kt	3016	3348	4877	5191	3292	4178	4821	4953	5121	5881
Amount of bakery products produced, kt	2464	2450	2358	2427	2307	2264	2160	2034	1978	1826
Amount of confectionery products produced, kt	237	269	310	359	367	411	446	473	499	453
Amount of sugar produced, kt	1780	1947	1621	2486	2147	2139	2592	1867	1571	1275
Amount of cognac and brandy produced, 10 ³ hl	2592	2206	2378	3226	200	240	277	358	389	313
Amount of vodka produced, 10 ³ hl	312	284	448	485	4029	3502	3549	3721	3996	4233
Amount of wine produced, 10 ³ hl	948	1425	2081	2045	1541	2638	1056	2660	2953	3038
Amount of beer produced, 10 ³ hl	10765	13059	15000	16994	19373	23805	26750	31579	32039	30005
Emission factor for meat and fish, t/t	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003
Emission factor for margarine, t/t	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Emission factor for mixed fodder, t/t	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
Emission factor for bakery products, t/t	0.0045	0.0045	0.0045	0.0045	0.0045	0.0045	0.0045	0.0045	0.0045	0.0045
Emission factor for confectionery products, t/t	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
Emission factor for sugar, t/t	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Emission factor for cognac and brandy, kg/hl	0.0035	0.0035	0.0035	0.0035	0.0035	0.0035	0.0035	0.0035	0.0035	0.0035
Emission factor for vodka, kg/hl	0.0075	0.0075	0.0075	0.0075	0.0075	0.0075	0.0075	0.0075	0.0075	0.0075
Emission factor for wine, kg/hl	0.00008	0.00008	0.00008	0.00008	0.00008	0.00008	0.00008	0.00008	0.00008	0.00008
Emission factor for beer, kg/hl	0.000035	0.000035	0.000035	0.000035	0.000035	0.000035	0.000035	0.000035	0.000035	0.000035
Total NMVOC emissions from food production, kt	36.395	39.277	37.220	47.433	40.028	40.946	45.643	37.593	34.448	31.823
Total NMVOC emissions from beverage production, kt	11.865	10.422	12.374	15.687	31.719	28.149	28.608	30.479	32.689	34.136
Total food and beverages, kt	48.260	49.699	49.595	63.120	71.747	69.095	74.250	68.072	67.137	65.959

Year	2010	2011	2012	2013	2014	2015	2016	2017	2018
Amount of meat and fish produced, kt	825	864.3	892.0	1048.8	1048.0	1303.5	1181.639	1655.502	1867.217
Amount of margarine produced, kt	443	435.0	417.0	377.6	385.4	313.5	291.151	229.963	222.512
Amount of mixed fodder produced, kt	6107	6244.1	6412.8	6839.0	7224.7	7047.3	7039.262	6790.435	6286.384
Amount of bakery products produced, kt	1807	1769.4	1732.1	1612.5	1574.5	1411.7	1332.983	1377.252	1270.138
Amount of confectionery products produced, kt	482	489.1	391.9	388.0	330.9	312.5	267.904	430.176	447.599
Amount of sugar produced, kt	1805	2586.4	2143.4	1263.4	2583.4	1766.8	2435.877	3058.039	2682.440
Amount of cognac and brandy produced, 10 ³ hl	348	470.9	461.1	458.4	324.7	306.9	283.840	287.702	271.240
Amount of vodka produced, 10 ³ hl	4247	3335.5	3384.0	2804.5	2154.2	1866.6	1663.681	1370.374	1273.281
Amount of wine produced, 10 ³ hl	3715	1684.1	1275.7	1166.5	921.4	969.4	800.898	810.765	825.462
Amount of beer produced, 10 ³ hl	30956	30555.4	29673.6	27397.5	25220.9	20514.1	18781.007	18906.377	19235.106
Emission factor for meat and fish, t/t	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003
Emission factor for margarine, t/t	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Emission factor for mixed fodder, t/t	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
Emission factor for bakery products, t/t	0.0045	0.0045	0.0045	0.0045	0.0045	0.0045	0.0045	0.0045	0.0045
Emission factor for confectionery products, t/t	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
Emission factor for sugar, t/t	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Emission factor for cognac and brandy, kg/hl	0.0035	0.0035	0.0035	0.0035	0.0035	0.0035	0.0035	0.0035	0.0035
Emission factor for vodka, kg/hl	0.0075	0.0075	0.0075	0.0075	0.0075	0.0075	0.0075	0.0075	0.0075
Emission factor for wine, kg/hl	0.00008	0.00008	0.00008	0.00008	0.00008	0.00008	0.00008	0.00008	0.00008
Emission factor for beer, kg/hl	0.000035	0.000035	0.000035	0.000035	0.000035	0.000035	0.000035	0.000035	0.000035
Total NMVOC emissions from food production, kt	37.448	45.168	40.471	31.208	44.644	34.91	40.930	46.795	42.059
Total NMVOC emissions from beverage production, kt	34.451	27.869	28.135	23.691	18.249	15.87	14.192	12.011	12.238
Total food and beverages, kt	71.899	73.037	68.606	54.898	62.893	50.78	55.123	58.806	53.298

A3.1.2 Determination of the amount of limestone and dolomite use

Limestone and dolomite are widely used in manufacture of various products. Statistical data of limestone and dolomite use in Ukraine are not available. SSSU [2] provides data only of production of fluxing limestone.

 ${
m CO_2}$ emissions from limestone and dolomite use are accounted in the categories in which they are used.

To estimate CO_2 emissions from use of limestone and dolomite, in the previous NIR data on application of fluxing limestone were used taking into account export and import of limestone and with formation of the estimated balance of limestone use for production of all types of products. However, researches have shown that fluxing limestone is also used for lime and other products production. Therefore, the definition of activity data in this category based on statistical data on fluxing limestone manufacturing resulted in overestimation of CO_2 emissions. In 2012, the State Enterprise SE "UkrRTC "Energostal" performed the scientific-research work "Development of methods for calculation and determination of carbon dioxide emissions from limestone and dolomite use" [8], aimed at determining activity data and national CO_2 emission factors. To determine amounts of limestone used, this scientific-research work used statistics of sinter, pellets, pig iron, steel, and ferroalloys production, as well as industry limestone and dolomite consumption rates in production of these types of products. Table A3.1.2.1 shows results of estimation of the amount of limestone and dolomite used in the metallurgy in 2018 obtained using this scientific-research work, as well as results of estimation of CO_2 emissions from limestone and dolomite use.

Table A.3.1.2.1. Amount of limestone and dolomite use in metallurgy

Use of limestone	Measure- ment units	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001
Blast-furnace sinter production	kt	60926.5	51109.2	49473.2	40110.8	30376.8	26277.9	25817.8	29573.9	31539.0	35781.7	38801.3	41287.9
Specific standards for limestone use	kg/t	130.0	132.5	135.0	140.3	180.0	159.7	139.4	119.1	129.8	130.3	129.3	141.6
Specific standards for dolomite limestone use	kg/t	41.0	44.5	48.0	68.1	65.88	63.65	61.43	59.2	62.1	54.1	57.3	54.7
Limestone use	kt	7920.4	6772.0	6678.9	5627.5	5467.8	4196.6	3599.0	3522.3	4093.8	4662.4	5017.0	5846.4
Dolomite limestone use	kt	2498.0	2274.4	2374.7	2731.5	2001.2	1672.6	1586.0	1750.8	1958.6	1935.8	2223.3	2258.4
Iron ore pellets production	kt	27916.8	22144.1	19680.7	15248.3	12392.7	14584.8	12824.3	14959.5	12842.9	9619.2	12343.4	11951.9
Specific standards for limestone use	kg/t	49.03	49.03	49.03	49.03	49.03	49.03	49.03	49.03	49.03	49.03	49.03	49.03
Limestone use	kt	1368.8	1085.7	964.9	747.6	607.6	715.1	628.8	733.5	629.7	471.6	605.2	586.0
Iron production	kt	44927.4	36632.1	35350.0	27108.0	20180.3	17998.4	17831.5	20616.0	20936.7	23009.8	25698.7	26378.5
Specific standards for limestone use	kg/t	73	26	48	35	70	73.57	77	81	59	58	69	66
Specific standards for dolomite limestone use	kg/t	8	8	8	8	8	25	41	58	58	51	10	8
Limestone use	kt	3281.03	937.8	1703.9	948.8	1412.6	1324.1	1375.5	1663.7	1239.5	1336.9	1778.4	1746.3
Dolomite limestone use	kt	368.4	300.4	289.9	222.3	165.5	445.8	737.2	1193.7	1206.0	1171.2	249.3	216.3
Steel production	kt	52635.4	44994.5	41759.2	32609.7	24081.2	22307.9	22332.9	25628.5	24446.5	27392.2	31781	33522.1
Specific standards for limestone use	kg/t	24.6	24.6	24.6	24.6	21.3	20.94	20.58	20.23	24.28	24.71	24.95	25.19
Specific standards for dolomite limestone use	kg/t	9.8	9.8	9.8	9.8	8.6	8.57	8.54	8.51	4.9	5.3	5.68	6.05

Use of limestone	Measure- ment units	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001
Specific standards for dolomite use	kg/t	9.1	9.1	9.1	9.1	10.7	10.2	9.7	9.21	9.9	9.3	9.89	10.47
Limestone use	kt	1294.83	1106.86	1027.28	802.20	512.93	467.13	459.61	518.46	593.56	676.86	792.94	844.42
Dolomite limestone use	kt	515.83	440.95	409.24	319.58	207.10	191.18	190.72	218.10	118.81	143.81	180.52	202.81
Limestone and dolomite limestone use	kt	1810.66	1547.81	1436.52	1121.77	720.03	658.31	650.33	736.56	712.37	820.67	973.45	1047.23
Dolomite use	kt	478.98	409.45	380.01	296.75	257.67	227.54	216.63	236.04	240.80	253.65	314.31	350.98
Ferroalloys Production	kt	2135.5	1930.1	1026.5	1026.5	1026.5	1026.5	1026.5	1026.5	851.6	934.5	1279.7	1296.3
Specific standards for limestone use	kg/t	18.84	18.84	18.84	18.84	18.84	18.84	18.84	18.84	18.84	18.84	18.84	18.84
Limestone use	kt	40.2	36.4	19.3	19.3	19.3	19.3	19.3	19.3	16.0	17.6	24.1	24.4
Total limestone use	kt	13905.3	9938.7	10394.3	8145.5	8020.3	6722.3	6082.2	6457.2	6572.5	7165.3	8217.6	9047.5
Total dolomite limestone use	kt	3382.2	3015.7	3073.8	3273.4	2373.8	2309.6	2513.9	3162.5	3283.3	3250.8	2653.1	2677.6
Total use of limestone, including dolomite limestone	kt	17287.5	12954.4	13468.1	11418.9	10394.1	9031.9	8596.1	9619.8	9855.8	10416.1	10870.7	11725.0
Total use of dolomite	kt	479.0	409.4	380.0	296.7	257.7	227.5	216.6	236.0	240.8	253.7	314.3	351.0
Total limestone and dolomite use	kt	17766.50	13363.8	13848.1	11715.6	10651.8	9259.4	8812.7	9855.8	10096.6	10669.8	11185.0	12076.0
CO ₂ emission factor at limestone use (incl. dolomite limestone)	g/t	0.4336	0.4337	0.4336	0.4338	0.4336	0.4337	0.4338	0.4338	0.4339	0.4338	0.4337	0.4336
CO ₂ emission factor for dolomite use	kg/t	0.4645	0.4645	0.4645	0.4645	0.4645	0.4645	0.4645	0.4645	0.4645	0.4645	0.4645	0.4645
CO ₂ emissions from limestone use (incl. dolomite limestone)	kt	7495.5	5617.7	5840.4	4953.1	4507.4	3917.1	3728.8	4173.5	4276.0	4518.6	4714.4	5084.5
CO ₂ emissions from dolomite use	kt	222.5	190.2	176.5	137.8	119.7	105.7	100.6	109.6	111.9	117.8	146.0	163.0
Total CO ₂ emission from limestone and dolomite use	kt	7718.013	5807.9	6016.9	5090.9	4627.1	4022.8	3829.4	4283.1	4387.8	4636.5	4860.4	5247.5
Total CO ₂ emission factor	kg/t	0.4344	0.4346	0.4345	0.4345	0.4344	0.4345	0.4345	0.4346	0.4346	0.4345	0.4345	0.4345

Use of limestone	Measure- ment units	2002	2003	2004	2005	2006	2007	2008	2009
Blast-furnace sinter production	kt	42991.6	43883.3	48134.0	48582.8	49002.8	51216.8	44553.1	35863.3
Specific standards for limestone use	kg/t	139.6	132.95	126.3	155.3	125.2	156.0	148.4	152.7
Specific standards for dolomite limestone use	kg/t	41.8	53.2	64.6	42.2	54.6	30.8	24.0	23.6
Specific standards for dolomite use	kg/t	-	-	-	-	-	-	-	-
Limestone use	kt	6001.6	5834.3	6079.3	7544.9	6135.2	7989.8	6611.7	5476.3
Dolomite limestone use	kt	1797.0	2334.6	3109.5	2050.2	2675.6	1577.5	1069.3	846.4
Dolomite use	kt	-	-	-	-	-	-	-	-
Iron ore pellets production	kt	13464.9	14968.4	16348.1	17062.9	18313	18835.2	20414.1	20435.0
Specific standards for limestone use	kg/t	49.0	49.03	49.03	49.03	49.03	49.03	59.26	49.03
Specific standards for dolomite limestone use	kg/t	-	-	-	-	-	-	-	-
Limestone use	kt	660.2	733.9	801.5	836.6	897.9	923.5	1209.7	1001.9
Dolomite limestone use	kt	-	-	-	-	-	-	-	-
Iron production	kt	27633.3	29529.0	30977.6	30746.1	32929.3	35649.7	30991.3	25683.1
Specific standards for limestone use	kg/t	59.9	55	49	50	33	48	31	30
Specific standards for dolomite limestone use	kg/t	4.0	4	4	12	18	10	7	3
Limestone use	kt	1655.2	1609.3	1521.0	1537.3	1073.5	1707.6	954.5	765.4
Dolomite limestone use	kt	110.5	124.0	136.3	356.7	589.4	349.4	226.2	66.8
Steel production	kt	34546.4	37524.1	38718.5	38615.5	40891.8	42828.5	37082.3	29848.6
Specific standards for limestone use	kg/t	21.1	19.06	16.99	15.68	14.33	12.3	13.31	9.98
Specific standards for dolomite limestone use	kg/t	5.9	5.34	4.74	4.03	5.29	4.19	3.6	2.02
Specific standards for dolomite use	kg/t	11.02	10.88	10.73	10.77	8.26	8.79	7.48	6.33

Use of limestone	Measure- ment units	2002	2003	2004	2005	2006	2007	2008	2009
Limestone use	kt	719.4	703.9	657.8	605.5	586.0	526.8	497.9	297.9
Dolomite limestone use	kt	202.3	197.2	183.5	155.6	216.3	179.5	134.7	60.3
Limestone and dolomite limestone use	kt	921.7	901.1	841.4	761.1	802.3	706.2	632.6	358.2
Dolomite use	kt	375.3	401.8	415.4	415.9	337.8	376.5	279.8	188.9
Ferroalloys Production	kt	1288.3	1490.0	1912.3	1632.4	1709.6	1867.9	1662.8	1200.7
Specific standards for limestone use	kg/t	18.8	18.84	18.84	18.84	18.84	19.79	20.74	11.51
Limestone use	kt	24.3	28.1	36.0	30.8	32.2	37.0	34.5	13.8
Total limestone use	kt	9070.9	8920.8	9095.7	10555.1	8724.7	11184.7	9304.0	7555.3
Total dolomite limestone use	kt	2112.8	2659.0	3429.3	2562.5	3481.3	2106.3	1429.0	973.4
Total use of limestone, including dolomite lime-	kt	11183.7	11579.8	12525.0	13117.5	12206.0	13291.0	10733.0	8528.8
stone	Kt								0320.0
Total use of dolomite	kt	380.7	408.3	415.4	415.9	337.8	376.5	277.4	188.9
Total limestone and dolomite use	kt	11564.43	11988.1	12940.5	13533.4	12543.8	13667.4	11010.4	8717.7
CO ₂ emission factor at limestone use (incl. dolo-	kg/t	0.4336	0.4336	0.4337	0.4336	0.4338	0.4335	0.4335	0.4334
mite limestone)	Kg/t	0.4330	0.4330	0.4337	0.4330	0.4330	0.4333	0.4333	0.4334
CO ₂ emission factor for dolomite use	kg/t	0.4645	0.4645	0.4645	0.4645	0.4645	0.4645	0.4645	0.4645
CO ₂ emissions from limestone use (incl. dolo-	kt	4848.9	5021.5	5432.5	5687.5	5294.5	5761.7	4652.3	3696.52
mite limestone)	Kt								
CO ₂ emissions from dolomite use	kt	176.8	189.6	193.0	193.2	156.9	174.9	128.8	87.7661
Total CO ₂ emission from limestone and dolomite	kt	5025.7	5211.2	5625.5	5880.7	5451.4	5936.6	4781.1	3784.28
use									
Total CO ₂ emission factor	kg/t	0.4346	0.4347	0.4347	0.4345	0.4346	0.4344	0.4342	0.4341

Use of limestone	Measurement units	2010	2011	2012	2013	2014	2015	2016	2017	2018
Blast-furnace sinter production	kt	39492.6	40219.6	42598.0	43624	38294.601	33575.718	34383	31000	31680
Specific standards for limestone use	kg/t	131.7	132.8	119.42	122.296	118.111	101.079	112.532	123.208	111.791
Specific standards for dolomite limestone use	kg/t	23.2	31.5	33.195	33.994	26.517	48.065	59.791	22.803	73.223
Specific standards for dolomite use	kg/t	-	-	1.684	1.724	3.796	2.076	6.847	4.31	4.31
Limestone use	kt	5201.2	5341.2	5087.053	5335.1	4523.029	3393.809	3869.183	3819.455	3541.55
Dolomite limestone use	kt	916.2	1266.9	1414.041	1483	1015.478	1613.809	2055.791	706.899	2319.72
Dolomite use	kt	-	-	71.735	75.2	145.4	69.707	235.417	133.603	136.53
Iron ore pellets production	kt	22141.0	22354.8	21959.6	23702	21915	21657	22386	20100	21360
Specific standards for limestone use	kg/t	38.8	34.7	27.954	30.172	27.897	27.5688	28.497	25.587	27.27
Specific standards for dolomite limestone use	kg/t	-	-	2.65	2.86	2.64	2.613483	2.701	2.426	2.59
Limestone use	kt	859.1	775.7	613.858	715.1	611.4	597.1	637.9	514.3	582.5
Dolomite limestone use	kt	-	-	58.193	67.8	57.96	56.60	60.47	48.75	55.22
Iron production	kt	27365.8	28877	28486.6	29088.7	24800.9	21862.8	23559.5	20116.5	20116.5
Specific standards for limestone use	kg/t	31	37.9	32.18	32.19	26.497	22.605	10.302	5.485	7.728
Specific standards for dolomite limestone use	kg/t	0.1	0.1	1.565	0.242	3.281	3.756	0.873	4.975	3.977
Limestone use	kt	859.3	1094.4	916.699	936.2	657.151	494.206	242.705	110.334	158.668
Dolomite limestone use	kt	2.7	2.9	44.582	7.0	81.379	82.121	20.571	100.072	81.648
Steel production	kt	32682	34762	32497.85	32673.02	27144.07	22997.614	24196	21049.27	20994.485
Specific standards for limestone use	kg/t	12.88	14.87	12.79	12.99	13.84	13.160	10.67	11.538	12.00
Specific standards for dolomite limestone use	kg/t	1.35	1.41	0.769	0.78	1.3	0.019	0.64	1.495	1.43
Specific standards for dolomite use	kg/t	4.04	4.12	2.014	2.05	1.65	0.089	0.63	0.689	0.25

Use of limestone	Measurement units	2010	2011	2012	2013	2014	2015	2016	2017	2018
Limestone use	kt	420.9	516.911	415.583	424.302	375.608	302.658	258.194	242.872	251.996
Dolomite limestone use	kt	44.1	49.014	24.991	25.515	35.200	0.448	15.568	31.459	30.096
Limestone and dolomite limestone use	kt	465.1	565.9	440.6	449.82	410.808	303.1063	273.762	274.331	282.092
Dolomite use	kt	132.0	143.2	65.5	66.82	44.701	2.039	15.139	14.50	5.200
Ferroalloys Production	kt	1671.3	1419.6	1279.084	1142.21	1362.473	1092.13	1218.323	1278.99	1244.79
Specific standards for limestone use	kg/t	23.3	52.44	64.636	60.48	55.18	55.410	14.275	23.289	22.278
Limestone use	kt	38.9	74.4	82.675	69.1	75.18	60.515	17.391	28.665	26.874
Total limestone use	kt	7379.4	7802.7	7115.9	7479.8	6242.3	4848.2	5025.4	4715.6	4561.6
Total dolomite limestone use	kt	963.1	1318.8	1541.8	1583.3	1190.0	1753.0	2152.4	887.2	2486.7
Total use of limestone, including dolomite limestone	kt	8342.5	9121.5	8657.7	9063.1	7432.35	6601.22	7177.81	5602.8	7048.29
Total use of dolomite	kt	132.0	143.2	137.2	142.1	190.1	71.7	250.6	148.1	141.7
Total limestone and dolomite use	kt	8474.5	9264.7	8794.9	9205.2	7622.5	6672.97	7428.36	5750.91	7190.02
CO ₂ emission factor at limestone use (incl. dolomite limestone)	kg/t	0.4334	0.4335	0.4335	0.4335	0.4335	0.4337	0.4338	0.4335	0.4339
CO ₂ emission factor for dolomite use	kg/t	0.4645	0.4645	0.4645	0.4645	0.4645	0.4645	0.4645	0.4645	0.4645
CO ₂ emissions from limestone use (incl. dolomite limestone)	kt	3615.81	3954.0	3753.5	3929.2	3222.0	2863.1	3113.6	2428.8	3058.2
CO ₂ emissions from dolomite use	kt	61.3319	66.5	63.7	66.0	88.3	33.3	116.4	68.8	65.8
Total CO ₂ emission from limestone and dolomite use	kt	3677.14	4020.5	3817.2	3995.2	3310.3	2896.4	3230.0	2497.6	3124.0
Total CO ₂ emission factor	kg/t	0.4339	0.4340	0.4340	0.4340	0.4343	0.4341	0.4348	0.4343	0.4345

A3.1.3 Method of CO₂ emission factor determination for coal coke use

The CO_2 emission factor for coke use (kc) is determined under the equation:

$$kc = (dc/100) \cdot 44/12$$
,

where dc is the carbon content in coke used in the blast furnace process for iron production, %.

The carbon content in coke is determined based on data obtained from enterprises-producers of pig iron.

Results of estimations using described methods are the values of carbon content in coke of 84.9 % (for dry coke), and of CO_2 emission factor at coke use calculated on basis of national data in 2018 amounted to 3.11 tons of CO_2/t .

A3.1.4 Carbon balance in the blast furnace process

Tables A3.1.4.1- A3.1.4.2 show the income and expense side of the carbon balance in the blast furnace process in 2018.

Table A3.1.4.1. The income side of the carbon balance in the blast furnace process in 2018

Fuel and materials for pig iron	Data source	Amount of fuel	Specific carbon	Carbon content at
production		and materials,	content t of C/t	the input of the
		kt (M m3)	(t of C/M m3)	blast furnace pro-
				cess, kt
Limestone	Table P3.1.3.1	158.668	0.118	18.745
Dolomite limestone	Table P3.1.3.1	81.648	0.119	9.690
Blast-furnace coke use	Table P3.1.1.15	11897.949	0.849	10098.622
Coal	Table P3.1.1.15	142.0379	0.776	110.171
Natural gas	Table P3.1.1.15	1.3457	0.526	0.707
The total amount of carbon	The total of all components			10237.937

Table A3.1.4.2 The expense side of the carbon balance in the blast furnace process in 2018

Components of carbon emissions	Data source	Amount of fuel and materials, kt (M m3)	Specific carbon content t of C/t (t of C/M m3)	Carbon content at the output of the blast furnace process, kt	Category where the carbon emis- sions are ac- counted for
Limestone use	Table P3.1.3.1	158.668	0.118	18.745	-
Dolomite limestone use	Table P3.1.3.1	81.648	0.119	9.690	-
Coke use	Form 4-MTP	11897.949	0.849	10098.622	2.C.1.1
Carbon residue in pig iron	Table P3.1.3.1	20531.2	0.045	925.012	2.C.1.1
Emissions from use of the technological compo- nent of coke	"Technological coke component" minus "Car- bon residue in pig iron"			9173.611	2.C.1.1
Coal use	Table P3.1.3.1	142.0379	0.776	110.171	2.C.1.1
Natural gas use	Table P3.1.3.1	1.3457	0.526	0.707	2.C.1.1
The total amount of carbon	The total of all components			19411.547	
Carbon emissions from iron production	The total of all components accounted for in category 2.C.1.1			19411.547	2.C.1.1
CO ₂ emissions from iron production	Table P3.1.3.1			34 043.11	2.C.1.1

A3.2 Agriculture (CRF sector 3)

A3.2.1 Livestock

A3.2.1.1 Harmonization with the forms of the State Statistics Service of Ukraine

The SSSU provides quite detailed information about number and fodder consumption of livestock and poultry. Statistical observations conducted according to approved methodological recommendations [4, 21]. The collection of statistical observations at the regional and state levels carried out according to the scheme, as shown in the Figure A3.2.1.1.1.

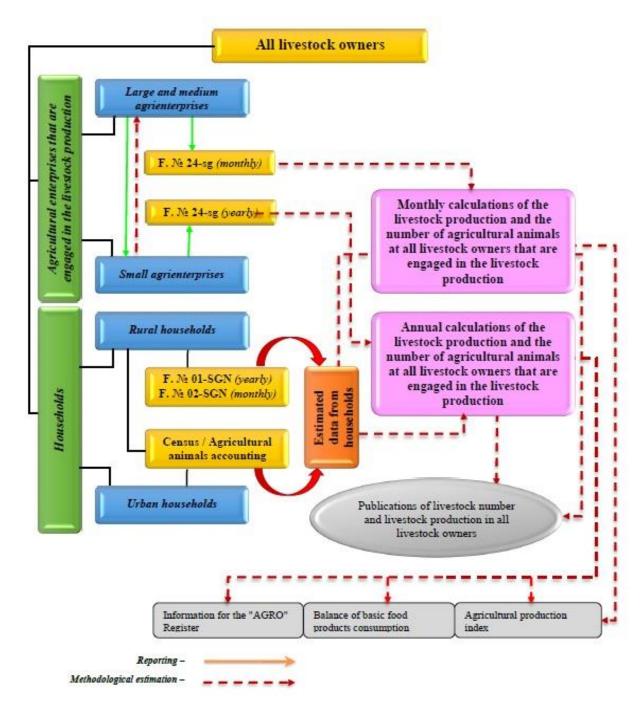


Figure A3.2.1.1.1. General scheme of statistical observations on the livestock production, the number of agricultural animals, their fodders provision and the interconnection with other statistical forms

However, groups of animals in the statistics do not fully coincide with the groups to be used for the inventory of GHG emissions, as the statistical information is designed for a wide range of users, i.e. not adapted for GHG inventory. For example, not all sex-age groups of animals singled out from the total population in SSSU data. Given the above, it is necessary to coordinate the groups of animals according SSSU and the groups that should be used for the inventory. The groups of animals for the purpose of the GHG inventory selected in accordance with the recommendations of the Good Practice Guidance based on the difference in the amount of feed consumed, the amount of manure excreted, and other data.

Table A3.2.1.1.1 presents the comparison of species and sex-age groups of cattle, swine, poultry, and sheep at farms according to the SSSU and the groups used in the NIR.

Table A3.2.1.1.1. The correspondence of animal species/groups at agrienterprises according

to the SSSU and the species/groups used for the inventory

SSSU	species/groups of animals	The code of the spe- cies/group of animals in form No.24	Species/groups of animals for the GHG inventory	CRF categories		
		Cattle				
h- on -	Dairy herd cows	40 (2) – 83-87				
Cows (with- out cows on fattening) - 40 (2)	Dairy herd cows separated for group suckling rearing of calves	83	Dairy cows	Mature dairy cattle		
C ol	Beef cows	87	Beef cows			
Heif	fers 2 years and older, bred	81	Heifers 2 years and older			
Heifer	rs 2 years and older, not bred	82	Tieners 2 years and older	Other mature cattle		
Beef a	and dairy cows on fattening*	-	Cows on fattening			
	Bulls	84	Bulls			
Bee	ef cattle (excluding cows)	86-87	Cattle on fattening (excluding			
Cattle o	on fattening (excluding cows)*	-	cows)			
Heif	fers from 1 to 2 years, bred	80	Heifers from 1 to 2 years			
	Calves under 1 year	77		Growing cattle		
	Draught oxen	85	Other cattle			
Cattle not	t included into the groups above (remainder)	-				
		Swine				
	Main sows	89	Main sows			
	Sows tested	90	Sows tested			
Repai	r swine older than 4 months	91	Repair swine older than 4 months	- Cruino		
	Piglets up to 2 months	92	Piglets up to 2 months	Swine		
	Fattening swine*	-	Fattening swine			
Not a	llocated as a separate group	-	Boars			
Not a	llocated as a separate group	-	Piglets 2 to 4 months			
		Poultry				
A	Adult hens and roosters	110(1)	Hens and roosters			
Y	Young hens and roosters	110 (2)	110115 4110 10051015			
	Adult geese	112 (1)	Geese			
	Young geese	112 (2)	Geese			
	Adult ducks	113 (1)	Ducks	Poultry		
	Young ducks	113 (2)	Ducks	1 July		
	Adult turkeys	114 (1)	Turkeys			
	Young turkeys	114 (2)	Turkeys			
	Other adult poultry	115 (1)	Other poultry			
	Other young poultry	115 (2)	Onici poultry			
		Sheep				

SSSU species/groups of animals	The code of the spe- cies/group of animals in form No.24	Species/groups of animals for the GHG inventory	CRF categories
Ewes and gimmers 1 year and older	94	Ewes and gimmers 1 year and older	
Not allocated as a separate group	٠	Rams	
Not allocated as a separate group	-	Wethers	Sheep
Fattening livestock *	-	Fattening livestock	
Sheep not included into the groups above (remainder)	-	Lambs up to 4 months and 4- 12 months repair young sheep	

^{*} Statistics on the livestock of fattening cattle, swine, and sheep are not maintained since 2005.

Similar to agrienterprises, statistical data on the sex-age of animals in households do not fully coincide with the groups to be used for inventory of GHG emissions.

Therefore, harmonization of groups of animals according to SSSU data and groups used for inventory purposes was held (Table A3.2.1.1.2).

Table A3.2.1.1.2. Matching groups of animals according to the SSSU and the groups used for inventory purposes

SSSU species/groups of animals	Code of the species/group of animals in Table No.7, field	Species/groups of ani- mals for the GHG inven- tory	CRF categories
Cows (without cows on fattening)	3	Dairy cows	Mature dairy cattle
Heifers 2 years and older (bred and not bred)	5	Heifers 2 years and older	Other mature cattle
Bulls	2	Bulls	
Heifers from 1 to 2 years, bred	4	Heifers from 1 to 2 years	Growing cattle
Cattle not included into the groups above (remainder)	-	Other cattle	Growing cattle
Main sows	9	Main sows	
Repair swine 4 months and older	11	Repair swine 4 months and older	
Piglets up to 2 months	12	Piglets up to 2 months	
Not allocated as a separate group	-	Piglets 2 to 4 months	Swine
Not allocated as a separate group	-	Boars	
Not allocated as a separate group	-	Fattening swine	
Hens and roosters	-	Hens and roosters	
Geese	-	Geese	
Ducks	-	Ducks	Poultry*
Turkeys	-	Turkeys	
Other poultry	-	Other poultry	
Ewes and gimmers 1 year and older	14	Ewes and gimmers 1 year and older	
Not allocated as a separate group	-	Rams	Ch
Not allocated as a separate group	-	Wethers	Sheep
Not allocated as a separate group	-	Lambs up to 4 months and 4-12 months young sheep	

^{*} The SSSU determines the livestock of poultry by species by calculation according to state statistical observation form No.01-SHN "Basic interview questionnaire" (section II) on the basis of percentage ratio of the poultry species specified in Table A3.2.1.2 in the poultry flock structure.

A3.2.1.2 Sources of data on livestock

In line with the requirements of [1], developers of the GHG inventory report are supposed to use data of the SSSU or FAO as the information base to estimate the average annual livestock.

Determination of average livestock, according to information received from SSSU carried out by using the approach [35], which reflects the national characteristics and consists in calculating the arithmetic value of livestock at the beginning and end of the relevant year.

The agreement of national approach for calculating the annual average number of animals with the 2006 IPCC Guidelines [1] are planned by realization of research work on relevant topic.

A3.2.1.2.1 Data sources on cattle livestock

Sources of information about the cattle population as of January 1 by category of farms and cattle sex-age groups for the reporting period were cattle accounting data ("Livestock accounting results", Table No.7), bulletin by the state statistical observation form No.24 (statistical bulletin "The status of livestock in Ukraine" [13]) and analytical study, which includes different approaches, particularly extrapolation, expert judgment and other math and statistical methods [2].

The average annual population of each sex-age group of cattle at agricultural enterprises and in households was determined in accordance to national methodology [35]. Results of estimation of the average annual cattle livestock at agrienterprises and in households in the areas of Polissia, Wooded Steppe, and Steppe reported in Annex 3 (Tables A3.2.1.3.1 and A3.2.1.3.2).

A3.2.1.2.2 Data sources on sheep livestock

According to recommendations [1] and by using national sources [9], the livestock was divided by sex-age groups: ewes and gimmers 1 year and older, rams, fattening livestock, wethers, lambs up to 4 months and 4-12 months repair young sheep.

Data on the livestock of sheep of all breeds in all categories of farms were obtained from SSSU data ("Livestock accounting results", Table No.7) and analytical study [2]. These sources specifies the total livestock of sheep, while the livestock of ewes and gimmers 1 year old and older indicated as a separate group. The average annual population sheep for all categories of farms was determined in accordance to national methodology [35]. The livestock of rams and wethers calculated on the base of information on the sheep herd structure obtained from the SSSU (for 1990) and the Agency for Identification and Registration of Animals. Fattening livestock includes young animals (mostly 7 to 9 months old), adult culled ewes and rams. The calculations according to [6-7] assumed that the proportion of young sheep in fattening livestock is 83.5 %, while of adult – 16.5 %. The rest of sheep population ascribed to lambs under 4 months and repair young animals up to 1 year.

Sheep livestock distribution in the territory of Ukraine is not homogeneous. Mostly, sheep are bred in such key sheep-breeding regions as the Autonomous Republic of Crimea, Transcarpathian, Zaporizhska, Odeska, Dnipropetrovska, Donetska, Khersonska, Mykolaivska, and several other regions, most of which are located in the steppe zone. In determining the above-mentioned regions, data on placement of breeds and breed sheep types in the regions of Ukraine according to [7], as well as statistical data on the population of sheep in all kinds of farms by region takes into account [10].

A3.2.1.2.3 Data sources on swine livestock

Data on the livestock of key sex-age groups of swine at farms and in households were obtained from SSSU data ("Livestock accounting results", Table No.7) and analytical study [2].

In accordance to statistical bulletin swine livestock at agricultural enterprises was divided into five sex-age groups up to 2005, and later on 2005 – into 4 groups. The animals that do not belong to these groups on average during the reporting period amount to one third of the total swine population. In particular, in the statistics there is no separate indications of the livestock of boars and piglets from 2 to 4 months. Boars usually account for about 1% of the total population, and their number for the reporting period was estimated on the basis of this assumption. The repair swine were attributed to piglets from 2 to 4 months. Data on the population of swine for fattening from 2014, due to lack of statistical data, were estimated based on the percentage of this group in the herd structure in 2004

(29.5 %). Statistics on the livestock of piglets up to 2 months introduced in 2001. The number of piglets for 1990-2000 was estimated based on the structure of the swine herd in 2001-2004.

The livestock of swine in households in accordance with statistics is divided into the three age and sex groups: main sows, repair swine 4 months of age and older, and piglets up to 2 months [35]. The following groups are not indicate separately: boars, piglets from 2 to 4 months, and swine for fattening. The number of boars and piglets from 2 to 4 months in households was assumed to be 1 and 22 % of the total population, respectively. The number of fattening swine calculated as the difference between the total population and all the age and sex groups used for the inventory. Statistics on the livestock of piglets up to 2 months introduced in 2000. The number of piglets for the rest of the years was estimated based on the structure of the swine herd in 2000-2004.

The average annual population of sex-age groups of swine from "Livestock accounting results" (Table No.7) and analytical study [2] at agricultural enterprises and in households was determined in accordance to national methodology [35].

A3.2.1.2.4 Data sources on poultry livestock

The values of the poultry livestock are presented in statistical bulletin "The status of livestock in Ukraine" and statistical yearbook "Animal production of Ukraine" [10, 13] by species hens and roosters, geese, ducks, and turkeys) and age group (adults and young ones). The analytical study [2] used for poultry livestock calculation also. The breakdown of poultry by sex-age groups for GHG inventory not applied due to lack of all the necessary data.

Total poultry population (without the breakdown into species) is determined on the base of the sample data of the household survey in rural communities. First, the population of poultry per household estimated, and then these data are spread to the number of households that keep poultry in accordance with the census of animals as of January 1. The poultry population by species (hens and roosters, geese, ducks, and turkeys) estimation based on the poultry structure at households [10].

The average annual population of sex-age groups of poultry at agricultural enterprises and in households was determined in accordance to national methodology [35].

A3.2.1.2.5 Data sources on livestock of other animals

Other animals (horses, goats, asses and mules, rabbits, fur-bearing animals, camels, and buffaloes) determined according to SSSU data ("Livestock accounting results", Table No.7; statistical bulletin "The status of livestock in Ukraine" [13], statistical yearbook "Animal Production of Ukraine" [10], FAO data, analytical study [2] or based on assumptions. The average annual population of the groups of animals indicated (except for camels, asses and mules was determined in accordance to national methodology [35].

Breeding of buffaloes, camels, asses and mules as agricultural animals is not widely practiced in Ukraine, their livestock are not included into indicators of state statistical observations on livestock statistics or the state registry, which is being composed by State Enterprise "Agency of Animal Identification and Registration". Despite the negligible livestock, buffaloes, camels, asses and mules are included into the estimation of the GHG inventory to ensure data completeness. Within Ukraine, buffaloes are bred mainly in the Transcarpathian region. Official data on the number of these animals are limited to 1990 and 2010-2015. The number of buffaloes in the period of 1991-2009 was calculated using linear interpolation method. According to data of the Department of Agricultural Development of Transcarpathian Regional State Administration, the average annual number of buffaloes in 2015 decreased compared to 1990 by 6.8 % and went down to 58 animals.

Data on the average annual population of camels, asses and mules are not included into the set of indicators of state statistical observations forms of livestock statistics. The source of information is the FAO information database (http://faostat.fao.org).

Moreover, the SSSU also provides no information on the population of fur-bearing animals for the periods of 1990-1993 and 1995-1997. It has assumed that the number of fur-bearing animals for 1990 is the same as the population in 1989. The numbers of these animals for 1991-1993, as well as for 1995-1997 obtained using the linear interpolation method.

A3.2.1.3 The average annual livestock of animals

Table A3.2.1.3.1. The average annual livestock at agricultural enterprises and households, thsd. head

Animal species	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
Cattle at agrienterprises	21 373.90	20 636.85	19 502.10	18 276.20	16 753.70	14 735.10	12 636.00	10 282.65	8 438.50	7 293.95
Cattle at households	3 535.20	3 538.65	3 590.10	3 755.85	3 862.10	3 855.70	3 799.25	3 753.20	3 801.55	3 880.10
Sheep	8 220.80	7 577.65	6 927.80	6 357.20	5 455.10	4 000.80	2 701.25	1 866.40	1 369.00	1 128.95
Swine at agrienterprises	14 530.10	13 317.20	11 746.45	10 339.35	8 915.40	7 617.15	6 344.70	4 779.90	4 153.35	4 198.30
Swine at households	5 156.70	5 315.60	5 260.35	5 397.10	5 706.35	5 927.80	5 845.30	5 577.25	5 627.70	5 879.85
Fur-bearing animals	560.95	560.95	561.00	560.50	544.00	496.00	432.00	368.00	319.70	268.15
Rabbits	6 097.50	6 252.05	6 495.30	6 842.65	6 828.55	6 566.85	6 106.20	5 634.25	5 548.35	5 636.85
Camels	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60
Asses and mules	19.00	19.00	19.00	19.00	15.00	14.50	14.00	13.00	12.50	12.00
Buffaloes	0.85	0.83	0.79	0.75	0.71	0.67	0.63	0.59	0.55	0.51
Horses	745.95	727.75	712.10	711.40	726.15	746.25	754.70	745.20	729.10	709.70
Goats	490.10	546.25	605.05	692.40	763.45	835.75	871.60	838.05	824.90	826.40
Poultry at agrienterprises	137 593.50	130 465.75	116 352.15	94 631.40	74 695.20	59 470.60	44 207.00	32 328.25	30 709.90	29 483.60
Poultry at households	113 018.35	114 146.65	112 499.30	107 900.00	102 976.80	97 835.35	95 391.85	94 066.40	95 697.10	98 304.85

Animal species	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
Cattle at agrienterprises	5 871.45	4 850.30	4 428.55	3 679.40	2 927.80	2 591.20	2 393.20	2 110.70	1 823.45	1 673.60
Cattle at households	4 153.65	4 572.10	4 836.20	4 730.85	4 379.70	4 117.30	3 951.55	3 722.45	3 461.50	3 279.25
Sheep	1 011.30	965.10	958.60	921.75	884.30	873.70	898.44	979.22	1 064.73	1 146.35
Swine at agrienterprises	3 263.60	2 660.45	3 148.65	2 831.75	2 185.60	2 350.45	2 929.91	3 063.47	2 800.21	3 019.40
Swine at households	5 599.00	5 350.45	5 637.95	5 430.85	4 708.20	4 409.00	4 624.00	4 474.00	3 972.75	4 031.90
Fur-bearing animals	190.20	156.70	176.40	204.80	242.05	275.54	300.00	340.75	346.34	317.50
Rabbits	5 578.70	5 734.80	6 047.20	5 774.45	5 293.15	5 327.70	5 317.45	5 167.50	5 261.35	5 503.55
Camels	0.60	0.60	0.60	0.60	0.60	0.75	0.80	0.80	0.80	0.80
Asses and mules	11.50	11.50	11.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00
Buffaloes	0.47	0.43	0.40	0.36	0.32	0.28	0.24	0.20	0.16	0.12
Horses	699.65	697.30	688.85	660.70	614.00	572.85	544.57	515.92	481.65	454.60
Goats	868.55	954.90	1 016.10	999.85	929.85	825.80	724.91	668.66	638.01	633.35
Poultry at agrienterprises	26 608.50	30 258.05	38 434.00	41 983.80	46 410.05	58 591.30	69 422.15	76 171.65	84 049.00	94 163.85
Poultry at households	98 303.95	100 008.45	103 694.20	102 925.80	101 168.45	98 797.05	94 840.10	91 739.00	89 374.10	90 337.20

Animal species	2010	2011	2012	2013	2014	2015	2016	2017	2018
Cattle at agrienterprises	1 576.75	1 518.50	1 508.55	1 472.00	1 387.12	1 320.55	1 277.35	1 227.97	1 192.14
Cattle at households	3 083.80	2 941.60	3 027.30	3 117.95	2 907.87	2 677.39	2 632.33	2 576.51	2 438.09
Sheep	1 148.75	1 096.85	1 083.30	1 070.05	1 030.47	972.72	938.53	930.75	921.50
Swine at agrienterprises	3 466.55	3 472.20	3 438.05	3 717.90	3 873.48	3 860.36	3 781.91	3 580.76	3 496.94
Swine at households	4 301.95	4 194.60	4 036.90	4 031.55	3 878.73	3 595.39	3 340.94	3 058.45	2 824.41
Fur-bearing animals	304.60	366.20	420.35	379.35	334.75	297.65	273.92	338.13	420.31
Rabbits	5 487.65	5 498.70	5 650.10	5 696.45	5 603.49	5 429.63	5 355.37	5 237.89	5 113.71
Camels	0.80	0.80	0.80	0.80	0.80	0.81	0.83	0.83	0.83
Asses and mules	12.00	12.00	12.00	12.00	12.00	11.98	11.94	11.97	11.96
Buffaloes	0.08	0.06	0.06	0.06	0.06	0.06	0.08	0.11	0.12
Horses	428.80	404.95	386.15	365.40	337.69	315.81	303.30	282.87	259.18
Goats	633.35	638.70	655.50	666.65	648.47	628.72	636.85	635.75	620.99
Poultry at agrienterprises	105 457.65	108 143.30	111 806.95	124 980.55	131 406.80	125 752.61	119 544.96	119 474.48	123 830.16
Poultry at households	92 185.35	94 156.90	95 608.65	97 199.65	96 725.95	95 369.44	95 347.49	95 472.48	95 993.10

Table A3.2.1.3.2. The average annual number of cattle species in farms of different forms of ownership by the natural zones of Ukraine, thsd.

Cattle species	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
			Matı	ıre dairy cattle	at agrienterpri	ises				
Polissia	1 264.20	1 220.00	1 146.60	1 078.80	1 027.20	972.95	907.30	801.45	690.45	591.90
Wooded Steppe	2 428.90	2 361.70	2 252.50	2 157.15	2 058.35	1 911.55	1 742.95	1 518.05	1 304.25	1 149.60
Steppe	2 579.95	2 507.85	2 408.95	2 303.45	2 149.25	1 922.75	1 674.90	1 379.95	1 129.65	949.10
Mature dairy cattle at households										
Polissia	953.95	963.15	993.30	1 036.00	1 085.80	1 131.45	1 151.55	1 159.70	1 172.80	1 181.05
Wooded Steppe	828.35	839.90	876.80	934.70	994.80	1 040.55	1 048.55	1 032.25	1 025.35	1 023.20
Steppe	397.55	427.80	481.75	557.35	632.60	695.55	726.35	726.95	730.30	741.05
			Othe	r mature cattle	at agrienterpr	ises				
Polissia	379.90	371.38	355.52	337.66	323.95	298.27	260.21	216.62	182.49	158.76
Wooded Steppe	943.58	922.28	885.42	846.56	816.51	745.76	641.45	529.15	442.74	384.73
Steppe	571.28	555.73	530.95	505.00	479.53	428.28	359.57	289.36	237.93	204.19
			Ot	her mature cati	tle at household	ls				
Polissia	24.03	27.34	31.95	35.31	35.30	32.75	30.78	30.40	32.93	35.38
Wooded Steppe	22.56	25.67	29.99	33.16	33.15	30.77	28.92	28.56	30.93	33.23
Steppe	28.51	32.44	37.90	41.88	41.86	38.83	36.50	36.05	39.04	41.94
			Gı	owing cattle at	t agrienterprise	es .				
Polissia	3 285.55	3 185.12	2 998.38	2 738.49	2 386.40	2 033.58	1 755.14	1 422.88	1 141.96	954.54
Wooded Steppe	4 916.92	4 751.12	4 506.14	4 238.14	3 886.75	3 401.79	2 935.95	2 402.25	1 961.91	1 727.22
Steppe	5 003.62	4 761.67	4 417.65	4 070.95	3 625.77	3 020.17	2 358.53	1 722.94	1 347.13	1 173.91
				Growing cattle	at households					
Polissia	493.37	463.66	416.60	383.69	341.45	297.30	277.12	277.60	288.02	311.07
Wooded Steppe	489.34	454.08	421.06	416.29	386.95	327.08	279.43	257.35	263.12	277.47
Steppe	297.54	304.61	300.75	317.47	310.20	261.42	220.05	204.36	219.06	235.71
Cattle species	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
			Matı	ıre dairy cattle	at agrienterpri	ises				
Polissia	482.85	407.45	358.85	296.65	254.25	235.80	216.60	195.30	178.05	165.30
Wooded Steppe	981.75	853.55	752.65	621.70	517.45	457.55	408.90	360.85	329.25	315.00
Steppe	699.00	502.10	427.00	332.55	253.25	214.70	189.60	165.15	144.15	134.15

Cattle species	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
Polissia	1 194.30	1 221.25	1 240.55	1 209.75	1 138.30	1 063.20	992.35	923.50	854.75	804.25
Wooded Steppe	1 044.60	1 090.75	1 118.95	1 100.75	1 060.20	1 018.65	962.30	904.00	839.20	777.25
Steppe	792.15	863.10	918.85	938.15	881.30	790.65	721.15	672.50	630.70	600.45
Other mature cattle at agrienterprises										
Polissia	133.13	116.77	108.37	95.04	85.86	84.33	81.45	76.14	70.01	65.61
Wooded Steppe	321.56	281.04	260.37	224.72	188.58	163.10	141.74	123.29	106.49	97.44
Steppe	164.90	138.36	126.82	108.22	87.18	75.55	67.19	54.56	45.04	41.52
			Oti	her mature catt	le at household	ls				
Polissia	35.20	34.98	36.99	35.39	31.55	30.60	31.92	32.75	31.65	29.85
Wooded Steppe	33.08	32.89	34.81	33.31	29.71	28.89	29.94	29.67	28.52	27.10
Steppe	41.72	41.43	43.80	41.89	37.34	35.87	35.81	32.20	27.50	27.35
			Gı	owing cattle at	agrienterprise	S				
Polissia	751.27	620.63	560.13	460.91	365.15	331.67	316.95	278.01	229.74	202.09
Wooded Steppe	1 440.14	1 252.01	1 192.73	1 011.68	797.77	701.50	653.46	579.16	497.71	457.21
Steppe	896.85	678.39	641.63	527.93	378.33	327.00	317.31	278.24	223.01	195.28
			(Growing cattle	at households					
Polissia	349.00	396.42	437.01	410.46	343.35	317.85	336.43	339.75	324.80	311.20
Wooded Steppe	334.32	425.56	473.14	430.84	364.29	372.01	414.01	406.63	388.43	380.40
Steppe	329.28	465.72	532.10	530.31	493.66	459.58	427.64	381.45	335.95	321.40

Cattle species	2010	2011	2012	2013	2014	2015	2016	2017	2018			
			Mature dair	y cattle at agri	enterprises							
Polissia 157.30 152.90 150.90 149.10 139.75 127.25 119.85 115.40 11												
Wooded Steppe	310.20	309.80	311.30	310.95	308.50	303.60	296.10	285.60	280.15			
Steppe	129.35	123.70	117.25	110.25	103.31	96.72	91.88	88.71	87.22			
Mature dairy cattle at households												
Polissia	770.05	745.25	734.55	724.10	688.55	644.10	618.80	592.40	557.65			
Wooded Steppe	738.45	710.00	693.15	680.50	649.40	618.60	606.50	588.15	558.40			
Steppe	578.50	565.05	561.10	556.65	538.10	513.06	499.69	490.03	468.63			
			Other matur	e cattle at agri	enterprises							
Polissia	60.80	57.65	58.43	58.26	52.86	45.00	40.40	37.43	34.73			
Wooded Steppe	89.11	83.58	82.92	82.14	79.31	74.23	67.58	61.52	58.87			
Steppe	38.73	36.15	34.97	32.25	28.06	26.23	24.61	23.01	22.35			

Cattle species	2010	2011	2012	2013	2014	2015	2016	2017	2018				
Other mature cattle at households													
Polissia 28.10 26.45 24.20 22.60 21.75 20.80 20.00 18.95 17.													
Wooded Steppe 24.55 22.55 20.85 20.20 19.05 17.45 17.40 17.00													
Steppe	28.15	28.65	29.30	30.30	30.06	28.80	27.51	26.50	25.13				
Growing cattle at agrienterprises													
Polissia	182.05	169.21	169.57	163.04	145.34	137.55	134.55	128.43	122.07				
Wooded Steppe	433.45	422.88	429.38	421.17	397.54	388.57	385.32	374.03	362.08				
Steppe	175.77	162.65	153.83	144.85	132.46	121.40	117.07	113.85	110.03				
			Growin	g cattle at hous	eholds								
Polissia	275.35	245.25	273.15	304.60	265.75	220.80	221.21	225.81	219.70				
Wooded Steppe	337.85	308.65	361.90	404.05	343.05	299.05	310.35	305.95	283.95				
Steppe	302.80	289.75	329.10	374.95	352.17	314.73	310.86	311.72	290.48				

A3.2.1.4 Classification of agricultural enterprises by the livestock number

The main institution that collected all kinds of livestock data is SSSU. Grouping of agricultural enterprises by the animals (cattle and swine) number is a one of data kinds.

These data used for agrienterprises classification by their capacity and reported in the table "Groupings of agricultural enterprises by number of cattle as of January 1" of the statistical bulletin "The status of livestock in Ukraine" [13].

Table A3.2.1.4.1. Classification of cattle and swine enterprises by the livestock number, heads

Cattle enterprises	Swine enterprises
no more than 5	no more than 9
6-10	10-19
11-15	20-39
16-20	40-59
21-29	60-79
30-39	80-99
40-49	100-199
50-99	200-299
100-199	300-399
200-299	400-499
300-399	500-999
400-499	1000-1999
500-999	2000-2999
1000-1999	3000-4999
2000-2999	5000-5999
3000-3999	more than 5999
4000-4999	
more than 4999	

A3.2.2 Enteric Fermentation

Table A3.2.2.1. Annual gross energy intake of cattle sex-age groups, MJ \times head ⁻¹ \times day ⁻¹

Sex-age group	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
			Agrient	erprises						
Cows	202.5	197.7	188.3	186.5	185.6	183.0	179.1	171.9	177.5	179.1
Heifers from 2 years and older	149.6	150.8	152.0	152.0	152.8	153.1	153.3	153.1	153.0	153.0
Heifers from 1 to 2 years	123.1	123.5	124.3	124.2	124.5	124.7	124.9	124.8	124.8	124.8
Breeding bulls	162.7	163.6	165.2	164.8	165.3	165.8	166.3	166.1	166.1	166.1
Beef cows	115.2	116.9	117.9	118.1	118.9	119.1	119.2	118.6	118.6	118.6
Cows on fattening and feeding	215.8	218.4	220.7	221.0	222.9	223.2	223.3	222.2	222.1	222.0
Other cattle and beef cattle (without cows) on fattening and feeding	101.0	102.2	103.2	103.4	104.2	104.4	104.5	104.0	103.9	103.9
Other cattle	89.3	89.6	90.2	90.2	90.4	90.5	90.7	90.5	90.5	90.4
			Hous	eholds						
Cows	211.9	211.7	210.9	211.6	211.3	212.5	212.4	213.7	215.0	215.5
Heifers 2 years and older	149.3	148.9	149.0	148.8	148.6	148.8	149.0	149.5	149.3	149.2
Heifers from 1 to 2 years	129.2	128.8	129.0	128.8	128.6	128.7	128.8	129.3	128.9	128.5
Breeding bulls	162.7	162.5	162.6	162.5	162.5	162.5	162.6	162.5	162.3	162.1
Other cattle	103.7	103.3	103.5	103.3	103.2	103.4	103.4	103.8	103.5	103.1

Sex-age group	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	
			Agrient	terprises							
Cows	176.3	187.1	189.8	186.2	195.9	206.3	209.0	210.1	214.8	227.3	
Heifers from 2 years and older	153.0	152.9	152.9	152.8	152.8	152.7	152.1	152.3	151.3	152.2	
Heifers from 1 to 2 years	124.7	124.7	124.6	124.6	124.5	124.5	124.0	124.1	123.4	123.9	
Breeding bulls	166.0	165.9	165.8	165.7	165.6	165.3	165.0	165.3	164.4	165.2	
Beef cows	118.7	118.7	118.8	118.7	118.6	118.5	118.0	118.2	117.1	117.7	
Cows on fattening and feeding	221.8	221.6	221.6	221.5	221.3	221.2	220.3	220.7	219.0	220.7	
Other cattle and beef cattle (without cows) on fattening and feeding	103.9	103.8	103.8	103.7	103.6	103.6	103.2	103.3	102.6	103.2	
Other cattle	90.4	90.3	90.3	90.2	90.2	90.1	89.8	89.8	89.2	89.7	
Households											
Cows	217.5	219.7	222.1	222.2	226.2	231.0	234.9	234.6	236.8	240.8	
Heifers 2 years and older	149.1	148.9	148.8	148.6	148.5	148.3	148.3	148.5	148.6	148.2	

Sex-age group	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
Heifers from 1 to 2 years	128.2	127.8	127.4	127.0	126.6	126.2	126.2	126.3	126.3	126.0
Breeding bulls	161.9	161.7	161.5	161.3	161.1	160.9	161.0	160.9	161.0	160.9
Other cattle	102.8	102.5	102.1	101.8	101.5	101.1	101.1	101.2	101.2	101.0

Sex-age group	2010	2011	2012	2013	2014	2015	2016	2017	2018
		A	grienterprise	? <i>S</i>					
Cows	229.1	225.6	238.1	242.3	250.6	256.8	263.7	270.6	273.0
Heifers from 2 years and older	152.1	151.8	151.7	151.8	153.1	153.3	153.5	153.9	157.7
Heifers from 1 to 2 years	123.8	123.6	123.5	123.5	124.3	124.3	124.1	124.4	127.1
Breeding bulls	165.2	164.9	165.4	165.9	166.8	166.9	167.3	166.7	169.1
Beef cows	118.0	117.3	117.1	117.7	119.1	119.6	122.0	122.2	127.2
Cows on fattening and feeding	220.5	220.0	220.0	220.2	222.6	223.0	223.6	224.4	231.8
Other cattle and beef cattle (without cows) on fattening and feeding	103.2	103.0	102.9	103.1	104.3	104.5	105.0	105.4	108.4
Other cattle	89.6	89.4	89.3	89.4	89.9	89.9	89.7	89.9	91.8
			Households						
Cows	241.2	243.9	245.2	247.3	250.2	250.0	250.0	251.2	253.6
Heifers 2 years and older	148.1	148.0	147.9	148.0	147.9	147.9	148.0	148.0	147.8
Heifers from 1 to 2 years	126.0	125.9	125.9	126.0	125.9	125.9	125.9	125.9	125.7
Breeding bulls	160.9	160.9	160.9	160.9	160.9	160.9	161.0	161.0	160.9
Other cattle	101.0	100.9	100.8	100.9	100.8	100.9	100.9	100.9	100.7

Table A3.2.2.2. Live weight weighted average values of main sex-age cattle groups for the reported period, kg

Sex-age group	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
Mature dairy cattle	576.73	576.73	576.73	576.73	576.73	576.73	576.73	576.73	576.73	576.73
Other mature cattle	479.12	478.99	478.88	478.85	478.85	479.51	480.35	480.95	481.73	482.50
Growing cattle	238.71	239.32	239.93	240.42	241.32	242.18	242.63	243.64	245.54	247.27

Sex and age group	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
Mature dairy cattle	576.73	576.73	576.73	576.73	576.73	576.73	576.73	576.73	576.73	576.73
Other mature cattle	483.90	485.88	487.88	489.88	492.11	496.49	501.18	502.41	502.54	502.95
Growing cattle	250.08	253.27	254.83	255.86	257.01	259.12	261.93	263.52	264.81	266.16

Sex and age group	2010	2011	2012	2013	2014	2015	2016	2017	2018
Mature dairy cattle	576.73	576.73	576.73	576.73	576.73	576.73	576.73	576.73	576.73
Other mature cattle	502.10	500.88	501.76	501.24	498.30	496.75	497.26	497.86	497.30
Growing cattle	266.98	267.19	267.87	268.41	268.77	268.67	272.87	278.07	278.53

Table A3.2.2.3. The species composition of dairy and combined cattle breeds in Ukraine, as well as the average live weight of cattle sex-age

groups

Santa	The species			Average liv	ve weight, kg		
Breed	composition,	Dairy cows	Bulls	Heifers from 1 to 2 years	Heifers 2 years and older	Other cattle at agricultural enterprises	Other cattle in households
Ayrshire	0.02	460	840	350	410	203	226
Angler	0.41	450	830	355	420	203	228
White Head Ukrainian	0.01	470	850	325	400	193	221
Carpathian Brown	0.01	480	850	345	400	195	222
Ukrainian Dairy Brown	0.30	580	920	385	470	233	246
Holstein	10.94	565	900	420	470	238	264
Lebedynska	0.69	550	900	375	450	225	248
Pinzgauer	0.05	470	840	360	400	193	218
Simmental	5.97	620	960	400	465	243	279
Ukrainian Dairy Red	9.54	550	860	365	445	220	245
Ukrainian Dairy Red Motley	20.45	600	930	400	470	240	268
Ukrainian Dairy Black Motley	46.79	580	900	370	465	223	248
Red Polish	0.40	460	785	330	400	180	208
Red Steppe	4.36	490	830	360	420	208	221
Schwyz	0.04	580	950	380	450	230	248

Table A3.2.2.4. The cattle species composition and the average live weight of beef cattle in Ukraine

Breed	The angles commention 0/	Average l	ive weight, kg
Бгеец	The species composition, %	Beef cows	Breeding bulls
Aberdeen-Angus	35.93	515	800
Volyn Meat	21.25	520	900
Hereford	0.62	550	900
South Meat	11.36	530	880
Limousin	0.62	550	900
Piedmont	0.43	560	900
Woodland Meat	6.10	550	900
Grey Ukrainian	2.68	530	850
Fair Aquitaine	0.19	550	900
Simmental Meat	8.87	600	950
Ukrainian Meat	10.72	570	950
Charolais	1.24	600	950

Table A3.2.2.5. Country specific daily weight gain values for the cattle sex-age groups, kg \times day ⁻¹

Sex-age group	Agrienterprises	Households
Cows	0	0
Heifers from 2 years and older	0.525	0.525
Heifers from 1 to 2 years	0.475	0.475
Breeding bulls	0	0
Beef cows	0	
Cows on fattening and feeding	0.900	
Other cattle and beef cattle (without cows) on fattening and feeding	0.660	
Other cattle	0.725	0.725

Table A3.2.2.6. Dairy cows milk production and fat content

Sex-age group	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	
Milk production, kg \times head ⁻¹ \times day ⁻¹											
Cows at agrienterprises	8.06	7.31	5.96	5.75	5.56	5.23	4.67	3.81	4.51	4.71	
Cows at households	7.22	7.25	7.22	7.32	7.30	7.46	7.40	7.62	7.76	7.86	
Fat content of milk, %											
Cows at agrienterprises	3.48	3.45	3.37	3.38	3.37	3.35	3.38	3.36	3.41	3.43	
Cows at households	3.48	3.45	3.37	3.38	3.37	3.35	3.38	3.36	3.41	3.43	

Sex-age group	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	
Milk production, kg \times head ⁻¹ \times day ⁻¹											
Cows at agrienterprises	4.35	5.67	6.02	5.60	6.78	8.09	8.45	8.58	9.22	10.67	
Cows at households	8.11	8.41	8.76	8.82	9.34	9.98	10.45	10.42	10.69	11.21	
Fat content of milk, %											
Cows at agrienterprises	3.47	3.49	3.49	3.49	3.52	3.52	3.52	3.52	3.52	3.52	
Cows at households	3.47	3.49	3.49	3.49	3.52	3.52	3.52	3.52	3.52	3.52	

Sex-age group	2010	2011	2012	2013	2014	2015	2016	2017	2018		
Milk production, $kg \times head^{-1} \times day^{-1}$											
Cows at agrienterprises	10.89	10.48	11.97	12.39	13.29	14.07	14.83	15.73	15.96		
Cows at households	11.26	11.61	11.77	12.02	12.38	12.36	12.36	12.50	12.82		
Fat content of milk, %											
Cows at agrienterprises	3.52	3.52	3.52	3.52	3.52	3.52	3.52	3.52	3.52		
Cows at households	3.52	3.52	3.52	3.52	3.52	3.52	3.52	3.52	3.52		

Table A3.2.2.7. Cattle average digestibility of the feed (DE), %

Cattle species	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
				Agricultural	enterprises					
Cows	68.66	68.31	67.84	67.89	67.70	67.65	67.56	67.60	67.69	67.72
Heifers from 2 years and older	65.19	64.88	64.58	64.57	64.37	64.30	64.24	64.31	64.31	64.33
Heifers from 1 to 2 years	66.91	66.78	66.51	66.55	66.45	66.37	66.30	66.33	66.34	66.36
Breeding bulls	70.56	70.28	69.79	69.91	69.76	69.60	69.44	69.50	69.50	69.52
Beef cows	65.49	64.84	64.44	64.37	64.05	64.00	63.96	64.19	64.18	64.16
Cows on fattening and feed- ing	66.72	66.27	65.86	65.81	65.49	65.44	65.42	65.61	65.63	65.63
Other cattle and beef cattle (without cows) on fattening and feeding	67.04	66.56	66.15	66.09	65.76	65.70	65.67	65.85	65.87	65.87
Other cattle	66.89	66.79	66.50	66.53	66.44	66.37	66.31	66.38	66.39	66.41
				House	holds					
Cows	67.79	67.84	67.80	67.85	67.87	67.85	67.83	67.87	67.95	68.03
Heifers 2 years and older	67.76	67.86	67.82	67.90	67.94	67.89	67.83	67.70	67.74	67.77
Heifers from 1 to 2 years	66.37	66.50	66.43	66.51	66.55	66.52	66.49	66.33	66.46	66.58
Breeding bulls	69.23	69.27	69.25	69.26	69.29	69.27	69.24	69.28	69.34	69.41
Other cattle	66.42	66.54	66.47	66.54	66.57	66.53	66.50	66.35	66.48	66.62

Cattle species	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
				Agricultural	enterprises					
Cows	67.74	67.76	67.79	67.82	67.84	67.89	67.93	67.93	68.06	67.88
Heifers from 2 years and older	64.34	64.34	64.36	64.37	64.38	64.40	64.54	64.50	64.75	64.52
Heifers from 1 to 2 years	66.37	66.39	66.40	66.41	66.43	66.45	66.60	66.57	66.82	66.63
Breeding bulls	69.55	69.58	69.60	69.63	69.67	69.76	69.84	69.75	70.03	69.78
Beef cows	64.15	64.13	64.12	64.13	64.16	64.22	64.39	64.31	64.74	64.52
Cows on fattening and feeding	65.67	65.71	65.72	65.73	65.76	65.78	65.92	65.86	66.15	65.86
Other cattle and beef cattle (without cows) on fattening and feeding	65.90	65.93	65.93	65.95	65.98	66.01	66.17	66.11	66.41	66.14
Other cattle	66.43	66.46	66.48	66.49	66.53	66.56	66.70	66.67	66.93	66.75
Households										

Cattle species	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
Cows	68.12	68.21	68.30	68.40	68.49	68.57	68.54	68.55	68.54	68.57
Heifers 2 years and older	67.82	67.86	67.90	67.95	67.99	68.03	68.03	67.99	67.96	68.06
Heifers from 1 to 2 years	66.70	66.82	66.95	67.08	67.21	67.33	67.35	67.32	67.30	67.40
Breeding bulls	69.47	69.53	69.59	69.66	69.72	69.79	69.76	69.77	69.77	69.78
Other cattle	66.75	66.88	67.01	67.15	67.28	67.41	67.42	67.40	67.38	67.48

Cattle species	2010	2011	2012	2013	2014	2015	2016	2017	2018
			Agric	cultural enterpr	ises				
Cows	67.87	67.91	67.82	67.65	67.48	67.50	67.38	67.46	67.37
Heifers from 2 years and older	64.56	64.62	64.64	64.61	64.30	64.25	64.21	64.11	63.21
Heifers from 1 to 2 years	66.68	66.75	66.77	66.77	66.52	66.50	66.57	66.47	65.62
Breeding bulls	69.80	69.89	69.72	69.57	69.30	69.27	69.15	69.31	68.59
Beef cows	64.42	64.67	64.77	64.54	63.97	63.79	62.94	62.89	61.20
Cows on fattening and feeding	65.89	65.98	65.99	65.95	65.54	65.48	65.37	65.24	64.07
Other cattle and beef cattle (without cows) on fattening and feeding	66.15	66.23	66.27	66.20	65.75	65.66	65.46	65.33	64.22
Other cattle	66.78	66.85	66.89	66.88	66.66	66.64	66.74	66.63	65.80
				Households					
Cows	68.57	68.58	68.58	68.57	68.57	68.57	68.56	68.57	68.58
Heifers 2 years and older	68.08	68.13	68.14	68.11	68.15	68.15	68.14	68.13	68.20
Heifers from 1 to 2 years	67.41	67.46	67.47	67.43	67.46	67.45	67.45	67.44	67.51
Breeding bulls	69.78	69.79	69.79	69.78	69.78	69.77	69.77	69.77	69.78
Other cattle	67.49	67.53	67.54	67.51	67.54	67.53	67.53	67.52	67.59

Table A3.2.2.8. Average weighted gross energy intake of sheep sex-age groups at all kinds of livestock owners, $MJ \times head^{-1} \times day^{-1}$

Sex-age group	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
Ewes and young ewes 1 year and older	20.84	20.73	20.70	20.74	20.75	20.76	20.80	21.05	21.17	21.31
Breeding rams	31.19	31.16	31.13	31.13	31.10	30.97	30.94	31.00	30.97	31.00
Wethers (castrated rams)	17.72	17.69	17.66	17.66	17.63	17.57	17.54	17.60	17.57	17.60
Feeding livestock	19.70	19.67	19.64	19.64	19.61	19.55	19.52	19.58	19.55	19.58
Lambs to 4 months and Repair Lambs 4-12 months	19.07	19.04	19.01	19.01	18.98	18.92	18.89	18.95	18.92	18.95

Sex-age group	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
Ewes and young ewes 1 year and older	21.60	21.84	21.91	21.61	22.89	22.17	22.39	22.56	22.31	21.68
Breeding rams	30.71	30.77	30.80	30.07	30.14	30.20	30.23	30.27	30.24	30.27
Wethers (castrated rams)	17.60	17.66	17.69	17.69	17.72	17.75	17.78	17.78	17.75	17.78
Feeding livestock	19.58	19.64	19.67	19.67	19.70	19.73	19.76	19.76	19.73	19.76
Lambs to 4 months and Repair Lambs 4-12 months	18.95	19.01	19.04	19.04	19.07	19.10	19.13	19.13	19.10	19.13

Sex-age group	2010	2011	2012	2013	2014	2015	2016	2017	2018
Ewes and young ewes 1 year and older	22.33	23.59	23.49	23.46	23.23	23.13	22.88	23.03	23.20
Breeding rams	30.26	30.41	30.39	30.36	30.35	30.33	30.31	30.30	30.27
Wethers (castrated rams)	17.72	17.72	17.69	17.66	17.64	17.63	17.61	17.60	17.57
Feeding livestock	19.70	19.70	19.67	19.64	19.62	19.61	19.59	19.58	19.55
Lambs to 4 months and Repair Lambs 4-12 months	19.07	19.07	19.04	19.01	19.00	18.98	18.96	18.95	18.92

Table A3.2.2.9. Source data for sheep gross energy estimation

Sex-age group	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	
			Average liv	e weight, kg							
Ewes and young ewes 1 year and older	56.70	56.70	56.70	56.70	56.70	56.70	56.70	56.70	56.70	56.70	
Breeding rams	109.30	109.30	109.30	109.30	109.30	109.00	109.00	109.00	109.00	109.00	
Wethers (castrated rams)	60.00	60.00	60.00	60.00	60.00	60.00	60.00	60.00	60.00	60.00	
Feeding livestock	42.50	42.50	42.50	42.50	42.50	42.50	42.50	42.50	42.50	42.50	
Lambs to 4 months and Repair Lambs 4-12 months	37.20	37.20	37.20	37.20	37.20	37.20	37.20	37.20	37.20	37.20	
Milk production, kg head ⁻¹ yr ⁻¹											
The weighted average used for estimations (including of allowance of 60 kg in the lactation period)	75.0	73.0	73.0	74.0	75.0	77.0	79.0	84.0	88.0	91.0	
		Num	ber of lambs	born from on	e ewe						
Number of lambs born per one ewe	1.17	1.17	1.17	1.17	1.17	1.17	1.17	1.17	1.17	1.17	
		Annual	wool produc	tion per sheep	o, kg yr ⁻¹						
Weighted average for agricultural enterprises and households	3.40	3.30	3.20	3.20	3.10	2.90	2.80	3.00	2.90	3.00	
Sex-age group	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	
			Average liv	e weight, kg							
Ewes and young ewes 1 year and older	57.10	57.10	57.10	55.90	56.00	56.10	56.10	56.20	56.20	56.20	
Breeding rams	107.70	107.70	107.70	104.40	104.60	104.70	104.70	104.90	104.90	104.90	
Wethers (castrated rams)	60.00	60.00	60.00	60.00	60.00	60.00	60.00	60.00	60.00	60.00	
Feeding livestock											
	42.50	42.50	42.50	42.50	42.50	42.50	42.50	42.50	42.50	42.50	
Lambs to 4 months and Repair Lambs 4-12 months	42.50 37.20	42.50 37.20	42.50 37.20	42.50 37.20	42.50 37.20	42.50 37.20	42.50 37.20	42.50 37.20	42.50 37.20	42.50 37.20	
months		37.20		37.20	37.20						
•		37.20	37.20	37.20	37.20						
months The weighted average used for estimations (including of allowance of 60 kg in the lactation	37.20	37.20 <i>Mil.</i> 101.0	37.20 k production,	37.20 kg/head per 102.0	37.20 year 135.0	37.20	37.20	37.20	37.20	37.20	
months The weighted average used for estimations (including of allowance of 60 kg in the lactation	37.20	37.20 <i>Mil.</i> 101.0	37.20 k production,	37.20 kg/head per 102.0	37.20 year 135.0	37.20	37.20	37.20	37.20	37.20	
months The weighted average used for estimations (including of allowance of 60 kg in the lactation period)	37.20 96.0	37.20 Mil. 101.0 Num 1.18	37.20 k production, 102.0 ber of lambs	37.20 kg/head per 102.0 born from on 1.17	37.20 year 135.0 e ewe 1.18	37.20	37.20	37.20 123.0	37.20 117.0	99.0	

Sex-age group	2010	2011	2012	2013	2014	2015	2016	2017	2018
		Avera	age live weig	ght, kg					
Ewes and young ewes 1 year and older	56.40	57.00	57.01	57.01	57.01	57.01	57.01	57.01	57.01
Breeding rams	105.10	105.80	105.85	105.85	105.85	105.85	105.85	105.85	105.85
Wethers (castrated rams)	60.00	60.00	60.00	60.00	60.00	60.00	60.00	60.00	60.00
Feeding livestock	42.50	42.50	42.50	42.50	42.50	42.50	42.50	42.50	42.50
Lambs to 4 months and Repair Lambs 4-12 months	37.20	37.20	37.20	37.20	37.20	37.20	37.20	37.20	37.20
		Milk prodi	uction, kg/he	ad per year					
The weighted average used for estimations (including of allowance of 60 kg in the lactation period)	117.0	147.0	145.0	145.0	139.1	136.8	130.4	134.9	140.4
		Number of l	lambs born f	rom one ewe					
Number of lambs born per one ewe	1.19	1.20	1.21	1.21	1.21	1.21	1.21	1.21	1.21
Annual wool production per sheep, kg/year									
Weighted average for agricultural enterprises and households	3.40	3.40	3.30	3.20	3.15	3.09	3.04	3.01	2.91

Table A3.2.2.10. The typical live weight of sheep and the average number of lambs born from one ewe during the year by breeds and breed

types

Breeds and breed types of sheep	Live weight of ewes, kg	Live weight of rams, kg	Number of lambs from one ewe
• • • • • • • • • • • • • • • • • • • •	Wool-meat breeds of fine-wo	pol sheep	
Askanian fine-wooled	58	125	1.25
Taurean type	60	120	1.27
	Meat-wool breeds of fine-wo	ool sheep	
Precoce	58	110	1.45
Kharkiv type	63	135	1.15
Transcarpathian type	66	128	1.15
Polvars	63	108	1.12
	Wool-meat breeds of semi-fine	wool sheep	
Tsigai	55	90	1.30
Crimean type	57	104	1.03
Pre-Azov type	54	102	0.85
	Meat-wool breeds for semi-fine	ewool sheep	
Latvian dark face breed	63	113	1.40
Askanian meat and wool	58	114	1.24
Askanian cross-bred	65	128	1.42
Askanian type of Blackface sheep	69	138	1.52
Kharkiv type	54	88	1.28
Odessa type	60	102	1.12
Bukovyna type	57	119	1.19
Dnipropetrovsk type	54	103	1.18
Romney Marsh	68	125	1.25
Texel	100	68	0.93
North Caucasian	83	58	1.25
	Fur-bearing breeds of coarse		
Karakul	45	80	1.08
Askanian breed type of multiple lambing karakul sheep	60	92	1.86
Sokolska	43	65	1.23
	Meat and wool dairy breeds of coa	•	
Ukrainian Carpatian mountain	39	63	1.10
	Fur sheep		
Romanovska	52	71	2.50
	Meat breeds		
Charolais	108	68	1.70
Olibs	110	68	2.20
	Dairy breeds		
Ostfriesische	93	75	2.05

Table A3.2.2.11. The species composition of sheep in Ukraine, rel. u

Breeds	1990	1995	2000	2005	2010	2015	2018
Tsigai and breed types	0.41	0.41	0.41	0.41	0.41	0.41	0.41
Askanian meat and wool with cross-bred wool and breed types	0.01	0.04	0.16	0.17	0.17	0.17	0.17
Askanian fine-wool and the breed type	0.39	0.37	0.18	0.16	0.16	0.16	0.16
Prekos and breed types	0.11	0.11	0.17	0.13	0.13	0.13	0.13
Karakul	0.03	0.03	0.02	0.03	0.03	0.03	0.03
Askanian breed type of multiple lambing karakul sheep	0.004	0.007	0.017	0.017	0.017	0.017	0.017
Sokolska	0.009	0.009	0.01	0.003	0.003	0.003	0.003
Ukrainian Carpatian mountain	0.03	0.03	0.03	0.08	0.08	0.08	0.08
Polvars	0.00004	0.0001	0.0003	0.0004	0.0003	0.0003	0.0003
Romanovska	0.00008	0.0004	0.001	0.003	0.010	0.010	0.010
Latvian dark face	0.0001	0.0002	0.0006	0.0008	0.0008	0.0008	0.0008
Romney Marsh	0.0001	0.0002	0.0006	0.0008	0.0008	0.0008	0.0008
Charolais	0.0001	0.0002	0.0006	0.0008	0.0008	0.0008	0.0008
Olibs	0.0001	0.0002	0.0006	0.0008	0.0008	0.0008	0.0008
Ostfriesische	0.0001	0.0002	0.0006	0.0008	0.0008	0.0008	0.0008
Texel	0.0001	0.0002	0.0006	0.0008	0.0008	0.0008	0.0008
North Caucasian	0.0001	0.0002	0.0006	0.0008	0.0008	0.0008	0.0008

Table A3.2.2.12. Live weight of repair growing sheep up to 1 year by breed, kg*

Category	4-6 months	6-8 months	8-10 months	10-12 months							
Fine-wool											
Live weight	27.5	33	38	41							
	Semi-finewool										
Live weight	31.5	38.5	43	47.5							
Average value of live weight	38										

^{*} Gimmers' weight indicated, because repair rams used only at breeding farms, and their share is insignificant.

A3.2.3 Manure Management

Table A3.2.3.1. Excretion norms, ash content, and maximum methane-producing capacity of the manure

Animal species	Manure excretion in the dry matter (MDMex), kg/head per day	Ash content in manure (ASH), rel. u	Maximum methane-producing capacity of the manure (B_0), m^3 of CH ₄ kg ⁻¹ of VS
	Cattle at agrienterp	rises	Ü
Cows	6.38	0.16	0.24
Heifers 2 years and older	4.26	0.16	0.24
Heifers from 1 to 2 years	3.59	0.16	0.17
Bulls	5.60	0.16	0.17
Beef cows	6.52	0.16	0.17
Cows on fattening	6.48	0.16	0.17
Cattle on fattening (excluding cows)	3.59	0.16	0.17
Other cattle	3.59	0.16	0.17
	Cattle in househo	lds	
Cows	6.38	0.16	0.24
Heifers 2 years and older	4.26	0.16	0.24
Heifers from 1 to 2 years	3.59	0.16	0.17
Bulls	5.60	0.16	0.17
Other cattle	3.59	0.16	0.17
	Sheep at all categories	of farms	
Ewes and gimmers 1 year and older	1.20	0.074	0.19
Rams	1.50	0.074	0.19
Wethers	1.20	0.074	0.19
Fattening livestock	1.00	0.074	0.19
Lambs up to 4 months and 4-12 months replacement young sheep	0.70	0.074	0.19
	Swine at agrienterp	rises	
Main sows	1.0015	0.15	0.45
Sows tested	0.8992	0.15	0.45
Repair swine 4 months and older	0.6509	0.15	0.45
Piglets up to 2 months	0.0718	0.15	0.45
Piglets 2 to 4 months	0.2409	0.15	0.45
Fattening swine	0.6985	0.15	0.45

Animal species	Manure excretion in the dry matter (MDMex), kg/head per day	Ash content in manure (ASH), rel. u	Maximum methane-producing capacity of the manure (B_0), m^3 of CH_4 kg ⁻¹ of VS
Boars	1.1672	0.15	0.45
	Swine in househo	lds	
Main sows	1.3020	0.15	0.45
Repair swine 4 months and older	0.8461	0.15	0.45
Piglets up to 2 months	0.0933	0.15	0.45
Piglets 2 to 4 months	0.3132	0.15	0.45
Fattening swine	0.9081	0.15	0.45
Boars	1.5174	0.15	0.45
	Poultry at all categorie.	s of farms	
Hens and roosters	0.043	0.173	0.39
Geese	0.113	0.173	0.36
Ducks	0.080	0.173	0.36
Turkeys	0.158	0.173	0.36
Other poultry		0.173	0.36

Table A3.2.3.2. Manure distribution by the manure management systems (MMS), rel. u

MMS types	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
, <u> </u>				Cattle at agrier	iterprises					
Liquid slurry	0.210	0.210	0.170	0.160	0.130	0.100	0.090	0.050	0.030	0.030
Solid storage	0.435	0.435	0.455	0.455	0.485	0.505	0.495	0.495	0.495	0.495
Pasture/Range/Paddock	0.350	0.350	0.370	0.380	0.380	0.390	0.410	0.450	0.470	0.470
Composting	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005
				Cattle in hou	seholds					
Solid storage	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Pasture/Range/Paddock	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
			She	ep at all catego	ries of farms					
Solid storage	0.26	0.26	0.26	0.26	0.26	0.26	0.26	0.26	0.26	0.26
Pasture/paddock	0.74	0.74	0.74	0.74	0.74	0.74	0.74	0.74	0.74	0.74
				Swine at agrier	iterprises					
Uncovered anaerobic lagoon	NO	NO	NO	NO	NO	0.060	0.065	0.075	0.075	0.075
Liquid slurry	0.370	0.342	0.292	0.242	0.195	0.160	0.135	0.125	0.125	0.125
Solid storage	0.575	0.605	0.656	0.700	0.750	0.775	0.795	0.795	0.795	0.795
Composting	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005
Aerobic treatment	0.050	0.048	0.047	0.053	0.050	NO	NO	NO	NO	NO
				Swine in hou	seholds					
Solid storage	1	1	1	1	1	1	1	1	1	1
				Fur-bearing	animals					
Solid storage	1	1	1	1	1	1	1	1	1	1
				Rabbit	s					
Solid storage	1	1	1	1	1	1	1	1	1	1
				Buffalo	es					
Solid storage	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Pasture/Range/Paddock	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
				Goats						
Solid storage	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Pasture/Range/Paddock	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
				Camel						
Pasture/Range/Paddock	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Other systems	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08

MMS types	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
				Horse	5					
Solid storage	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Pasture/Range/Paddock	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
				Asses and	nules					
Pasture/Range/Paddock	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Other systems	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08
			F	Poultry at agrie	nterprises					
Poultry manure without litter	0.992	0.992	0.992	0.992	0.992	0.992	0.992	0.992	0.992	0.992
Composting	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.008
				Poultry in hou	ıseholds					
Poultry manure without litter	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Pasture/Range/Paddock	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5

MMS types	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
			-	Cattle at agriei	ıterprises					
Liquid slurry	0.010	0.010	0.010	0.010	0.010	0.010	0.030	0.030	0.040	0.041
Solid storage	0.495	0.495	0.495	0.495	0.495	0.495	0.485	0.485	0.475	0.475
Pasture/Range/Paddock	0.490	0.490	0.490	0.490	0.490	0.490	0.480	0.480	0.480	0.479
Composting	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005
				Cattle in hou	seholds					
Solid storage	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Pasture/Range/Paddock	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
			She	ep at all catego	ries of farms					
Solid storage	0.26	0.26	0.26	0.26	0.26	0.26	0.26	0.26	0.26	0.26
Pasture/Range/Paddock	0.74	0.74	0.74	0.74	0.74	0.74	0.74	0.74	0.74	0.74
			,	Swine at agriei	iterprises					
Uncovered anaerobic lagoon	0.080	0.080	0.080	0.080	0.080	0.100	0.100	0.120	0.140	0.140
Liquid slurry	0.110	0.120	0.160	0.180	0.170	0.210	0.160	0.160	0.200	0.250
Solid storage	0.805	0.795	0.755	0.735	0.745	0.685	0.735	0.715	0.655	0.605
Composting	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005
Aerobic treatment	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
	Swine in households									

MMS types	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
Solid storage	1	1	1	1	1	1	1	1	1	1
				Fur-bearing	animals					
Solid storage	1	1	1	1	1	1	1	1	1	1
				Rabbit	S					
Solid storage	1	1	1	1	1	1	1	1	1	1
				Buffalo	es					
Solid storage	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Pasture/Range/Paddock	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
				Goats						
Solid storage	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Pasture/Range/Paddock	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
				Camel	s					
Pasture/paddock	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Other systems	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08
				Horse	S					
Solid storage	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Pasture/Range/Paddock	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
				Asses and 1	nules					
Pasture/Range/Paddock	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Other systems	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08
			I	Poultry at agrie	nterprises					
Poultry manure without litter	0.992	0.992	0.992	0.992	0.992	0.992	0.992	0.992	0.992	0.992
Composting	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.008
				Poultry in hou	ıseholds					
Poultry manure without litter	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Pasture/Range/Paddock	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5

MMS types	2010	2011	2012	2013	2014	2015	2016	2017	2018
Cattle at agrienterprises									
Liquid slurry	0.044	0.040	0.042	0.045	0.047	0.049	0.052	0.049	0.051
Solid storage	0.476	0.477	0.473	0.471	0.466	0.463	0.459	0.457	0.459

MMS types	2010	2011	2012	2013	2014	2015	2016	2017	2018		
Pasture/Range/Paddock	0.478	0.480	0.479	0.478	0.476	0.475	0.474	0.475	0.474		
Composting	0.002	0.003	0.006	0.007	0.010	0.013	0.015	0.018	0.016		
			Cattle	in households							
Solid storage	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5		
Pasture/Range/Paddock	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5		
			Sheep at al	l categories of j	farms						
Solid storage 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26											
Pasture/Range/Paddock	0.74	0.74	0.74	0.74	0.74	0.74	0.74	0.74	0.74		
			Swine a	t agrienterpris	es						
Uncovered anaerobic lagoon	0.140	0.140	0.150	0.125	0.097	0.080	0.061	0.078	0.062		
Liquid slurry	0.310	0.370	0.360	0.397	0.436	0.460	0.483	0.459	0.484		
Solid storage	0.548	0.487	0.484	0.471	0.457	0.448	0.441	0.446	0.438		
Composting	0.002	0.003	0.006	0.007	0.010	0.013	0.015	0.018	0.016		
Aerobic treatment	NO	NO	NO	NO	NO	NO	NO	NO	NO		
			Swine	in households							
Solid storage	1	1	1	1	1	1	1	1	1		
			Fur-b	earing animals	1						
Solid storage	1	1	1	1	1	1	1	1	1		
				Rabbits							
Solid storage	1	1	1	1	1	1	1	1	1		
				Buffaloes							
Solid storage	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5		
Pasture/Range/Paddock	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5		
				Goats							
Solid storage	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5		
Pasture/Range/Paddock	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5		
				Camels							
Pasture/Range/Paddock	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92		
Other systems	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08		
				Horses							
Solid storage	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5		
Pasture/Range/Paddock	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5		
			Ass	es and mules							

MMS types	2010	2011	2012	2013	2014	2015	2016	2017	2018
Pasture/Range/Paddock	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Other systems	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08
			Poultry o	at agrienterpri:	ses				
Poultry manure without litter	0.993	0.990	0.994	0.992	0.968	0.998	0.995	0.995	0.997
Composting	0.007	0.010	0.006	0.008	0.032	0.002	0.005	0.005	0.003
			Poultr	y in household.	S				
Poultry manure without litter	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Pasture/Range/Paddock	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5

Table A3.2.3.3. Daily volatile solids (VS), kg dry matter animal⁻¹ day⁻¹

Cattle species	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
Cutter of Control	222	-,,-			ural enterprises		277 0		2770	
Cows	3.26	3.21	3.10	3.07	3.07	3.03	2.97	2.85	2.93	2.96
Heifers 2 years and older	2.64	2.69	2.73	2.73	2.76	2.77	2.78	2.77	2.77	2.76
Heifers from 1 to 2 years	2.08	2.09	2.12	2.12	2.13	2.14	2.14	2.14	2.14	2.14
Bulls	2.48	2.51	2.57	2.56	2.58	2.60	2.62	2.61	2.61	2.61
Beef cows	2.02	2.08	2.12	2.13	2.16	2.17	2.17	2.15	2.15	2.15
Cows on fattening	3.66	3.75	3.83	3.84	3.91	3.92	3.92	3.88	3.88	3.88
Other cattle and beef cattle fattening	1.70	1.74	1.78	1.78	1.81	1.82	1.82	1.81	1.80	1.80
Other cattle	1.51	1.52	1.54	1.54	1.55	1.55	1.56	1.55	1.55	1.55
				Cattle at h	ouseholds					
Cows	3.53	3.53	3.52	3.52	3.52	3.54	3.54	3.56	3.57	3.57
Heifers 2 years and older	2.49	2.48	2.48	2.47	2.47	2.48	2.48	2.50	2.49	2.49
Heifers from 1 to 2 years	2.24	2.22	2.23	2.22	2.22	2.22	2.23	2.24	2.23	2.22
Bulls	2.61	2.60	2.60	2.60	2.60	2.60	2.60	2.60	2.59	2.58
Other cattle	1.79	1.78	1.79	1.78	1.78	1.78	1.79	1.80	1.79	1.78
			S	heep at all cate	gories of farms					
Ewes and gimmers 1 year and older	0.38	0.38	0.38	0.38	0.38	0.38	0.38	0.39	0.39	0.39
Rams	0.57	0.57	0.57	0.57	0.57	0.57	0.57	0.57	0.57	0.57
Wethers	0.32	0.32	0.32	0.32	0.32	0.32	0.32	0.32	0.32	0.32
Fattening livestock	0.36	0.36	0.36	0.36	0.36	0.36	0.36	0.36	0.36	0.36
Lambs up to 4 months and 4-12 months replacement young sheep	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35
			Sv	vine at agricult	ural enterprise:	S				
Main sows	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85
Sows tested	0.76	0.76	0.76	0.76	0.76	0.76	0.76	0.76	0.76	0.76
Repair swine 4 months and older	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55
Piglets up to 2 months	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06
Piglets 2 to 4 months	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20
Fattening swine	0.59	0.59	0.59	0.59	0.59	0.59	0.59	0.59	0.59	0.59
Boars	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99

Cattle species	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
				Swine at he	ouseholds					
Main sows	1.11	1.11	1.11	1.11	1.11	1.11	1.11	1.11	1.11	1.11
Repair swine 4 months and older	0.72	0.72	0.72	0.72	0.72	0.72	0.72	0.72	0.72	0.72
Piglets up to 2 months	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08
Piglets 2 to 4 months	0.27	0.27	0.27	0.27	0.27	0.27	0.27	0.27	0.27	0.27
Fattening swine	0.77	0.77	0.77	0.77	0.77	0.77	0.77	0.77	0.77	0.77
Boars	1.29	1.29	1.29	1.29	1.29	1.29	1.29	1.29	1.29	1.29
			Pa	oultry at all cat	egories of farm	S				
Hens and roosters	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04
Geese	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09
Ducks	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07
Turkeys	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13
Other poultry	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10

Cattle species	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	
			Co	attle at agricult	tural enterprise:	5					
Cows	2.91	3.09	3.13	3.07	3.22	3.39	3.43	3.45	3.51	3.74	
Heifers 2 years and older	2.76	2.76	2.76	2.76	2.76	2.75	2.73	2.74	2.70	2.74	
Heifers from 1 to 2 years	2.14	2.13	2.13	2.13	2.13	2.13	2.11	2.12	2.09	2.11	
Bulls	2.60	2.60	2.60	2.59	2.59	2.58	2.57	2.58	2.54	2.57	
Beef cows	2.15	2.15	2.16	2.16	2.15	2.15	2.13	2.14	2.09	2.12	
Cows on fattening	3.87	3.86	3.86	3.86	3.85	3.85	3.82	3.83	3.77	3.83	
Other cattle and beef cattle fattening	1.80	1.80	1.80	1.80	1.79	1.79	1.78	1.78	1.75	1.78	
Other cattle	1.55	1.54	1.54	1.54	1.54	1.54	1.52	1.53	1.51	1.52	
				Cattle at h	ouseholds						
Cows	3.60	3.62	3.65	3.64	3.70	3.77	3.84	3.83	3.87	3.93	
Heifers 2 years and older	2.48	2.48	2.47	2.47	2.46	2.46	2.46	2.46	2.47	2.45	
Heifers from 1 to 2 years	2.20	2.19	2.17	2.16	2.15	2.13	2.13	2.13	2.14	2.13	
Bulls	2.58	2.57	2.56	2.55	2.54	2.54	2.54	2.54	2.54	2.54	
Other cattle	1.76	1.75	1.74	1.73	1.72	1.70	1.70	1.71	1.71	1.70	
	Sheep at all categories of farms										

Cattle species	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
Ewes and gimmers 1 year and older	0.40	0.40	0.40	0.40	0.42	0.41	0.41	0.41	0.41	0.40
Rams	0.56	0.56	0.56	0.55	0.55	0.55	0.55	0.55	0.55	0.55
Wethers	0.32	0.32	0.32	0.32	0.32	0.33	0.33	0.33	0.33	0.33
Fattening livestock	0.36	0.36	0.36	0.36	0.36	0.36	0.36	0.36	0.36	0.36
Lambs up to 4 months and 4-12 months replacement young sheep	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35
Swine at agricultural enterprises										
Main sows	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85
Sows tested	0.76	0.76	0.76	0.76	0.76	0.76	0.76	0.76	0.76	0.76
Repair swine 4 months and older	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55
Piglets up to 2 months	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06
Piglets 2 to 4 months	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20
Fattening swine	0.59	0.59	0.59	0.59	0.59	0.59	0.59	0.59	0.59	0.59
Boars	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99
				Swine at he	ouseholds					
Main sows	1.11	1.11	1.11	1.11	1.11	1.11	1.11	1.11	1.11	1.11
Repair swine 4 months and older	0.72	0.72	0.72	0.72	0.72	0.72	0.72	0.72	0.72	0.72
Piglets up to 2 months	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08
Piglets 2 to 4 months	0.27	0.27	0.27	0.27	0.27	0.27	0.27	0.27	0.27	0.27
Fattening swine	0.77	0.77	0.77	0.77	0.77	0.77	0.77	0.77	0.77	0.77
Boars	1.29	1.29	1.29	1.29	1.29	1.29	1.29	1.29	1.29	1.29
Poultry at all categories of farms										
Hens and roosters	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04
Geese	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09
Ducks	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07
Turkeys	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13
Other poultry	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10

Cattle species	2010	2011	2012	2013	2014	2015	2016	2017	2018
Cattle at agricultural enterprises									
Cows	3.77	3.71	3.92	4.01	4.17	4.27	4.40	4.50	4.55
Heifers 2 years and older	2.73	2.72	2.72	2.72	2.77	2.77	2.78	2.79	2.93
Heifers from 1 to 2 years	2.10	2.10	2.09	2.09	2.12	2.12	2.11	2.13	2.22
Bulls	2.57	2.56	2.58	2.60	2.63	2.64	2.65	2.63	2.73
Beef cows	2.13	2.10	2.09	2.11	2.17	2.19	2.28	2.29	2.48
Cows on fattening	3.83	3.81	3.81	3.81	3.90	3.91	3.93	3.96	4.21
Other cattle and beef cattle fattening	1.78	1.77	1.77	1.77	1.82	1.82	1.84	1.85	1.96
Other cattle	1.52	1.51	1.51	1.51	1.53	1.53	1.52	1.53	1.60
			Ca	ttle at househol	ds				
Cows	3.94	3.98	4.00	4.04	4.08	4.08	4.08	4.10	4.14
Heifers 2 years and older	2.45	2.44	2.44	2.45	2.44	2.44	2.44	2.45	2.44
Heifers from 1 to 2 years	2.12	2.12	2.12	2.12	2.12	2.12	2.12	2.12	2.11
Bulls	2.54	2.54	2.54	2.54	2.54	2.54	2.54	2.54	2.54
Other cattle	1.70	1.69	1.69	1.70	1.69	1.69	1.70	1.70	1.69
			Sheep at	all categories o	of farms				
Ewes and gimmers 1 year and older	0.41	0.43	0.43	0.43	0.43	0.42	0.42	0.42	0.43
Rams	0.55	0.56	0.56	0.56	0.56	0.56	0.56	0.56	0.55
Wethers	0.32	0.32	0.32	0.32	0.32	0.32	0.32	0.32	0.32
Fattening livestock	0.36	0.36	0.36	0.36	0.36	0.36	0.36	0.36	0.36
Lambs up to 4 months and 4-12 months replacement young sheep	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35
Swine at agricultural enterprises									
Main sows	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85
Sows tested	0.76	0.76	0.76	0.76	0.76	0.76	0.76	0.76	0.76
Repair swine 4 months and older	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55
Piglets up to 2 months	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06
Piglets 2 to 4 months	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20
Fattening swine	0.59	0.59	0.59	0.59	0.59	0.59	0.59	0.59	0.59
Boars	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99
Swine at households									

Cattle species	2010	2011	2012	2013	2014	2015	2016	2017	2018
Main sows	1.11	1.11	1.11	1.11	1.11	1.11	1.11	1.11	1.11
Repair swine 4 months and older	0.72	0.72	0.72	0.72	0.72	0.72	0.72	0.72	0.72
Piglets up to 2 months	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08
Piglets 2 to 4 months	0.27	0.27	0.27	0.27	0.27	0.27	0.27	0.27	0.27
Fattening swine	0.77	0.77	0.77	0.77	0.77	0.77	0.77	0.77	0.77
Boars	1.29	1.29	1.29	1.29	1.29	1.29	1.29	1.29	1.29
Poultry at all categories of farms									
Hens and roosters	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04
Geese	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09
Ducks	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07
Turkeys	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13
Other poultry	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10

Table A3.2.3.4. Annual average N excretion per head of cattle and fur-bearing animals, kg N animal-1 yr-1

Cattle species	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	
			Co	attle at agricult	ural enterprise	s					
Dairy cows	57.21	55.35	52.54	52.81	54.76	51.21	47.92	41.64	43.53	45.58	
Heifers 2 years and older	36.96	36.17	35.13	36.21	37.65	35.95	34.24	30.73	31.83	32.92	
Heifers from 1 to 2 years	30.11	29.38	28.66	29.47	30.53	29.18	27.82	25.01	25.88	26.76	
Bulls	40.46	39.86	39.77	40.20	41.13	39.83	38.50	35.18	36.38	37.51	
Beef cows	33.30	32.83	32.27	33.36	34.49	32.90	31.31	28.20	29.09	29.98	
Cows on fattening	45.63	44.90	43.33	44.64	46.18	44.19	42.22	38.16	39.60	41.02	
Other cattle and beef cattle fattening	18.06	17.78	17.26	17.88	18.67	17.78	16.88	14.85	15.48	16.11	
Other cattle	16.52	16.10	15.69	16.26	16.89	16.09	15.23	13.29	13.82	14.39	
				Cattle at h	ouseholds						
Dairy cows	38.07	37.28	38.26	37.83	38.12	38.60	39.10	39.09	40.00	40.82	
Heifers 2 years and older	27.24	26.66	26.73	26.19	26.59	27.36	28.14	29.20	29.77	30.34	
Heifers from 1 to 2 years	23.11	22.63	22.75	22.20	22.58	23.10	23.62	24.53	25.05	25.57	
Bulls	32.38	31.99	32.18	32.15	32.26	32.58	32.90	32.84	33.55	34.26	
Other cattle	13.48	13.22	13.34	13.01	13.43	13.94	14.42	15.07	15.44	15.83	
Fur-bearing animals at all categories of farms											
Fur-bearing animals	4.67	4.67	4.67	4.67	4.67	4.67	4.67	4.67	4.67	4.67	

Cattle species	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
			Ca	attle at agricult	ural enterprise:	S				
Dairy cows	47.31	50.22	52.51	54.14	57.35	60.78	63.75	62.33	67.27	77.62
Heifers 2 years and older	34.02	35.12	36.21	37.32	38.36	39.45	40.92	40.27	41.11	44.97
Heifers from 1 to 2 years	27.63	28.51	29.38	30.24	31.10	32.00	32.96	32.61	33.37	36.59
Bulls	38.64	39.76	40.88	42.00	43.12	44.02	44.49	44.04	45.31	49.57
Beef cows	30.87	31.76	32.65	33.58	34.62	35.70	36.04	35.03	36.04	39.63
Cows on fattening	42.46	43.88	45.25	46.61	47.96	49.31	50.76	50.24	51.38	56.18
Other cattle and beef cattle fattening	16.71	17.30	17.91	18.52	19.13	19.78	20.36	20.09	20.50	22.80
Other cattle	14.97	15.52	16.05	16.59	17.07	17.56	18.20	18.02	18.41	20.59
				Cattle at h	ouseholds					

Cattle species	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
Dairy cows	41.67	42.54	43.43	44.24	45.23	46.28	45.21	45.49	45.25	46.43
Heifers 2 years and older	30.90	31.46	32.02	32.58	33.14	33.69	33.75	33.49	33.28	34.00
Heifers from 1 to 2 years	26.08	26.60	27.10	27.61	28.11	28.61	28.73	28.67	28.61	29.11
Bulls	34.98	35.69	36.40	37.10	37.81	38.51	37.96	38.11	38.00	38.43
Other cattle	16.22	16.61	17.00	17.39	17.77	18.15	18.19	18.10	18.04	18.35
Fur-bearing animals at all categories of farms										
Fur-bearing animals	4.67	4.67	4.67	4.67	4.74	4.73	4.71	4.68	4.66	4.66

Cattle species	2010	2011	2012	2013	2014	2015	2016	2017	2018
			Cattle at a	agricultural en	terprises				
Dairy cows	78.50	78.08	88.12	91.39	97.94	104.32	105.05	108.43	144.59
Heifers 2 years and older	43.57	42.81	45.09	44.84	47.03	48.55	48.03	48.57	65.33
Heifers from 1 to 2 years	35.39	34.75	36.53	36.43	38.43	39.50	38.77	39.43	53.20
Bulls	49.24	48.97	52.67	53.66	55.80	57.74	57.34	57.92	73.77
Beef cows	38.63	37.02	39.52	40.36	41.37	42.91	44.13	44.52	60.15
Cows on fattening	54.43	53.24	56.22	56.27	59.31	61.10	60.31	61.28	82.46
Other cattle and beef cattle fattening	21.95	21.31	22.67	22.74	24.18	25.05	24.83	25.24	35.35
Other cattle	19.64	19.35	20.44	20.40	21.94	22.63	21.92	22.49	31.91
			Car	ttle at househol	ds				
Dairy cows	46.47	47.11	47.08	46.67	46.61	46.37	46.18	46.36	47.13
Heifers 2 years and older	34.15	34.51	34.66	34.52	34.72	34.71	34.64	34.58	35.00
Heifers from 1 to 2 years	29.12	29.31	29.30	29.12	29.25	29.21	29.18	29.15	29.48
Bulls	38.43	38.63	38.59	38.37	38.30	38.21	38.11	38.14	38.39
Other cattle	18.39	18.53	18.56	18.47	18.55	18.54	18.53	18.50	18.70
	•	F	ur-bearing ani	mals at all cate	gories of farms				
Fur-bearing animals	4.66	4.65	4.64	4.65	4.64	4.64	4.65	4.63	4.62

Table A3.2.3.5. Proportions of nitrogen in manure dry matter and the amount of nitrogen excreted as part of manure of swine, poultry and

sheep

Sex-age groups of animals	Proportion of nitrogen in manure dry matter (f _n), rel.	Amount of nitrogen excreted (Nex), kg head-1 yr-1
	Swine at agrienterprises	
Main sows	0.06	21.93
Sows tested	0.06	19.69
Repair swine 4 months and older	0.06	14.25
Piglets up to 2 months	0.06	1.57
Piglets 2 to 4 months	0.06	5.28
Fattening swine	0.06	15.30
Boars	0.06	25.56
	Swine in households	
Main sows	0.06	28.51
Repair swine 4 months and older	0.06	18.53
Piglets up to 2 months	0.06	2.04
Piglets 2 to 4 months	0.06	6.86
Fattening swine	0.06	19.89
Boars	0.06	33.23
	Poultry at all categories of farms	
Hens and roosters	0.018	0.28
Geese	0.007	0.29
Ducks	0.0095	0.28
Turkeys	0.0085	0.49
Other poultry	-	0.60
	Sheep at all categories of farms	
Ewes and gimmers 1 year and older	0.023	10.07
Rams	0.023	12.59
Fattening livestock	0.023	10.07
Wethers	0.023	8.40
Lambs up to 4 months and 4-12 months repair young sheep	0.023	5.88

Table A3.2.3.6. Cattle fodder consumption at all types of livestock owners, kt

Cattle sex-age groups	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
			Ca	attle at agricult	ural enterprise:	s				
				Cor	vs					
Concentrated feeds	6 403.25	5 776.76	4 362.99	4 222.48	4 062.94	3 062.22	2 262.87	1 354.28	1 401.82	1 189.33
Succulent feeds	70 631.92	71 729.01	62 503.52	58 884.42	53 554.67	46 700.02	40 704.15	34 373.10	31 298.23	23 521.92
Coarse feeds	9 746.96	9 938.61	10 128.08	9 314.79	9 026.28	8 042.04	7 151.35	5 736.20	5 314.95	4 020.44
Other feeds	28 231.07	22 948.51	16 810.57	15 890.29	13 017.78	11 765.73	10 122.53	8 919.62	8 698.58	6 586.08
				Heifers 2 year	rs and older					
Concentrated feeds	826.55	756.74	641.44	657.03	664.50	536.25	399.72	255.58	232.06	216.34
Succulent feeds	8 520.41	8 926.26	8 575.67	8 200.84	7 863.26	7 259.36	6 293.00	5 450.14	4 441.73	3 737.53
Coarse feeds	1 562.60	1 646.35	1 798.53	1 697.15	1 706.98	1 594.46	1 396.83	1 135.47	930.01	786.86
Other feeds	3 880.59	3 163.79	2 983.24	2 687.91	2 243.36	2 089.63	1 821.52	1 602.76	1 298.46	1 088.17
				Heifers from	1 to 2 years					
Concentrated feeds	254.91	238.47	198.26	190.12	190.21	159.86	120.04	73.62	67.00	64.80
Succulent feeds	2 494.09	2 672.06	2 501.86	2 238.37	2 121.84	2 043.13	1 785.15	1 483.00	1 212.94	1 061.40
Coarse feeds	442.39	478.26	508.81	447.92	444.18	434.16	384.21	300.77	247.59	218.37
Other feeds	1 254.32	1 049.78	964.84	813.41	674.78	657.71	581.22	493.81	402.84	351.57
				Вий	ls					
Concentrated feeds	7.41	7.29	6.48	6.46	6.35	5.22	4.37	3.10	3.16	3.34
Succulent feeds	66.10	73.86	74.74	69.65	66.09	63.16	62.99	64.12	56.66	52.67
Coarse feeds	9.32	10.53	12.37	11.30	11.03	11.16	11.70	11.26	10.11	9.53
Other feeds	40.12	36.95	32.97	32.34	27.89	27.21	27.60	28.55	25.35	23.92
				Beef o	cows					
Concentrated feeds	8.33	8.90	8.27	9.25	16.11	23.74	24.91	19.51	21.37	23.23
Succulent feeds	73.56	90.22	92.30	94.92	157.58	266.56	326.93	348.48	344.78	340.23
Coarse feeds	17.87	22.11	25.69	25.88	43.69	76.81	97.47	98.18	98.30	98.35
Other feeds	44.93	43.90	43.41	42.65	63.23	109.67	137.49	151.55	150.88	150.07
				Cows on f	fattening					
Concentrated feeds	303.96	276.00	228.52	228.81	218.42	172.38	130.85	83.99	75.65	71.15
Succulent feeds	3 245.80	3 368.26	3 193.38	2 978.73	2 734.62	2 466.68	2 180.67	1 907.22	1 547.56	1 318.12
Coarse feeds	714.29	732.86	789.92	732.67	699.84	635.72	561.92	449.48	364.36	311.18
Other feeds	1 475.12	1 195.86	1 101.02	976.10	774.44	707.79	634.20	567.24	458.59	387.77
			Other	cattle and bee	f cattle on fatte	ning				

Cattle sex-age groups	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
Concentrated feeds	1 094.29	994.62	824.77	824.97	789.57	627.47	479.85	310.72	282.50	267.68
Succulent feeds	10 156.12	10 539.36	9 983.76	9 290.46	8 534.00	7 724.13	6 834.50	5 986.42	4 890.04	4 194.02
Coarse feeds	2 229.20	2 290.34	2 471.03	2 291.58	2 197.90	2 013.78	1 795.07	1 450.60	1 188.81	1 025.86
Other feeds	5 299.13	4 302.74	3 962.76	3 508.73	2 793.65	2 573.30	2 324.03	2 098.41	1 715.59	1 465.11
				Other	cattle					
Concentrated feeds	3 180.43	2 789.38	2 229.77	2 145.78	1 853.05	1 227.86	865.25	467.04	530.21	368.47
Succulent feeds	28 771.81	28 649.56	26 280.91	23 438.01	19 569.20	14 709.20	12 050.96	8 769.54	9 081.75	5 704.09
Coarse feeds	5 285.99	5 211.75	5 448.04	4 848.87	4 184.73	3 189.81	2 634.95	1 778.35	1 833.44	1 160.52
Other feeds	14 968.37	11 723.82	10 308.48	8 842.79	6 407.86	4 979.17	4 180.99	3 200.29	3 163.84	2 007.17
				Cattle at h	ouseholds					
				Cor						
Concentrated feeds	509.51	544.47	640.70	671.15	727.87	785.73	841.72	825.51	844.03	857.96
Succulent feeds	16 632.47	18 594.75	20 269.25	21 665.78	22 759.71	23 798.30	24 694.92	23 855.46	21 885.11	19 905.70
Coarse feeds	3 868.27	4 143.41	4 376.70	4 730.21	5 020.49	5 232.91	5 430.93	5 289.54	5 517.53	5 759.87
Other feeds	14 319.74	15 886.22	16 412.69	18 265.94	19 477.27	20 045.88	20 516.23	20 359.24	21 704.69	23 121.43
				Heifers 2 year	rs and older					
Concentrated feeds	21.35	23.21	27.34	28.64	29.68	28.29	27.52	29.34	31.85	34.45
Succulent feeds	398.84	437.22	520.20	559.81	542.66	489.70	452.39	460.59	451.30	436.96
Coarse feeds	66.13	72.70	84.51	88.92	86.72	84.61	84.30	87.15	98.70	111.20
Other feeds	396.80	479.01	539.19	614.67	615.49	560.17	521.41	478.87	547.42	621.39
				Heifers from	1 to 2 years					
Concentrated feeds	48.17	52.33	63.55	69.21	74.06	67.90	59.79	58.83	60.52	64.22
Succulent feeds	842.85	926.97	1 134.41	1 279.19	1 275.62	1 112.46	932.25	871.39	808.51	766.96
Coarse feeds	130.23	143.54	173.19	190.03	191.24	179.16	160.65	153.10	164.76	182.40
Other feeds	930.14	1 112.07	1 288.67	1 514.66	1 550.07	1 366.72	1 159.00	988.88	1 069.62	1 190.45
				Bul	ls					
Concentrated feeds	0.62	0.68	0.95	1.22	1.40	1.53	1.45	1.43	1.66	1.80
Succulent feeds	15.87	17.46	23.13	29.69	33.27	34.76	31.79	31.15	32.82	32.10
Coarse feeds	3.42	3.60	4.58	5.98	6.87	7.21	6.61	6.39	7.72	8.69
Other feeds	15.59	17.12	21.31	28.12	32.76	33.56	30.06	29.91	36.91	42.42
				Other						
Concentrated feeds	590.12	511.41	282.24	277.09	271.19	233.19	226.65	236.82	232.31	233.64
Succulent feeds	10 455.81	8 992.50	5 011.87	5 003.94	4 484.84	3 643.96	3 363.94	3 375.82	3 002.10	2 705.16

Cattle sex-age groups	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
Coarse feeds	1 501.65	1 309.19	733.39	717.44	653.08	578.07	578.62	589.34	605.15	634.95
Other feeds	11 442.71	10 705.92	5 712.10	5 942.10	5 422.14	4 457.20	4 179.82	3 839.17	3 999.03	4 234.71

Cattle sex-age groups	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
			Са	attle at agricult	ural enterprises	S				
				Con	ws					
Concentrated feeds	987.39	1 031.23	1 042.40	818.87	795.69	853.62	855.26	702.30	753.06	880.54
Succulent feeds	17 528.47	16 589.45	15 211.50	10 908.69	9 735.85	9 619.21	8 893.90	7 633.26	7 183.44	6 739.95
Coarse feeds	3 015.86	2 874.71	2 657.45	1 922.12	1 731.52	1 713.45	1 494.33	1 325.87	1 113.00	1 229.55
Other feeds	4 919.15	4 658.43	4 307.01	3 110.53	2 792.76	2 803.13	2 420.05	2 189.91	1 911.09	1 675.30
				Heifers 2 yea	rs and older					
Concentrated feeds	191.85	177.81	174.39	158.16	138.38	126.82	120.86	100.73	95.95	99.65
Succulent feeds	3 022.02	2 574.04	2 317.15	1 939.92	1 578.36	1 338.02	1 147.66	994.45	880.19	744.98
Coarse feeds	639.20	546.76	495.14	416.72	341.57	293.63	239.31	210.13	165.10	164.82
Other feeds	872.69	735.38	659.04	546.76	444.81	383.49	324.70	283.25	247.12	205.96
				Heifers from	1 to 2 years					
Concentrated feeds	60.08	61.63	65.66	60.19	52.97	50.47	52.14	46.50	47.01	52.51
Succulent feeds	898.01	846.13	829.07	702.70	574.27	506.92	476.81	440.09	411.25	373.42
Coarse feeds	186.05	176.42	174.33	148.85	122.45	109.17	96.54	89.89	74.10	79.71
Other feeds	296.42	278.19	271.79	229.61	187.50	166.78	151.52	137.30	124.11	110.61
				Вий	lls					
Concentrated feeds	3.36	3.18	3.20	2.90	2.53	2.56	2.74	2.20	1.91	2.10
Succulent feeds	47.06	40.11	36.27	29.83	23.77	21.97	22.58	18.95	14.26	12.46
Coarse feeds	8.59	7.38	6.77	5.64	4.54	4.21	3.98	3.53	2.49	2.50
Other feeds	21.63	18.63	17.12	14.31	11.55	11.22	10.37	9.14	7.27	5.91
				Beef o	cows					
Concentrated feeds	25.15	27.12	29.05	31.06	33.96	36.83	38.18	32.70	31.34	33.60
Succulent feeds	336.75	333.90	329.09	323.12	320.63	313.88	313.51	294.46	247.70	204.30
Coarse feeds	98.56	98.86	98.89	99.06	101.30	102.99	95.18	89.11	71.65	68.79
Other feeds	149.43	148.89	148.02	148.56	153.93	159.74	156.96	143.11	134.39	118.05
				Cows on j	fattening					

Cattle sex-age groups	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
Concentrated feeds	61.67	54.40	53.08	46.89	39.42	36.87	37.13	31.86	30.02	30.91
Succulent feeds	1 054.60	869.89	781.82	640.50	504.94	438.13	401.49	358.39	314.27	264.59
Coarse feeds	246.96	201.10	181.54	149.17	117.49	103.17	89.47	80.31	62.09	61.19
Other feeds	307.91	252.65	225.65	184.27	146.10	128.53	114.97	100.45	86.14	71.21
			Other	· cattle and bee	f cattle on fatte	ning				
Concentrated feeds	235.41	210.95	207.24	186.45	162.49	156.25	158.63	136.17	128.93	133.13
Succulent feeds	3 384.63	2 809.84	2 541.03	2 113.71	1 710.76	1 519.29	1 413.17	1 268.14	1 106.15	926.76
Coarse feeds	828.92	687.93	627.25	525.94	428.80	385.68	337.77	304.97	238.02	234.18
Other feeds	1 183.18	987.43	890.38	742.86	610.21	551.70	502.78	443.17	386.91	324.43
				Other	cattle					
Concentrated feeds	264.12	309.74	347.80	226.47	231.94	283.45	308.32	244.77	231.24	286.18
Succulent feeds	3 729.40	4 044.50	4 201.93	2 539.53	2 456.49	2 832.57	2 785.23	2 287.78	2 005.19	2 048.04
Coarse feeds	762.87	825.86	862.97	524.81	503.28	575.96	534.72	440.78	336.10	406.65
Other feeds	1 311.25	1 396.16	1 455.32	881.83	822.79	910.80	866.45	686.72	559.26	554.98
				Cattle at h	ouseholds					
				Cor	WS					
Concentrated feeds	896.56	950.74	1 011.63	1 005.20	983.35	989.71	915.42	841.41	785.91	785.21
Succulent feeds	18 393.82	17 025.76	15 564.77	13 004.22	10 403.74	8 208.92	8 643.86	7 709.53	7 446.85	6 709.49
Coarse feeds	6 161.87	6 678.72	7 259.06	7 359.74	7 352.81	7 562.02	7 560.78	6 822.67	6 503.27	6 104.54
Other feeds	25 236.06	27 865.44	30 798.24	31 714.37	32 063.24	33 274.40	33 223.74	29 975.74	28 587.23	26 859.96
				Heifers 2 yea	rs and older					
Concentrated feeds	34.06	33.27	34.79	33.04	29.22	27.55	27.82	26.38	24.11	25.51
Succulent feeds	378.89	319.79	285.53	224.97	158.81	113.59	114.37	112.12	104.97	100.94
Coarse feeds	113.43	114.04	123.34	120.74	109.77	106.76	106.57	105.90	100.08	91.10
Other feeds	642.06	653.27	711.23	701.98	643.90	627.30	625.68	609.62	567.95	545.74
				Heifers from	1 to 2 years					
Concentrated feeds	66.04	69.23	74.81	69.27	57.96	62.54	75.88	73.45	65.44	69.23
Succulent feeds	694.70	632.39	582.90	447.41	298.64	243.52	293.72	292.84	266.71	256.43
Coarse feeds	195.63	213.71	239.55	229.28	198.21	221.45	264.77	267.13	245.40	223.47
Other feeds	1 276.17	1 391.44	1 563.95	1 501.47	1 299.51	1 452.60	1 748.76	1 742.68	1 586.15	1 524.40
				Вил	lls					
Concentrated feeds	2.11	2.71	3.38	3.58	3.50	4.17	4.55	4.43	3.96	4.06
Succulent feeds	33.29	37.39	40.28	36.02	28.79	27.09	34.00	32.34	30.04	27.86

Cattle sex-age groups	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
Coarse feeds	10.58	14.12	18.17	19.87	20.04	24.64	29.07	27.76	25.30	24.43
Other feeds	52.40	70.79	92.44	102.43	104.45	129.80	153.33	146.72	133.88	129.23
				Other	cattle					
Concentrated feeds	312.34	377.61	381.49	382.76	383.64	335.78	333.94	310.48	311.59	333.72
Succulent feeds	3 180.99	3 332.76	2 876.49	2 393.80	1 913.60	1 271.94	1 263.73	1 214.66	1 249.55	1 216.63
Coarse feeds	884.82	1 113.31	1 166.86	1 211.31	1 254.82	1 136.47	1 112.92	1 078.93	1 116.42	1 028.95
Other feeds	5 934.33	7 492.64	7 899.34	8 245.91	8 575.82	7 798.87	7 695.80	7 366.51	7 552.44	7 348.70

Cattle sex-age groups	2010	2011	2012	2013	2014	2015	2016	2017	2018
			Cattle at a	agricultural ent	erprises				
				Cows					
Concentrated feeds	864.52	867.98	1 029.48	1 053.38	1 099.64	1 166.23	1 131.74	1 160.79	1 440.06
Succulent feeds	6 573.00	6 551.51	6 592.05	6 539.08	6 151.57	5 871.27	6 000.80	6 000.24	3 063.59
Coarse feeds	1 169.11	1 137.41	1 202.20	1 240.07	1 334.54	1 305.37	1 295.20	1 234.71	1 260.04
Other feeds	1 557.93	1 556.65	1 350.37	1 151.75	1 023.52	934.72	792.46	760.05	462.92
	•		Heifer	s 2 years and o	lder				
Concentrated feeds	87.65	80.05	87.04	85.40	83.96	80.77	72.23	65.95	87.37
Succulent feeds	715.12	683.05	651.53	650.02	582.58	521.77	500.85	445.83	233.92
Coarse feeds	148.75	136.49	133.12	132.16	137.13	126.90	112.62	105.42	115.85
Other feeds	188.65	181.44	170.90	164.64	135.34	116.49	85.36	75.27	50.88
	•		Heifer	rs from 1 to 2 ye	ears				
Concentrated feeds	50.12	49.78	58.86	60.27	62.64	64.16	91.30	124.75	176.31
Succulent feeds	389.66	404.01	423.05	439.13	411.21	394.22	607.77	800.53	444.25
Coarse feeds	78.14	76.99	82.44	85.32	93.28	92.59	131.10	183.98	214.63
Other feeds	108.89	109.99	112.00	114.02	98.84	94.19	112.77	147.85	106.78
	•			Bulls					
Concentrated feeds	1.96	1.82	1.97	1.64	1.48	1.40	1.22	1.09	1.26
Succulent feeds	12.00	11.22	10.19	8.23	6.74	5.75	5.44	4.71	2.16
Coarse feeds	2.29	2.07	2.01	1.69	1.59	1.40	1.22	0.98	0.92
Other feeds	5.33	5.08	3.96	3.01	2.48	2.03	1.39	1.08	0.60
				Beef cows					

Cattle sex-age groups	2010	2011	2012	2013	2014	2015	2016	2017	2018
Concentrated feeds	29.94	26.49	30.09	29.39	25.43	22.26	20.28	18.98	27.48
Succulent feeds	203.30	196.29	183.63	174.24	147.82	117.67	115.58	106.40	57.74
Coarse feeds	61.16	56.41	54.71	54.53	52.80	44.97	39.81	36.14	42.86
Other feeds	101.82	103.18	103.29	94.35	74.38	59.25	35.63	31.28	22.41
			Co	ws on fattening					
Concentrated feeds	27.87	26.23	28.49	27.67	27.18	27.00	25.81	25.02	34.68
Succulent feeds	262.74	260.12	249.62	246.32	220.87	205.40	212.61	200.23	109.29
Coarse feeds	56.47	53.09	51.72	50.74	52.46	50.15	47.45	47.11	54.00
Other feeds	65.86	64.70	61.13	58.29	47.64	42.97	33.43	30.89	21.95
	•		Other cattle a	nd beef cattle o	n fattening				
Concentrated feeds	119.52	111.91	123.45	120.00	114.86	113.62	109.57	105.25	146.69
Succulent feeds	916.29	904.63	870.53	854.35	751.93	692.40	720.65	674.42	369.28
Coarse feeds	215.05	202.81	199.50	196.24	199.42	190.53	181.77	177.88	205.37
Other feeds	296.60	293.80	284.41	268.16	214.06	191.69	146.01	133.18	94.91
	•			Other cattle					
Concentrated feeds	249.06	216.80	248.52	247.47	238.71	236.65	217.40	173.58	177.58
Succulent feeds	1 946.84	1 760.38	1 815.35	1 818.27	1 580.83	1 464.83	1 478.90	1 140.45	448.82
Coarse feeds	368.88	314.70	328.09	329.87	331.77	318.94	288.56	237.99	203.87
Other feeds	553.06	457.93	451.91	452.68	348.62	328.91	248.69	182.92	108.06
			Cati	tle at household	ls				
				Cows					
Concentrated feeds	757.44	755.92	738.49	719.93	684.27	654.26	632.50	617.02	613.07
Succulent feeds	6 456.72	6 116.02	6 027.58	6 168.97	5 961.30	5 826.52	5 738.38	5 521.97	5 141.76
Coarse feeds	5 879.95	5 691.47	5 587.96	5 604.26	5 377.77	5 208.09	5 090.19	4 922.85	4 704.99
Other feeds	25 884.35	25 069.55	24 628.22	24 709.96	23 727.20	22 987.92	22 469.68	21 747.94	20 796.12
			Heifer	s 2 years and o	lder				
Concentrated feeds	25.03	25.43	24.27	23.28	23.68	22.61	21.85	20.90	21.17
Succulent feeds	97.59	94.83	89.89	88.50	87.42	83.52	81.21	78.15	75.00
Coarse feeds	87.56	82.91	78.20	78.42	76.33	73.12	71.27	68.86	63.63
Other feeds	529.63	516.33	489.08	482.14	478.91	458.61	444.86	428.27	410.78
			Heifer	s from 1 to 2 ye	ears				
Concentrated feeds	65.22	62.94	67.28	69.01	63.15	56.03	54.34	52.28	52.19
Succulent feeds	238.51	220.56	234.38	246.96	219.83	195.54	190.84	184.60	174.36

Cattle sex-age groups	2010	2011	2012	2013	2014	2015	2016	2017	2018
Coarse feeds	206.72	186.50	197.48	212.01	185.95	166.07	162.56	157.77	143.32
Other feeds	1 418.61	1 312.12	1 393.22	1 468.14	1 308.40	1 163.63	1 134.79	1 098.11	1 037.65
				Bulls					
Concentrated feeds	3.65	3.34	3.36	3.16	2.62	2.25	2.13	2.06	1.89
Succulent feeds	24.89	21.52	21.88	21.56	18.06	15.82	15.34	14.62	12.61
Coarse feeds	21.94	19.47	19.73	19.09	15.97	13.91	13.36	12.80	11.31
Other feeds	115.99	102.78	104.04	100.62	84.12	73.18	70.29	67.35	59.59
				Other cattle					
Concentrated feeds	301.79	308.60	364.12	399.75	365.79	311.21	321.15	323.70	322.36
Succulent feeds	1 083.87	1 059.99	1 243.43	1 401.23	1 243.56	1 059.15	1 101.00	1 115.72	1 051.81
Coarse feeds	913.65	873.20	1 019.82	1 171.74	1 028.14	880.11	916.03	931.85	844.94
Other feeds	6 563.92	6 433.42	7 540.49	8 504.75	7 578.44	6 463.74	6 706.11	6 798.84	6 408.92

Table A3.2.3.7. Crude protein content in all kinds of cattle fodders, %

Cattle species	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
			Co	attle at agricult	ural enterprise:	S				
Dairy cows	11.29	11.03	10.68	10.76	11.08	10.51	9.99	8.95	9.25	9.60
Heifers 2 years and older	8.60	8.36	8.08	8.31	8.56	8.19	7.83	7.12	7.34	7.57
Heifers from 1 to 2 years	8.74	8.53	8.29	8.51	8.76	8.40	8.04	7.33	7.56	7.78
Bulls	7.86	7.70	7.61	7.71	7.86	7.59	7.31	6.69	6.92	7.14
Beef cows	9.13	8.87	8.65	8.93	9.16	8.73	8.30	7.51	7.75	7.98
Cows on fattening	7.42	7.23	6.93	7.11	7.27	6.98	6.69	6.15	6.36	6.56
Other cattle and beef cattle fattening	7.96	7.78	7.54	7.72	7.90	7.62	7.34	6.76	6.95	7.14
Other cattle	8.74	8.56	8.36	8.57	8.77	8.47	8.16	7.50	7.68	7.88
				Cattle at h	ouseholds					
Dairy cows	7.70	7.59	7.74	7.68	7.73	7.80	7.87	7.87	8.01	8.14
Heifers 2 years and older	6.56	6.45	6.46	6.36	6.45	6.61	6.76	6.96	7.09	7.22
Heifers from 1 to 2 years	6.62	6.52	6.54	6.42	6.52	6.64	6.76	6.96	7.11	7.26
Bulls	6.29	6.22	6.25	6.25	6.27	6.33	6.39	6.38	6.53	6.68
Other cattle	6.52	6.46	6.49	6.40	6.53	6.68	6.82	6.99	7.13	7.27

Cattle species	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
			С	attle at agricult	ural enterprises	S				
Dairy cows	9.94	10.29	10.63	10.98	11.32	11.65	12.05	11.81	12.46	13.60
Heifers 2 years and older	7.80	8.03	8.26	8.49	8.71	8.94	9.28	9.13	9.37	10.11
Heifers from 1 to 2 years	8.00	8.23	8.45	8.67	8.90	9.13	9.41	9.31	9.56	10.34
Bulls	7.35	7.57	7.79	8.01	8.23	8.42	8.52	8.42	8.71	9.48
Beef cows	8.22	8.45	8.69	8.94	9.22	9.52	9.65	9.36	9.72	10.64
Cows on fattening	6.77	6.98	7.18	7.37	7.57	7.77	8.01	7.92	8.15	8.77
Other cattle and beef cattle fattening	7.33	7.52	7.70	7.89	8.09	8.29	8.50	8.40	8.59	9.24
Other cattle	8.09	8.29	8.48	8.67	8.85	9.03	9.28	9.21	9.41	10.14
				Cattle at h	ouseholds					
Dairy cows	8.27	8.40	8.53	8.66	8.78	8.91	8.74	8.78	8.74	8.87
Heifers 2 years and older	7.34	7.47	7.60	7.72	7.85	7.97	7.99	7.92	7.87	8.05
Heifers from 1 to 2 years	7.41	7.56	7.70	7.85	8.00	8.15	8.18	8.16	8.15	8.29
Bulls	6.83	6.97	7.12	7.27	7.41	7.56	7.45	7.48	7.46	7.55

Cattle species	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
Other cattle	7.42	7.56	7.71	7.85	8.00	8.14	8.15	8.12	8.10	8.21

Cattle species	2010	2011	2012	2013	2014	2015	2016	2017	2018
			Cattle at	agricultural en	terprises				
Dairy cows	13.67	13.71	14.70	14.97	15.52	16.11	15.95	16.13	20.22
Heifers 2 years and older	9.83	9.69	10.17	10.11	10.48	10.78	10.66	10.74	13.84
Heifers from 1 to 2 years	10.04	9.90	10.36	10.33	10.78	11.05	10.88	11.02	14.21
Bulls	9.42	9.38	10.06	10.22	10.57	10.93	10.83	10.97	13.78
Beef cows	10.35	9.97	10.67	10.84	10.97	11.33	11.43	11.52	14.94
Cows on fattening	8.53	8.37	8.80	8.80	9.14	9.38	9.24	9.34	11.93
Other cattle and beef cattle fattening	8.98	8.80	9.23	9.23	9.57	9.81	9.69	9.78	12.45
Other cattle	9.81	9.72	10.12	10.10	10.59	10.82	10.61	10.77	13.79
	•		Car	ttle at househol	ds			•	
Dairy cows	8.88	8.95	8.93	8.87	8.85	8.82	8.79	8.81	8.89
Heifers 2 years and older	8.08	8.17	8.20	8.17	8.22	8.21	8.20	8.19	8.29
Heifers from 1 to 2 years	8.30	8.35	8.35	8.30	8.34	8.32	8.32	8.31	8.41
Bulls	7.54	7.59	7.58	7.53	7.52	7.50	7.48	7.49	7.54
Other cattle	8.23	8.28	8.29	8.26	8.29	8.29	8.28	8.27	8.35

A3.2.4 Rice Cultivation

Table A3.2.4.1. Annual harvested area (ha) and the norm of organic fertilizers application for rice (t/ha)

Data category	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
Annual harvested area	27 700.0	22 900.0	24 300.0	23 400.0	22 400.0	22 000.0	23 000.0	22 500.0	20 700.0	21 900.0
Standard organic fertilizer application	1.88	1.47	1.05	0.62	0.53	0.45	0.37	0.13	0.23	0.25

Data category	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
Annual harvested area	25 200.0	18 800.0	18 900.0	22 400.0	21 300.0	21 400.0	21 600.0	21 100.0	19 800.0	24 500.0
Standard organic fertilizer application	0.07	0.38	0.17	0.03	0.07	NO	0.20	0.08	0.03	0.08

Data category	2010	2011	2012	2013	2014	2015	2016	2017	2018
Annual harvested area	29 300.0	29 600.0	25 800.0	24 200.0	10 200.0	11 700.0	12 019.8	12 700.0	12 628.4
Standard organic fertilizer application	0.03	0.10	0.10	NO	NO	NO	NO	NO	NO

A3.2.5 Agricultural Soils

Table A3.2.5.1. Amount of N that was applied to managed soils, kt of N

Data category	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
Annual amount of N in synthetic fertilizers	1 841.86	1 566.74	1 291.61	1 016.49	802.55	588.62	374.68	415.89	408.82	329.10
Annual amount of N in organic fertilizers	495.30	472.38	434.90	414.58	400.97	357.37	309.94	249.88	229.61	223.54
Annual amount of N in crop residues	2 944.22	2 810.22	2 721.28	2 803.32	2 290.32	2 214.33	1 848.30	1 934.75	1 705.61	1 430.83
Annual amount of N in mineral soils that is mineralized	NO	NO	NO	14.09	NO	59.00	59.12	257.79	138.52	155.85
Annual amount of urine and dung N deposited by grazing animals on pasture, range and paddock	373.31	355.33	346.36	342.84	333.87	301.40	270.92	234.02	221.26	211.19

Data category	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
Annual amount of N in synthetic fertilizers	224.17	319.10	313.86	272.88	365.93	377.24	467.23	578.47	736.12	635.13
Annual amount of N in organic fertilizers	201.66	193.87	201.92	191.08	172.32	165.98	166.44	159.01	148.42	150.35
Annual amount of N in crop residues	1 416.32	1 427.25	1 372.55	1 162.95	1 375.16	1 330.70	1 336.29	1 171.72	1 542.77	1 448.75
Annual amount of N in mineral soils that is mineralized	318.42	450.92	457.81	255.41	535.87	569.43	466.55	307.95	779.79	716.89
Annual amount of urine and dung N deposited by grazing animals on pasture, range and paddock	202.88	199.12	200.55	189.45	174.53	165.45	154.96	144.05	135.49	135.32

Data category	2010	2011	2012	2013	2014	2015	2016	2017	2018
Annual amount of N in synthetic fertilizers	774.83	899.04	928.64	1 041.13	1 052.80	1 015.92	1 227.02	1 396.56	1 563.44
Annual amount of N in organic fertilizers	152.02	148.91	150.09	152.94	150.85	144.47	139.37	134.82	139.40
Annual amount of N in crop residues	1 442.25	1 784.98	1 690.03	1 993.10	2 013.05	1 918.80	2 093.00	1 952.34	2 198.37
Annual amount of N in mineral soils that is mineralized	532.03	950.62	782.83	1 114.50	1 164.18	1 066.71	1 184.87	979.27	1 185.02
Annual amount of urine and dung N deposited by grazing animals on pasture, range and paddock	129.86	126.42	129.71	129.64	125.94	120.92	117.98	116.44	125.46

Table A3.2.5.2. Amount of applied inorganic nitrogen fertilizers by zones and regions, kt of N

Nitrogen fertilizers applied	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
Polissia	423.11	360.25	297.39	234.53	184.30	134.07	83.84	82.61	90.75	66.47
Wooded Steppe	745.86	654.01	562.16	470.31	371.84	273.37	174.90	181.71	172.56	160.52
Steppe	672.89	552.48	432.06	311.65	246.41	181.18	115.94	151.57	145.51	102.11
of them for rice	4.43	3.66	3.89	3.74	3.58	3.52	3.68	3.60	3.31	3.50

Nitrogen fertilizers applied	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
Polissia	45.40	58.35	41.00	44.47	64.32	62.73	73.04	74.60	107.32	92.22
Wooded Steppe	107.51	149.92	137.20	119.11	162.72	158.21	218.39	276.87	373.00	308.36
Steppe	71.26	110.83	135.67	109.29	138.89	156.30	175.80	227.00	255.80	234.55
of them for rice	4.03	3.01	3.02	3.58	3.41	3.42	3.46	3.38	3.17	3.95

Nitrogen fertilizers applied	2010	2011	2012	2013	2014	2015	2016	2017	2018
Polissia	102.63	125.87	142.04	180.60	183.15	179.64	215.25	242.43	291.64
Wooded Steppe	390.04	453.64	480.42	526.04	519.13	516.68	602.15	663.84	709.11
Steppe	282.16	319.53	306.18	334.49	350.52	319.60	409.62	490.29	562.69
of them for rice	3.99	4.65	3.58	3.73	1.70	2.04	2.04	2.20	2.68

Table A3.2.5.3. Regression coefficients depending on the crop yields, as well as the proportion of nitrogen in side-products, stubble and roots

		Side-pr			bble		oots	Nitrogen content	
Agricultural crop	Productivity, kg/ha	Regression co- efficient a	Regression coefficient b	Regression coefficient c	Regression coefficient d	Regression coefficient x	Regression coefficient y	in side-products and stubble, rel. u	Nitrogen content in roots, rel. u
Winter wheat	10-25 26-40	-	-	0.4 0.1	2.6 8.9	0.9 0.7	5.8 10.2	0.0045	0.0075
Spring wheat	10-20 21-30	-	-	0.4	1.8 5.4	0.8	6.5 6.0	0.0065	0.0080
Winter rye	10-25 26-40	-	-	0.3 0.2	3.2 6.3	0.6 0.6	8.9 13.9	0.0045	0.0075
Spring rye	10-25 26-40	-	-	0.3 0.2	3.2 6.3	0.6 0.6	8.9 13.9	0.0056	0.0075
Barley and cereals mix	10-20 21-35	-	-	0.4 0.09	1.8 7.6	0.8 0.4	6.5 13.4	0.0050	0.0120
Oats	10-20 21-35	-	-	0.3 0.15	3.2 6.1	1.0 0.4	2.0 16.0	0.0060	0.0075
Millet	5-20 21-30	-	-	0.2 0.3	5.0 3.3	0.8 0.56	7.0 11.2	0.0050	0.0075
Buckwheat	5-15 16-30	-	-	0.25 0.2	4.3 5.2	1.1 0.54	5.3 14.1	0.0080	0.0085
Corn for grain	10-35	1.2	17.5	0.23	3.5	0.8	5.8	0.0075	0.0100
Rice	10-20 21-35	-	-	0.4 0.09	1.8 7.6	0.8 0.4	6.5 13.4	0.0067	0.0120
Sorghum	5-20 21-30	-	-	0.2 0.3	5.0 3.3	0.8 0.56	7.0 11.2	0.0080	0.006
Peas	5-20 21-30	-	-	0.14 0.2	3.5 1.7	0.66 0.37	7.5 12.9	0.0125	0.0170
Vetch	5-20 21-30	-	-	0.14 0.2	3.5 1.7	0.66 0.37	7.5 12.9	0.0125	0.017
Perennial herbs for hay, seed, and green fodder, hay meadows and cultivated pastures	10-40 30-60	-	-	0.2 0.1	6.0 10.0	0.8 1.0	11.0 15.0	0.0190	0.021
Soybean	5-20 21-30	1.3 1.2	4.5 3	0.14 0.2	3.5 1.7	0.66 0.37	7.5 12.9	0.0120	0.008
Broad beans for grain	5-20 21-30	-	-	0.14 0.2	3.5 1.7	0.66 0.37	7.5 12.9	0.0125	0.017
Sugar beet (factory), sugar beet for seeds and animal feed	100-200 201-400	-	-	0.02 0.003	0.8 2.3	0.07 0.06	3.5 5.4	0.0140	0.012
Potato	50-200 201-400	0.12 0.1	2 3.9	0.04 0.03	1.0 4.1	0.08 0.06	4.0 8.6	0.0180	0.012
Vegetables, seed bearers of annual vegetable crops, seed bearers of biennial vegetable crops	50-200 250-400	0.12 0.12	0.5	0.02 0.006	1.5 3.6	0.06 0.04	5.0 6.0	0.0035	0.010

	D.,, d., ,4::4	Side-pr	oducts	Stu	bble	Ro	ots	Nitrogen content	Nitus san santant
Agricultural crop	Productivity, kg/ha	Regression co- efficient a	Regression coefficient b	Regression coefficient c	Regression coefficient d	Regression coefficient x	Regression coefficient y	in side-products and stubble, rel. u	Nitrogen content in roots, rel. u
Fodder root crops, fod- der root crops for seeds	50-200 200-400	-	-	0.01 0.003	1.0 2.4	0.05 0.05	5.5 5.2	0.0130	0.010
Sunflower	8-30	1.8	5.3	0.4	3.1	1	6.6	0.0075	0.010
Fiber flax, crown flax	3-10	-	-	-	-	1.3	9.4	0.0050	0.008
Winter and spring rapeseed	10-40	-	-	0.13	6	0.7	7.5	0.0070	0.012
Annual grasses for hay, green fodder, and seeds	10-40	-	-	0.13	6	0.7	7.5	0.0110	0.012
Corn for silage	100-200 201-350	-	-	0.03 0.02	3.6 5	0.12 0.08	8.7 16.2	0.008 0.008	0.012 0.012
Beans and lupine	5-20 22-30	-	-	0.14 0.2	3.5 1.7	0.66 0.37	7.5 12.9	0.01 0.01	0.01 0.01
Chick-pea, lathyrus, mung bean	5-20 22-30	-	-	0.14 0.2	3.5 1.7	0.66 0.37	7.5 12.9	0.012 0.012	0.017 0.017
Hemp	3-10	-	-			2.2	9.1	0.0025	0.005
Tobacco and wild to- bacco	50-200	-	-	0.04	1.0	0.08	4.0	0.0164	0.012
Mustard and false flax	10-40	-	-	0.13	6	0.7	7.5	0.01	0.012
Food and feed melons, melon seed bearers	50-200	0.12	0.5	0.02	1.5	0.06	5.0	0.0025	0.01
Silage crops without corn	100-200	-	-	0.04	4	0.09	7	0.01	0.011
Coriander	50-200	-	-	0.02	1.5	0.06	5.0	0.02	0.01
Castor-oil plant	8-30	-	-	0.4	3.1	1	6.6	0.007	0.01

Table A3.2.5.4. Annual area of managed/drained organic soils, ha

		3-11-11-11-11	,,							
Data category	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
Area of managed/drained organic soils	476 700.0	481 400.0	485 000.0	486 300.0	488 000.0	488 000.0	488 000.0	488 000.0	488 000.0	488 000.0

Data category	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
Area of managed/drained organic soils	488 000.0	488 000.0	488 000.0	488 000.0	488 000.0	488 000.0	488 000.0	488 000.0	488 000.0	488 000.0

Data category	2010	2011	2012	2013	2014	2015	2016	2017	2018
Area of managed/drained organic soils	488 000.0	488 000.0	488 000.0	478 350.0	478 350.0	478 350.0	478 350.0	478 400.0	474 500.0

A3.2.6 Liming

Table A3.2.6.1. Annual amount of liming materials applied, kt

Activity data	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
The amount of ground lime in full weight	6 930.70	3 613.00	3 613.00	3 613.00	3 613.00	3 613.00	800.00	204.30	208.00	188.85
The amount of ground lime in weight of active matter	5 891.10	3 071.05	3 071.05	3 071.05	3 071.05	3 071.05	680.00	173.66	176.80	160.52

Activity data	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
The amount of ground lime in full weight	169.70	191.10	143.80	132.00	222.80	243.10	283.40	300.40	334.10	406.10
The amount of ground lime in weight of active matter	144.25	162.44	122.23	112.20	189.38	206.64	240.89	255.34	283.99	345.19

Activity data	2010	2011	2012	2013	2014	2015	2016	2017	2018
The amount of ground lime in full weight	340.80	340.00	432.40	487.30	417.80	454.10	374.59	450.80	437.80
The amount of ground lime in weight of active matter	289.68	289.00	367.54	414.21	355.13	385.99	318.40	383.18	372.13

A3.2.7 Urea Application

Table A3.2.7.1. Amount of urea used as fertilizer, kt

Urea applied	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
Cropland	368.37	313.35	258.32	203.30	160.51	117.72	74.94	83.18	81.76	65.82

Urea applied	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
Cropland	112.09	159.55	159.43	260.59	48.86	188.62	233.62	289.24	484.34	238.68

Urea applied	2010	2011	2012	2013	2014	2015	2016	2017	2018
Cropland	456.45	533.89	479.13	520.57	526.40	507.96	614.72	698.38	274.33

A3.2.8 Emission factors

Table A3.2.8.1. Methane emission factors from enteric fermentation of cattle, kg of CH₄ head⁻¹

Sex-age group	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
				Agrienterpris	res					
Cows	86.3	84.3	80.3	79.5	79.1	78.0	76.4	73.3	75.7	76.3
Heifers 2 years and older	63.8	64.3	64.8	64.8	65.2	65.3	65.4	65.3	65.2	65.2
Heifers from 1 to 2 years	52.5	52.6	53.0	52.9	53.1	53.2	53.3	53.2	53.2	53.2
Bulls	69.4	69.8	70.4	70.3	70.5	70.7	70.9	70.8	70.8	70.8
Beef cows	49.1	49.8	50.3	50.3	50.7	50.8	50.8	50.6	50.6	50.6
Cows on fattening	92.0	93.1	94.1	94.2	95.0	95.1	95.2	94.7	94.7	94.7
Cattle on fattening (excluding cows)	43.1	43.6	44.0	44.1	44.4	44.5	44.5	44.3	44.3	44.3
Other cattle	38.1	38.2	38.5	38.4	38.5	38.6	38.6	38.6	38.6	38.5
				Households	3					
Cows	90.3	90.2	89.9	90.2	90.1	90.6	90.5	91.1	91.7	91.9
Heifers 2 years and older	63.6	63.5	63.5	63.4	63.4	63.4	63.5	63.7	63.7	63.6
Heifers from 1 to 2 years	55.1	54.9	55.0	54.9	54.8	54.9	54.9	55.1	55.0	54.8
Bulls	69.3	69.3	69.3	69.3	69.3	69.3	69.3	69.3	69.2	69.1
Other cattle	44.2	44.1	44.1	44.1	44.0	44.1	44.1	44.3	44.1	44.0

Sex-age group	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
				Agrienterpris	es					
Cows	75.2	79.7	80.9	79.4	83.5	87.9	89.1	89.6	91.6	96.9
Heifers 2 years and older	65.2	65.2	65.2	65.2	65.1	65.1	64.9	64.9	64.5	64.9
Heifers from 1 to 2 years	53.2	53.1	53.1	53.1	53.1	53.1	52.9	52.9	52.6	52.8
Bulls	70.8	70.7	70.7	70.6	70.6	70.5	70.3	70.5	70.1	70.4
Beef cows	50.6	50.6	50.6	50.6	50.6	50.5	50.3	50.4	49.9	50.2
Cows on fattening	94.6	94.5	94.5	94.4	94.3	94.3	93.9	94.1	93.4	94.1
Cattle on fattening (excluding cows)	44.3	44.2	44.2	44.2	44.2	44.2	44.0	44.1	43.7	44.0
Other cattle	38.5	38.5	38.5	38.5	38.4	38.4	38.3	38.3	38.0	38.2
				Households						
Cows	92.7	93.7	94.7	94.7	96.5	98.5	100.1	100.0	100.9	102.7
Heifers 2 years and older	63.5	63.5	63.4	63.4	63.3	63.2	63.2	63.3	63.3	63.2
Heifers from 1 to 2 years	54.6	54.5	54.3	54.1	54.0	53.8	53.8	53.8	53.9	53.7

Sex-age group	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
Bulls	69.0	68.9	68.9	68.8	68.7	68.6	68.6	68.6	68.6	68.6
Other cattle	43.8	43.7	43.5	43.4	43.3	43.1	43.1	43.1	43.2	43.1

Sex-age group	2010	2011	2012	2013	2014	2015	2016	2017	2018
			Agrien	terprises					
Cows	97.7	96.2	101.5	103.3	106.8	109.5	112.4	115.4	116.4
Heifers 2 years and older	64.8	64.7	64.7	64.7	65.3	65.4	65.4	65.6	67.2
Heifers from 1 to 2 years	52.8	52.7	52.7	52.7	53.0	53.0	52.9	53.0	54.2
Bulls	70.4	70.3	70.5	70.7	71.1	71.1	71.3	71.1	72.1
Beef cows	50.3	50.0	49.9	50.2	50.8	51.0	52.0	52.1	54.2
Cows on fattening	94.0	93.8	93.8	93.9	94.9	95.1	95.3	95.7	98.8
Cattle on fattening (excluding cows)	44.0	43.9	43.9	44.0	44.4	44.5	44.8	44.9	46.2
Other cattle	38.2	38.1	38.1	38.1	38.3	38.3	38.2	38.3	39.1
			Hous	eholds					
Cows	102.8	104.0	104.6	105.4	106.7	106.6	106.6	107.1	108.1
Heifers 2 years and older	63.2	63.1	63.1	63.1	63.1	63.1	63.1	63.1	63.0
Heifers from 1 to 2 years	53.7	53.7	53.7	53.7	53.7	53.7	53.7	53.7	53.6
Bulls	68.6	68.6	68.6	68.6	68.6	68.6	68.6	68.6	68.6
Other cattle	43.0	43.0	43.0	43.0	43.0	43.0	43.0	43.0	42.9

Table A3.2.8.2. Methane emission factors from enteric fermentation of sheep, kg of CH₄ head⁻¹

Sex and age group	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
Ewes and young ewes 1 year and older	8.88	8.84	8.83	8.84	8.85	8.85	8.87	8.97	9.02	9.08
Breeding rams	13.30	13.28	13.27	13.27	13.26	13.20	13.19	13.22	13.20	13.22
Wethers (castrated rams)	7.55	7.54	7.53	7.53	7.52	7.49	7.48	7.50	7.49	7.50
Feeding livestock	6.24	6.23	6.22	6.22	6.21	6.19	6.18	6.20	6.19	6.20
Lambs to 4 months and Repair Lambs 4-12 months	5.63	5.62	5.61	5.61	5.60	5.58	5.58	5.59	5.58	5.59
Average weighted emission factor	7.41	7.39	7.42	7.46	7.52	7.65	7.81	7.99	8.10	8.14

Sex and age group	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
Ewes and young ewes 1 year and older	9.21	9.31	9.34	9.21	9.76	9.45	9.54	9.62	9.51	9.24
Breeding rams	13.09	13.12	13.13	12.82	12.85	12.87	12.89	12.91	12.89	12.91
Wethers (castrated rams)	7.50	7.53	7.54	7.54	7.55	7.57	7.58	7.58	7.57	7.58
Feeding livestock	6.20	6.22	6.23	6.23	6.24	6.25	6.26	6.26	6.25	6.26
Lambs to 4 months and Repair Lambs 4-12 months	5.59	5.61	5.62	5.62	5.63	5.64	5.65	5.65	5.64	5.65
Average weighted emission factor	8.17	8.21	8.18	8.11	8.58	8.51	8.67	8.77	8.74	8.54

Sex and age group	2010	2011	2012	2013	2014	2015	2016	2017	2018
Ewes and young ewes 1 year and older	9.52	10.06	10.02	10.00	9.90	9.86	9.75	9.82	9.89
Breeding rams	12.90	12.97	12.96	12.94	12.94	12.93	12.92	12.92	12.91
Wethers (castrated rams)	7.55	7.55	7.54	7.53	7.52	7.52	7.51	7.50	7.49
Feeding livestock	6.24	6.24	6.23	6.22	6.22	6.21	6.21	6.20	6.19
Lambs to 4 months and Repair Lambs 4-12 months	5.63	5.63	5.62	5.61	5.61	5.60	5.60	5.59	5.59
Average weighted emission factor	8.71	9.01	8.89	8.86	8.78	8.74	8.65	8.69	8.73

Table A3.2.8.3. Methane emission factors from enteric fermentation and manure management, kg of CH₄ head⁻¹

Animal species	Enteric fermentation	Manure management
Swine	1.5	_
Fur-bearing animals	0.25	0.68
Rabbits	0.7	0.08
Buffaloes	55.0	5.00
Goats	5.0	0.13
Camels	46.0	1.58
Horses	18.0	1.56
Asses and mules	10.0	0.76

Table A3.2.8.4. Methane emission factors from manure management of cattle, swine, sheep and poultry, kg of CH₄ head⁻¹

Species and groups of animals	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
	•	Agr	rienterprises					•		•
Cows	6.36	6.27	5.43	5.21	4.78	4.27	4.02	3.25	3.04	3.06
Heifers 2 years and older	5.15	5.24	4.77	4.63	4.29	3.90	3.75	3.15	2.86	2.86
Heifers from 1 to 2 years	2.87	2.89	2.63	2.55	2.35	2.13	2.05	1.73	1.57	1.57
Bulls	3.42	3.47	3.19	3.08	2.84	2.59	2.51	2.11	1.91	1.91
Beef cows	2.79	2.88	2.63	2.56	2.39	2.17	2.08	1.74	1.58	1.58
Cows on fattening	5.06	5.18	4.75	4.62	4.31	3.91	3.76	3.14	2.84	2.84
Cattle on fattening (excluding cows)	2.35	2.41	2.21	2.15	2.00	1.82	1.75	1.46	1.32	1.32
Other cattle	2.08	2.10	1.91	1.85	1.70	1.55	1.49	1.25	1.14	1.13
Main sows	4.55	4.34	3.97	3.58	3.23	6.66	6.78	7.30	7.30	7.30
Sows tested	4.08	3.90	3.56	3.22	2.90	5.98	6.08	6.55	6.55	6.55
Repair swine 4 months and older	2.95	2.82	2.58	2.33	2.10	4.33	4.40	4.74	4.74	4.74
Piglets up to 2 months	0.33	0.31	0.28	0.26	0.23	0.48	0.49	0.52	0.52	0.52
Piglets 2 to 4 months	1.09	1.04	0.95	0.86	0.78	1.60	1.63	1.76	1.76	1.76
Fattening swine	3.17	3.03	2.77	2.50	2.26	4.65	4.73	5.09	5.09	5.09
Boars	5.30	5.06	4.62	4.17	3.77	7.77	7.90	8.51	8.51	8.51
Hens and roosters	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
Geese	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12
Ducks	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09
Turkeys	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17
Other poultry	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13
		Н	louseholds							
Cows	3.11	3.10	3.10	3.10	3.10	3.12	3.12	3.13	3.14	3.14
Heifers 2 years and older	2.19	2.18	2.19	2.18	2.17	2.18	2.19	2.20	2.20	2.19
Heifers from 1 to 2 years	1.40	1.39	1.39	1.39	1.38	1.39	1.39	1.40	1.39	1.38
Bulls	1.63	1.62	1.62	1.62	1.62	1.62	1.62	1.62	1.62	1.61
Other cattle	1.12	1.11	1.12	1.11	1.11	1.11	1.11	1.12	1.12	1.11
Main sows	2.44	2.44	2.44	2.44	2.44	2.44	2.44	2.44	2.44	2.44
Repair swine 4 months and older	1.58	1.58	1.58	1.58	1.58	1.58	1.58	1.58	1.58	1.58
Piglets up to 2 months	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17
Piglets 2 to 4 months	0.59	0.59	0.59	0.59	0.59	0.59	0.59	0.59	0.59	0.59
Fattening swine	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.70

Species and groups of animals	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
Boars	2.84	2.84	2.84	2.84	2.84	2.84	2.84	2.84	2.84	2.84
Hens and roosters	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04
Geese	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10
Ducks	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07
Turkeys	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14
Other poultry	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11
		All cat	egories of fa	rms						
Ewes and gimmers 1 year and older	0.22	0.22	0.22	0.22	0.22	0.22	0.22	0.23	0.23	0.23
Rams	0.33	0.33	0.33	0.33	0.33	0.33	0.33	0.33	0.33	0.33
Wethers	0.19	0.19	0.19	0.19	0.19	0.19	0.19	0.19	0.19	0.19
Fattening livestock	0.21	0.21	0.21	0.21	0.21	0.21	0.21	0.21	0.21	0.21
Lambs up to 4 months and 4-12 months repair young sheep	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20

Species and groups of animals	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
		Agr	rienterprises							
Cows	2.70	2.87	2.91	2.85	3.00	3.15	3.53	3.55	3.78	4.05
Heifers 2 years and older	2.57	2.57	2.56	2.56	2.56	2.56	2.81	2.82	2.91	2.96
Heifers from 1 to 2 years	1.41	1.41	1.40	1.40	1.40	1.40	1.54	1.54	1.59	1.62
Bulls	1.71	1.71	1.71	1.71	1.70	1.70	1.87	1.88	1.94	1.97
Beef cows	1.42	1.42	1.42	1.42	1.42	1.41	1.55	1.56	1.60	1.62
Cows on fattening	2.55	2.54	2.54	2.54	2.54	2.53	2.78	2.79	2.88	2.94
Cattle on fattening (excluding cows)	1.19	1.18	1.18	1.18	1.18	1.18	1.29	1.30	1.34	1.37
Other cattle	1.02	1.02	1.01	1.01	1.01	1.01	1.11	1.11	1.15	1.17
Main sows	7.49	7.56	7.86	8.01	7.94	9.44	9.06	10.26	11.76	12.13
Sows tested	6.72	6.79	7.06	7.19	7.13	8.47	8.14	9.21	10.56	10.89
Repair swine 4 months and older	4.87	4.91	5.11	5.21	5.16	6.13	5.89	6.67	7.64	7.89
Piglets up to 2 months	0.54	0.54	0.56	0.57	0.57	0.68	0.65	0.74	0.84	0.87
Piglets 2 to 4 months	1.80	1.82	1.89	1.93	1.91	2.27	2.18	2.47	2.83	2.92
Fattening swine	5.22	5.28	5.48	5.59	5.54	6.58	6.32	7.16	8.20	8.46
Boars	8.73	8.81	9.16	9.34	9.25	11.00	10.56	11.96	13.71	14.14
Hens and roosters	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
Geese	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12
Ducks	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09

Species and groups of animals	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
Turkeys	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17
Other poultry	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13
		Н	louseholds							
Cows	3.17	3.19	3.22	3.21	3.26	3.32	3.38	3.37	3.41	3.46
Heifers 2 years and older	2.19	2.18	2.18	2.17	2.17	2.16	2.16	2.17	2.17	2.16
Heifers from 1 to 2 years	1.37	1.36	1.36	1.35	1.34	1.33	1.33	1.33	1.33	1.33
Bulls	1.61	1.60	1.60	1.59	1.59	1.58	1.58	1.58	1.58	1.58
Other cattle	1.10	1.09	1.09	1.08	1.07	1.06	1.06	1.06	1.07	1.06
Main sows	2.44	2.44	2.44	2.44	2.44	2.44	2.44	2.44	2.44	2.44
Repair swine 4 months and older	1.58	1.58	1.58	1.58	1.58	1.58	1.58	1.58	1.58	1.58
Piglets up to 2 months	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17
Piglets 2 to 4 months	0.59	0.59	0.59	0.59	0.59	0.59	0.59	0.59	0.59	0.59
Fattening swine	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.70
Boars	2.84	2.84	2.84	2.84	2.84	2.84	2.84	2.84	2.84	2.84
Hens and roosters	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04
Geese	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10
Ducks	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07
Turkeys	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14
Other poultry	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11
		All cat	egories of fa	ırms						
Ewes and gimmers 1 year and older	0.23	0.23	0.23	0.23	0.25	0.24	0.24	0.24	0.24	0.23
Rams	0.33	0.33	0.33	0.32	0.32	0.32	0.32	0.32	0.32	0.32
Wethers	0.19	0.19	0.19	0.19	0.19	0.19	0.19	0.19	0.19	0.19
Fattening livestock	0.21	0.21	0.21	0.21	0.21	0.21	0.21	0.21	0.21	0.21
Lambs up to 4 months and 4-12 months repair young sheep	0.20	0.20	0.20	0.20	0.20	0.20	0.21	0.21	0.20	0.21

Species and groups of animals	2010	2011	2012	2013	2014	2015	2016	2017	2018		
Agrienterprises											
Cows	4.14	3.99	4.25	4.40	4.61	4.76	4.95	5.00	5.10		
Heifers 2 years and older	3.00	2.93	2.95	2.99	3.06	3.09	3.13	3.10	3.28		
Heifers from 1 to 2 years	1.64	1.60	1.61	1.63	1.66	1.68	1.69	1.67	1.76		
Bulls	2.00	1.95	1.98	2.02	2.07	2.08	2.12	2.07	2.16		
Beef cows	1.65	1.60	1.61	1.64	1.70	1.73	1.82	1.80	1.97		

Species and groups of animals	2010	2011	2012	2013	2014	2015	2016	2017	2018			
Cows on fattening	2.98	2.91	2.92	2.96	3.06	3.09	3.14	3.11	3.34			
Cattle on fattening (excluding cows)	1.38	1.35	1.36	1.38	1.42	1.44	1.47	1.46	1.56			
Other cattle	1.18	1.15	1.16	1.17	1.20	1.21	1.21	1.20	1.27			
Main sows	12.59	13.04	13.56	12.34	10.92	10.08	9.16	9.94	9.20			
Sows tested	11.30	11.70	12.17	11.07	9.80	9.05	8.22	8.92	8.26			
Repair swine 4 months and older	8.18	8.47	8.81	8.02	7.10	6.55	5.95	6.46	5.98			
Piglets up to 2 months	0.90	0.93	0.97	0.88	0.78	0.72	0.66	0.71	0.66			
Piglets 2 to 4 months	3.03	3.14	3.26	2.97	2.63	2.43	2.20	2.39	2.21			
Fattening swine	8.78	9.09	9.46	8.60	7.62	7.03	6.39	6.93	6.42			
Boars	14.67	15.19	15.80	14.38	12.73	11.75	10.67	11.58	10.73			
Hens and roosters	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05			
Geese	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12			
Ducks	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09			
Turkeys	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17			
Other poultry	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13			
	Households											
Cows	3.47	3.50	3.52	3.55	3.60	3.59	3.59	3.61	3.64			
Heifers 2 years and older	2.16	2.15	2.15	2.15	2.15	2.15	2.15	2.15	2.15			
Heifers from 1 to 2 years	1.32	1.32	1.32	1.32	1.32	1.32	1.32	1.32	1.32			
Bulls	1.58	1.58	1.58	1.58	1.58	1.58	1.58	1.58	1.58			
Other cattle	1.06	1.06	1.06	1.06	1.06	1.06	1.06	1.06	1.05			
Main sows	2.44	2.44	2.44	2.44	2.44	2.44	2.44	2.44	2.44			
Repair swine 4 months and older	1.58	1.58	1.58	1.58	1.58	1.58	1.58	1.58	1.58			
Piglets up to 2 months	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17			
Piglets 2 to 4 months	0.59	0.59	0.59	0.59	0.59	0.59	0.59	0.59	0.59			
Fattening swine	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.70			
Boars	2.84	2.84	2.84	2.84	2.84	2.84	2.84	2.84	2.84			
Hens and roosters	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04			
Geese	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10			
Ducks	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07			
Turkeys	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14			
Other poultry	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11			
	F	All categorie	es of farms									

Species and groups of animals	2010	2011	2012	2013	2014	2015	2016	2017	2018
Ewes and gimmers 1 year and older	0.24	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25
Rams	0.32	0.33	0.33	0.33	0.33	0.33	0.33	0.33	0.32
Wethers	0.19	0.19	0.19	0.19	0.19	0.19	0.19	0.19	0.19
Fattening livestock	0.21	0.21	0.21	0.21	0.21	0.21	0.21	0.21	0.21
Lambs up to 4 months and 4-12 months repair young sheep	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20

Table A3.2.8.5. Nitrous oxide emission factors from manure management systems, kg of N₂O-N kg⁻¹ of N

Manure management system	Emission factor
Uncovered anaerobic lagoon	0
Solid storage	0.005
Composting	0.006
Liquid slurry	0.005
Aerobic treatment	0.01
Poultry manure without litter	0.001
Other systems	0.002

Table A3.2.8.6. Adjusted daily methane emission factor from rice cultivation, kg of CH₄ ha⁻¹

Category 3.C Rice Cultivation	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
Adjusted daily emission factor	2.60	2.58	2.55	2.51	2.51	2.50	2.50	2.48	2.49	2.49
Category 3.C Rice Cultivation	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
Adjusted daily emission factor	2.48	2.50	2.48	2.47	2.48	2.47	2.48	2.48	2.47	2.48
Category 3.C Rice Cultivation	2010	2011	2012	2013	2014	2015	2016	2017	2018	
Adjusted daily emission factor	2.47	2.48	2.48	2.47	2.47	2.47	2.47	2.47	2.47	1

Table A3.2.8.7. Coefficients for calculation direct and indirect nitrous oxide emissions from agricultural soils

Coefficient name	Units	Values
EF for N additions from mineral fertilizers, organic amendments and crop residues, and N mineralized from mineral soil as a result of loss of soil carbon	[kg N ₂ O–N (kg N) ⁻¹]	0.01
EF for N additions from mineral fertilizers, organic amendments and crop residues, and N mineralized from mineral soil as a result of loss of soil carbon on rice fields	[kg N ₂ O–N (kg N) ⁻¹]	0.003
EF for temperate organic crop and grassland soils	[kg N ₂ O–N ha ⁻¹]	8.0
EF for cattle, poultry and swine	[kg N ₂ O–N (kg N) ⁻¹]	0.02
EF for sheep and other animals	[kg N ₂ O–N (kg N) ⁻¹]	0.01
$Frac_{GASF} \ (fraction \ of \ synthetic \ fertilizer \ N \ that \ volatilizes \ as \ NH_3 \ and \ NO_X)$	(kg NH ₃ –N + NOx–N)×(kg of N applied) ⁻¹	0.145
$Frac_{GASM} \ (fraction \ of \ applied \ organic \ N \ fertilizer \ materials \ (F_{ON}) \ and \ of \ urine \ and \ dung \ N \ deposited \ by \ grazing \ animals \ (F_{PRP}) \ that \ volatilizes \ as \ NH_3 \ and \ NO_X)$	(kg NH ₃ -N + NOx-N)×(kg of N applied or deposited) ⁻¹	0.2
Frac _{LEACH-(H)} (fraction of all N added to/mineralized in managed soils in regions where leaching/runoff occurs that is lost through leaching and runoff)	kg N (kg N additions or deposition by grazing animals)-1	0.3

A3.2.9 Emissions

Table A3.2.9.1. Methane emissions in 3.A Enteric Fermentation, kt CH₄

Type/group of animals	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
3A Enteric Fermentation, total, incl.:	1 572.5	1 520.8	1 443.1	1 387.1	1 317.5	1 206.5	1 078.3	930.65	838.05	777.86
Mature dairy cattle	738.58	714.66	677.68	668.42	658.75	634.79	595.21	537.14	504.81	476.06
Mature non-dairy cattle	137.49	136.00	132.37	127.01	122.19	110.78	95.36	78.91	67.08	59.34
Growing cattle	585.40	565.59	535.31	499.20	451.58	387.46	325.77	262.33	219.00	197.06
Sheep	60.91	56.00	51.42	47.45	41.00	30.59	21.11	14.90	11.09	9.19
Swine	29.53	27.95	25.51	23.60	21.93	20.32	18.29	15.54	14.67	15.12
Fur-bearing animals	0.14	0.14	0.14	0.14	0.14	0.12	0.11	0.09	0.08	0.07
Rabbits	4.27	4.38	4.55	4.79	4.78	4.60	4.27	3.94	3.88	3.95
Camels	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03
Mules and asses	0.19	0.19	0.19	0.19	0.15	0.15	0.14	0.13	0.13	0.12
Buffaloes	0.047	0.046	0.044	0.041	0.039	0.037	0.035	0.033	0.030	0.028
Horses	13.43	13.10	12.82	12.81	13.07	13.43	13.58	13.41	13.12	12.77
Goats	2.45	2.73	3.03	3.46	3.82	4.18	4.36	4.19	4.12	4.13

Type/group of animals	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
3A Enteric Fermentation, total, incl.:	710.41	687.65	683.87	629.19	569.07	534.91	509.64	472.64	437.05	420.14
Mature dairy cattle	443.72	437.96	434.92	407.02	382.67	362.70	340.57	314.65	294.32	283.51
Mature non-dairy cattle	50.09	43.99	41.49	36.31	30.75	27.81	25.67	23.05	20.32	19.04
Growing cattle	173.99	164.22	164.53	144.83	118.10	108.42	106.89	98.55	87.16	81.77
Sheep	8.26	7.92	7.84	7.48	7.59	7.44	7.79	8.59	9.30	9.79
Swine	13.29	12.02	13.18	12.39	10.34	10.14	11.33	11.31	10.16	10.58
Fur-bearing animals	0.05	0.04	0.04	0.05	0.06	0.07	0.08	0.09	0.09	0.08
Rabbits	3.91	4.01	4.23	4.04	3.71	3.73	3.72	3.62	3.68	3.85
Camels	0.03	0.03	0.03	0.03	0.03	0.03	0.04	0.04	0.04	0.04
Mules and asses	0.12	0.12	0.11	0.12	0.12	0.12	0.12	0.12	0.12	0.12
Buffaloes	0.026	0.024	0.022	0.020	0.017	0.015	0.013	0.011	0.009	0.006
Horses	12.59	12.55	12.40	11.89	11.05	10.31	9.80	9.29	8.67	8.18
Goats	4.34	4.77	5.08	5.00	4.65	4.13	3.62	3.34	3.19	3.17

Type/group of animals	2010	2011	2012	2013	2014	2015	2016	2017	2018
3A Enteric Fermentation, total, incl.:	402.16	389.28	393.91	396.92	380.79	359.23	351.58	343.88	331.93
Mature dairy cattle	272.92	266.49	266.77	265.70	259.03	247.04	240.97	235.38	227.45
Mature non-dairy cattle	17.76	16.79	16.50	16.20	15.36	14.20	13.28	12.44	12.05
Growing cattle	74.86	70.03	75.35	79.76	72.23	65.43	65.91	65.83	63.27
Sheep	10.01	9.88	9.63	9.48	9.05	8.51	8.12	8.08	8.05
Swine	11.65	11.50	11.21	11.62	11.63	11.18	10.68	9.96	9.48
Fur-bearing animals	0.08	0.09	0.11	0.09	0.08	0.07	0.07	0.08	0.11
Rabbits	3.84	3.85	3.96	3.99	3.92	3.80	3.75	3.67	3.58
Camels	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04
Mules and asses	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12
Buffaloes	0.004	0.003	0.003	0.003	0.003	0.003	0.004	0.006	0.006
Horses	7.72	7.29	6.95	6.58	6.08	5.68	5.46	5.09	4.67
Goats	3.17	3.19	3.28	3.33	3.24	3.14	3.18	3.18	3.10

Table A3.2.9.2. GHG emissions in 3.B Manure Management, kt

Category	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	
				Methane emis	sions						
3.B.1 Manure Management, total, incl.	140.04	133.62	116.09	105.22	92.43	92.74	80.86	65.24	57.66	55.69	
Mature dairy cattle	46.65	45.09	38.80	36.68	33.41	29.46	26.49	21.17	18.69	17.50	
Mature non-dairy cattle	9.86	9.81	8.63	8.03	7.15	5.89	4.85	3.39	2.62	2.30	
Growing cattle	30.28	29.42	25.34	22.88	19.13	14.99	12.12	8.29	6.32	5.65	
Sheep	1.79	1.65	1.51	1.38	1.19	0.88	0.59	0.42	0.31	0.25	
Swine	35.81	32.33	27.35	23.25	19.93	31.04	27.34	23.30	21.11	21.35	
Poultry	13.54	13.22	12.34	10.85	9.46	8.33	7.38	6.69	6.70	6.76	
Buffaloes	0.0043	0.0042	0.0040	0.0038	0.0036	0.0034	0.0032	0.0030	0.0028	0.0026	
Goats	0.06	0.07	0.08	0.09	0.10	0.11	0.11	0.11	0.11	0.11	
Camels	0.0009	0.0009	0.0009	0.0009	0.0009	0.0009	0.0009	0.0009	0.0009	0.0009	
Horses	1.16	1.14	1.11	1.11	1.13	1.16	1.18	1.16	1.14	1.11	
Mules and asses	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	
Fur-bearing animals	0.38	0.38	0.38	0.38	0.37	0.34	0.29	0.25	0.22	0.18	
Rabbits	0.49	0.50	0.52	0.55	0.55	0.53	0.49	0.45	0.44	0.45	
			Ni	itrous oxide en	iissions						
3.B.2 Manure Management, total, incl.	10.99	10.48	9.60	9.15	8.79	7.77	6.74	5.43	5.03	4.96	
Direct emissions (total)*	6.32	6.03	5.56	5.34	5.18	4.57	3.98	3.21	2.98	2.93	
Uncovered anaerobic lagoon	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
Liquid system with natural crust cover	1.52	1.39	1.04	0.89	0.68	0.45	0.33	0.16	0.10	0.09	
Solid storage	4.56	4.42	4.32	4.27	4.34	4.05	3.58	3.01	2.83	2.78	
Composting	0.04	0.04	0.03	0.03	0.03	0.02	0.02	0.01	0.01	0.01	
Poultry manure without litter	0.09	0.08	0.08	0.07	0.06	0.05	0.04	0.04	0.04	0.04	
Pit storage below animal confinements	0.00007	0.00007	0.00007	0.00007	0.00006	0.00006	0.00005	0.00005	0.00005	0.00005	
Aerobic treatment	0.11	0.10	0.09	0.09	0.07	NO	NO	NO	NO	NO	
Indirect emissions (total)*	4.67	4.45	4.04	3.81	3.61	3.19	2.77	2.22	2.05	2.03	
Volatilization	4.67	4.45	4.04	3.81	3.61	3.19	2.77	2.22	2.05	2.03	
NMVOC emissions											
3.B.2 Manure Management, total, incl.	198.77	193.69	184.88	174.77	163.68	150.02	135.45	119.53	109.46	103.79	

Category	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
Mature dairy cattle	68.02	66.95	65.66	64.92	63.96	61.76	58.35	53.26	48.71	45.35
Mature non-dairy cattle	13.88	13.65	13.24	12.76	12.29	11.14	9.54	7.92	6.76	5.99
Growing cattle	52.18	50.14	47.04	43.82	39.40	33.65	28.19	22.65	18.81	16.86
Swine	12.13	11.51	10.59	9.87	9.24	8.61	7.75	6.49	6.13	6.38
Sheep	1.39	1.28	1.17	1.07	0.92	0.68	0.46	0.32	0.23	0.19
Buffaloes	0.0036	0.0035	0.0034	0.0032	0.0030	0.0029	0.0027	0.0025	0.0024	0.0022
Goats	0.27	0.30	0.33	0.38	0.41	0.45	0.47	0.45	0.45	0.45
Camels	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002
Horses	3.19	3.11	3.04	3.04	3.10	3.19	3.23	3.19	3.12	3.03
Mules and asses	0.03	0.03	0.03	0.03	0.02	0.02	0.02	0.02	0.02	0.02
Fur-bearing animals	1.09	1.09	1.09	1.09	1.06	0.96	0.84	0.71	0.62	0.52
Rabbits	0.36	0.37	0.38	0.40	0.40	0.39	0.36	0.33	0.33	0.33
Poultry	46.23	45.25	42.30	37.39	32.88	29.17	26.24	24.19	24.30	24.66

Category	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
				Methane emis	sions					
3.B.1 Manure Management, total, incl.	48.02	45.06	48.01	45.14	40.08	41.28	43.44	44.34	43.73	45.30
Mature dairy cattle	15.45	15.18	15.02	13.99	13.11	12.39	11.92	10.99	10.38	10.04
Mature non-dairy cattle	1.76	1.54	1.45	1.26	1.07	0.96	0.94	0.84	0.76	0.72
Growing cattle	4.55	4.26	4.26	3.73	3.03	2.77	2.88	2.64	2.37	2.23
Sheep	0.23	0.22	0.22	0.21	0.21	0.20	0.21	0.23	0.25	0.26
Swine	17.65	15.19	17.76	16.59	13.31	15.15	17.37	19.35	19.44	21.02
Poultry	6.60	6.87	7.49	7.59	7.68	8.18	8.54	8.73	9.03	9.57
Buffaloes	0.0024	0.0022	0.0020	0.0018	0.0016	0.0014	0.0012	0.0010	0.0008	0.0006
Goats	0.11	0.12	0.13	0.13	0.12	0.11	0.09	0.09	0.08	0.08
Camels	0.0009	0.0009	0.0009	0.0009	0.0009	0.0012	0.0013	0.0013	0.0013	0.0013
Horses	1.09	1.09	1.07	1.03	0.96	0.89	0.85	0.80	0.75	0.71
Mules and asses	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Fur-bearing animals	0.13	0.11	0.12	0.14	0.16	0.19	0.20	0.23	0.24	0.22
Rabbits	0.45	0.46	0.48	0.46	0.42	0.43	0.43	0.41	0.42	0.44
			Ni	itrous oxide en	issions					
3.B.2 Manure Management, total, incl.	4.45	4.28	4.53	4.29	3.85	3.75	3.83	3.69	3.47	3.56

Category	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009		
Direct emissions (total)*	2.65	2.55	2.68	2.53	2.27	2.19	2.20	2.10	1.97	2.00		
Uncovered anaerobic lagoon	NA											
Liquid system with natural crust cover	0.04	0.04	0.05	0.05	0.04	0.05	0.06	0.06	0.07	0.08		
Solid storage	2.56	2.47	2.58	2.43	2.18	2.09	2.09	1.98	1.84	1.85		
Composting	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01		
Poultry manure without litter	0.03	0.04	0.04	0.04	0.04	0.05	0.05	0.05	0.06	0.06		
Pit storage below animal confinements	0.00005	0.00005	0.00004	0.00005	0.00005	0.00005	0.00005	0.00005	0.00005	0.00005		
Aerobic treatment	NO											
Indirect emissions (total)*	1.81	1.73	1.85	1.76	1.59	1.57	1.63	1.58	1.50	1.55		
Volatilization	1.81	1.73	1.85	1.76	1.59	1.57	1.63	1.58	1.50	1.55		
NMVOC emissions												
3.B.2 Manure Management, total, incl.	95.76	92.45	93.70	88.68	81.67	78.92	77.32	74.34	71.23	70.83		
Mature dairy cattle	41.80	39.74	38.76	36.21	33.03	30.42	28.09	25.92	23.95	22.50		
Mature non-dairy cattle	5.07	4.47	4.22	3.70	3.13	2.81	2.57	2.31	2.05	1.92		
Growing cattle	14.77	13.83	13.82	12.15	9.88	9.04	8.88	8.15	7.20	6.73		
Swine	5.61	5.08	5.55	5.21	4.37	4.29	4.77	4.72	4.23	4.44		
Sheep	0.17	0.16	0.16	0.16	0.15	0.15	0.15	0.17	0.18	0.19		
Buffaloes	0.0020	0.0018	0.0017	0.0015	0.0013	0.0012	0.0010	0.0008	0.0007	0.0005		
Goats	0.47	0.52	0.55	0.54	0.50	0.45	0.39	0.36	0.35	0.34		
Camels	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002		
Horses	2.99	2.98	2.94	2.82	2.62	2.45	2.33	2.21	2.06	1.94		
Mules and asses	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02		
Fur-bearing animals	0.37	0.30	0.34	0.40	0.47	0.53	0.58	0.66	0.67	0.62		
Rabbits	0.33	0.34	0.36	0.34	0.31	0.31	0.31	0.30	0.31	0.32		
Poultry	24.16	25.00	26.97	27.13	27.17	28.44	29.21	29.52	30.20	31.81		

Category	2010	2011	2012	2013	2014	2015	2016	2017	2018		
Methane emissions											
3.B.1 Manure Management, total, incl.	48.56	48.80	49.53	49.81	47.79	45.04	42.15	41.80	40.01		
Mature dairy cattle	9.71	9.42	9.47	9.48	9.29	8.89	8.71	8.48	8.23		
Mature non-dairy cattle	0.68	0.63	0.62	0.62	0.60	0.55	0.52	0.48	0.48		

Category	2010	2011	2012	2013	2014	2015	2016	2017	2018
Growing cattle	2.06	1.91	2.04	2.16	1.98	1.81	1.83	1.82	1.78
Sheep	0.27	0.27	0.26	0.26	0.25	0.23	0.22	0.22	0.22
Swine	24.20	24.70	25.03	24.50	22.75	20.94	18.67	18.59	16.75
Poultry	10.24	10.45	10.67	11.41	11.64	11.39	11.02	11.03	11.36
Buffaloes	0.0004	0.0003	0.0003	0.0003	0.0003	0.0003	0.0004	0.0005	0.0006
Goats	0.08	0.08	0.09	0.09	0.08	0.08	0.08	0.08	0.08
Camels	0.0013	0.0013	0.0013	0.0013	0.0013	0.0013	0.0013	0.0013	0.0013
Horses	0.67	0.63	0.60	0.57	0.53	0.49	0.47	0.44	0.40
Mules and asses	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Fur-bearing animals	0.21	0.25	0.29	0.26	0.23	0.20	0.19	0.23	0.29
Rabbits	0.44	0.44	0.45	0.46	0.45	0.43	0.43	0.42	0.41
			Nitrous o	xide emissions	5				
3.B.2 Manure Management, total, incl.	3.64	3.58	3.61	3.70	3.67	3.52	3.40	3.28	3.36
Direct emissions (total)*	2.02	1.99	2.00	2.03	2.01	1.93	1.87	1.80	1.85
Uncovered anaerobic lagoon	NA	NA	NA	NA	NA	NA	NA	NA	NA
Liquid system with natural crust cover	0.11	0.12	0.12	0.14	0.15	0.16	0.17	0.15	0.16
Solid storage	1.84	1.79	1.80	1.81	1.76	1.67	1.61	1.55	1.59
Composting	0.00	0.01	0.01	0.01	0.02	0.01	0.02	0.02	0.02
Poultry manure without litter	0.07	0.07	0.07	0.08	0.08	0.08	0.07	0.07	0.08
Pit storage below animal confinements	0.00005	0.00005	0.00005	0.00005	0.00005	0.00005	0.00005	0.00005	0.00005
Aerobic treatment	NO	NO	NO	NO	NO	NO	NO	NO	NO
Indirect emissions (total)*	1.61	1.60	1.61	1.66	1.66	1.59	1.53	1.48	1.52
Volatilization	1.61	1.60	1.61	1.66	1.66	1.59	1.53	1.48	1.52
			NMVO	C emissions					
3.B.2 Manure Management, total, incl.	71.59	71.19	71.63	73.84	73.10	69.85	67.75	66.79	66.64
Mature dairy cattle	21.60	20.98	20.67	20.37	19.53	18.53	17.97	17.38	16.63
Mature non-dairy cattle	1.80	1.70	1.67	1.64	1.56	1.44	1.34	1.25	1.18
Growing cattle	6.15	5.76	6.18	6.53	5.89	5.34	5.33	5.26	5.00
Swine	4.88	4.79	4.67	4.84	4.85	4.67	4.45	4.14	3.94
Sheep	0.19	0.19	0.18	0.18	0.17	0.16	0.16	0.16	0.16
Buffaloes	0.0003	0.0002	0.0002	0.0002	0.0002	0.0002	0.0003	0.0005	0.0005

Category	2010	2011	2012	2013	2014	2015	2016	2017	2018
Goats	0.34	0.35	0.36	0.36	0.35	0.34	0.35	0.34	0.34
Camels	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002
Horses	1.83	1.73	1.65	1.56	1.44	1.35	1.30	1.21	1.11
Mules and asses	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
Fur-bearing animals	0.59	0.71	0.82	0.74	0.65	0.58	0.53	0.66	0.82
Rabbits	0.32	0.32	0.33	0.34	0.33	0.32	0.32	0.31	0.30
Poultry	33.86	34.64	35.09	37.27	38.30	37.10	36.00	36.07	37.16

 $^{*-}emissions\ from\ manure\ in\ Pasture/Range/Paddock\ are\ reported\ in\ 3.D\ Agricultural\ Soils$

Table A3.2.9.3. Methane emissions in 3.C Rice Cultivation, kt CH₄

Category	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
Annual methane emissions from	8.66	7.08	7.42	7.06	6.74	6.61	6.89	6.69	6.18	6.54
rice cultivation	8.00	7.00	7.42	7.00	0.74	6.61	0.89	0.09	0.16	6.54

Category	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
Annual methane emissions from rice cultivation	7.48	5.63	5.63	6.65	6.33	6.34	6.44	6.27	5.87	7.28

Category	2010	2011	2012	2013	2014	2015	2016	2017	2018
Annual methane emissions from	8.69	8.80	7.67	7 17	3.02	2 47	3 56	3 76	3.74
rice cultivation	0.09	6.60	7.07	7.17	3.02	3.47	3.30	5.70	3.74

Table A3.2.9.4. Nitrous oxide emissions in 3.D Agricultural Soils, kt N₂O

Category	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
3.D.1.1 Inorganic N Fertilizers	28,89	24,58	20,25	15,93	12,57	9,21	5,85	6,50	6,39	5,13
3.D.1.2 Organic N Fertilizers	7,78	7,42	6,83	6,51	6,30	5,62	4,87	3,93	3,61	3,51
3.D.1.3 Urine and Dung Deposited by Grazing Animals	10,59	10,09	9,87	9,81	9,60	8,71	7,87	6,80	6,46	6,17
3.D.1.4 Crop Residues	46,26	44,15	42,75	44,04	35,98	34,79	29,03	30,39	26,79	22,48
3.D.1.5 Mineralization/Immobiliza- tion Associated with Loss/Gain of Soil Organic Matter	NO	NO	NO	0,22	NO	0,93	0,93	4,05	2,18	2,45
3.D.1.6 Cultivation of Organic Soils	5,99	6,05	6,10	6,11	6,13	6,13	6,13	6,13	6,13	6,13
3.D.2.1 Atmospheric Deposition	6,93	6,17	5,40	4,70	4,14	3,41	2,68	2,47	2,35	2,12
3.D.2.2 Nitrogen Leaching and Run-off	19,99	18,40	16,95	16,23	13,53	12,45	10,12	10,93	9,56	8,31

Category	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
3.D.1.1 Inorganic N Fertilizers	3,48	4,98	4,90	4,25	5,71	5,89	7,30	9,05	11,53	9,94
3.D.1.2 Organic N Fertilizers	3,17	3,05	3,17	3,00	2,71	2,61	2,62	2,50	2,33	2,36
3.D.1.3 Urine and Dung Deposited by Grazing Animals	5,92	5,80	5,84	5,50	5,06	4,81	4,50	4,16	3,90	3,89
3.D.1.4 Crop Residues	22,25	22,42	21,56	18,27	21,60	20,90	20,99	18,40	24,23	22,75
3.D.1.5 Mineralization/Immobilization Associated with Loss/Gain of Soil Organic Matter	5,00	7,08	7,19	4,01	8,42	8,94	7,33	4,84	12,25	11,26
3.D.1.6 Cultivation of Organic Soils	6,13	6,13	6,13	6,13	6,13	6,13	6,13	6,13	6,13	6,13
3.D.2.1 Atmospheric Deposition	1,78	1,96	1,98	1,82	1,92	1,90	2,07	2,27	2,57	2,35
3.D.2.2 Nitrogen Leaching and Run-off	8,36	9,16	9,00	7,33	9,28	9,22	9,16	8,35	11,82	10,91

Category	2010	2011	2012	2013	2014	2015	2016	2017	2018
3.D.1.1 Inorganic N Fertilizers	12,13	14,08	14,55	16,32	16,53	15,94	19,26	21,92	24,54
3.D.1.2 Organic N Fertilizers	2,39	2,34	2,36	2,40	2,37	2,27	2,19	2,12	2,19
3.D.1.3 Urine and Dung Deposited by Grazing Animals	3,73	3,64	3,74	3,75	3,65	3,51	3,42	3,38	3,68
3.D.1.4 Crop Residues	22,65	28,03	26,54	31,31	31,63	30,15	32,88	30,67	34,54
3.D.1.5 Mineralization/Immobiliza- tion Associated with Loss/Gain of Soil Organic Matter	8,35	14,93	12,29	17,50	18,29	16,76	18,61	15,38	18,62

Category	2010	2011	2012	2013	2014	2015	2016	2017	2018
3.D.1.6 Cultivation of Organic Soils	6.13	6.13	6.13	6.01	6.01	6.01	6.01	6.01	5.97
3.D.2.1 Atmospheric Deposition	2.65	2.91	3.00	3.26	3.27	3.15	3.60	3.97	4.39
3.D.2.2 Nitrogen Leaching and Run-off	10.72	13.82	13.02	15.67	15.93	15.09	16.84	16.19	18.43

Table A3.2.9.5. Carbon dioxide emissions in Agricultural sector, kt CO₂

Category	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
3.G Liming	2 592.08	1 351.26	1 351.26	1 351.26	1 351.26	1 351.26	299.20	76.41	77.79	70.63
3.H Urea Application	270.14	229.79	189.44	149.09	117.71	86.33	54.95	61.00	59.96	48.27

Category	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
3.G Liming	63.47	71.47	53.78	49.37	83.33	90.92	105.99	112.35	124.95	151.88
3.H Urea Application	82.20	117.00	116.91	191.10	35.83	138.32	171.32	212.11	355.18	175.03

Category	2010	2011	2012	2013	2014	2015	2016	2017	2018
3.G Liming	127.46	127.16	161.72	182.25	156.26	169.83	140.09	168.60	163.74
3.H Urea Application	334.73	391.52	340.50	381.75	386.03	372.50	449.91	512.07	201.18

A3.2.10 Recalculations

Table A3.2.10.1. Recalculation of Methane emissions in 3.A Enteric Fermentation, kt CH₄

Category	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999				
	Previous NIR													
Mature dairy cattle	738.6	714.7	677.7	668.4	658.7	634.8	595.2	537.1	504.8	476.1				
Other mature cattle	137.5	136.0	132.4	127.0	122.2	110.8	95.4	78.9	67.1	59.3				
Growing cattle	585.4	565.6	535.3	499.2	451.6	387.5	325.8	262.3	219.0	197.1				
Sheep	60.9	56.0	51.4	47.5	41.0	30.6	21.1	14.9	11.1	9.2				
Other animals	50.1	48.6	46.3	44.9	43.8	42.7	40.7	37.2	35.9	36.1				
			Си	rrent NIR										
Mature dairy cattle	738.6	714.7	677.7	668.4	658.7	634.8	595.2	537.1	504.8	476.1				
Other mature cattle	137.5	136.0	132.4	127.0	122.2	110.8	95.4	78.9	67.1	59.3				
Growing cattle	585.4	565.6	535.3	499.2	451.6	387.5	325.8	262.3	219.0	197.1				
Sheep	60.9	56.0	51.4	47.5	41.0	30.6	21.1	14.9	11.1	9.2				
Other animals	50.1	48.6	46.3	45.1	44.0	42.9	40.8	37.4	36.1	36.2				

Category	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
			Pre	evious NIR						
Mature dairy cattle	443.7	438.0	434.9	407.0	382.7	362.7	340.6	314.6	294.3	283.5
Other mature cattle	50.1	44.0	41.5	36.3	30.7	27.8	25.7	23.0	20.3	19.0
Growing cattle	174.0	164.2	164.5	144.8	118.1	108.4	106.9	98.5	87.2	81.8
Sheep	8.3	7.9	7.8	7.5	7.6	7.4	7.8	8.6	9.3	9.8
Other animals	34.2	33.5	35.0	33.5	30.0	28.5	28.7	27.8	26.0	26.0
			Си	rrent NIR						
Mature dairy cattle	443.7	438.0	434.9	407.0	382.7	362.7	340.6	314.6	294.3	283.5
Other mature cattle	50.1	44.0	41.5	36.3	30.7	27.8	25.7	23.0	20.3	19.0
Growing cattle	174.0	164.2	164.5	144.8	118.1	108.4	106.9	98.5	87.2	81.8
Sheep	8.3	7.9	7.8	7.5	7.6	7.4	7.8	8.6	9.3	9.8
Other animals	34.4	33.6	35.1	33.5	30.0	28.5	28.7	27.8	26.0	26.0

Category	2010	2011	2012	2013	2014	2015	2016	2017	2018
			Previous	NIR					
Mature dairy cattle	272.9	266.5	266.8	265.7	259.0	247.0	240.9	235.3	
Other mature cattle	17.8	16.8	16.5	16.2	15.4	14.2	13.3	12.4	
Growing cattle	74.9	70.0	75.3	79.8	72.3	65.5	65.9	65.8	
Sheep	10.0	9.9	9.6	9.5	9.0	8.5	8.1	8.1	
Other animals	26.6	26.1	25.7	25.8	25.1	24.0	23.3	22.1	
			Current	NIR					
Mature dairy cattle	272.9	266.5	266.8	265.7	259.0	247.0	241.0	235.4	227.5
Other mature cattle	17.8	16.8	16.5	16.2	15.4	14.2	13.3	12.4	12.1
Growing cattle	74.9	70.0	75.3	79.8	72.2	65.4	65.9	65.8	63.3
Sheep	10.0	9.9	9.6	9.5	9.0	8.5	8.1	8.1	8.0
Other animals	26.6	26.1	25.7	25.8	25.1	24.0	23.3	22.1	21.1

Table A3.2.10.2. Recalculations of GHG emissions in 3.B Manure Management category, kt

Category	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999		
Previous NIR												
CH ₄ emissions	134.9	129.0	112.2	101.9	89.5	88.3	76.9	61.9	54.6	52.6		
N ₂ O emissions	10.5	10.0	9.2	8.8	8.4	7.4	6.4	5.2	4.8	4.7		
NMVOC emissions	198.8	193.7	184.9	174.7	163.7	150.0	135.4	119.5	109.4	103.8		
			Си	rrent NIR								
CH ₄ emissions	140.0	133.6	116.1	105.2	92.4	92.7	80.9	65.2	57.7	55.7		
N ₂ O emissions	11.0	10.5	9.6	9.2	8.8	7.8	6.7	5.4	5.0	5.0		
NMVOC emissions	198.8	193.7	184.9	174.8	163.7	150.0	135.5	119.5	109.5	103.8		

Category	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009		
Previous NIR												
CH ₄ emissions	45.4	42.8	45.4	42.8	38.2	39.1	40.9	41.6	41.1	42.6		
N ₂ O emissions	4.2	4.1	4.3	4.1	3.7	3.6	3.6	3.5	3.3	3.4		
NMVOC emissions	95.7	92.4	93.7	88.7	81.7	78.9	77.3	74.3	71.2	70.8		
			Си	rrent NIR								
CH ₄ emissions	48.0	45.1	48.0	45.1	40.1	41.3	43.4	44.3	43.7	45.3		
N ₂ O emissions	4.5	4.3	4.5	4.3	3.9	3.8	3.8	3.7	3.5	3.6		
NMVOC emissions	95.8	92.4	93.7	88.7	81.7	78.9	77.3	74.3	71.2	70.8		

Category	2010	2011	2012	2013	2014	2015	2016	2017	2018	
Previous NIR										
CH ₄ emissions	45.5	45.7	46.4	46.9	45.0	42.3	39.8	39.5		
N ₂ O emissions	3.4	3.4	3.4	3.5	3.5	3.3	3.2	3.1		
NMVOC emissions	71.6	71.2	71.6	73.8	72.7	69.0	66.8	65.9		
			Current l	VIR						
CH ₄ emissions	48.6	48.8	49.5	49.8	47.8	45.0	42.2	41.8	40.0	
N ₂ O emissions	3.6	3.6	3.6	3.7	3.7	3.5	3.4	3.3	3.4	
NMVOC emissions	71.6	71.2	71.6	73.8	73.1	69.9	67.7	66.8	66.6	

Table A3.2.10.3. Recalculations of Nitrous oxide emissions in category 3.D Agricultural Soils, kt N₂O

Category	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
Previous NIR										
Direct N ₂ O emissions	99.3	92.1	85.6	82.4	70.4	65.2	54.5	57.7	51.4	45.7
Indirect N ₂ O emissions	16.4	14.5	12.6	10.9	9.5	8.0	6.2	6.5	5.8	5.3
			Си	rrent NIR						
Direct N ₂ O emissions	99.5	92.3	85.8	82.6	70.6	65.4	54.7	57.8	51.6	45.9
Indirect N ₂ O emissions	26.9	24.6	22.3	20.9	17.7	15.9	12.8	13.4	11.9	10.4

Category	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
Previous NIR										
Direct N ₂ O emissions	45.8	49.4	48.7	41.1	49.5	49.2	48.8	45.0	60.3	56.2
Indirect N ₂ O emissions	5.1	6.0	6.1	5.0	6.3	6.4	6.5	6.4	8.9	8.1
			Си	rrent NIR						
Direct N ₂ O emissions	45.9	49.5	48.8	41.2	49.6	49.3	48.9	45.1	60.4	56.3
Indirect N ₂ O emissions	10.1	11.1	11.0	9.1	11.2	11.1	11.2	10.6	14.4	13.3

Category	2010	2011	2012	2013	2014	2015	2016	2017	2018	
Previous NIR										
Direct N ₂ O emissions	55.3	69.0	65.5	77.2	78.4	74.5	82.4	79.4		
Indirect N ₂ O emissions	8.2	10.4	10.0	11.8	12.0	11.4	13.0	13.2		
			Current l	VIR						
Direct N ₂ O emissions	55.4	69.1	65.6	77.3	78.5	74.6	82.4	79.5	89.5	
Indirect N ₂ O emissions	13.4	16.7	16.0	18.9	19.2	18.2	20.4	20.2	22.8	

Table A3.2.10.4. Recalculations of Carbon dioxide emissions in 3.H Urea Application category, kt CO₂

The state of the s										
Category	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
Previous NIR										
3.H Urea Application	270.14	229.79	189.44	149.09	117.71	86.33	54.95	61.00	59.96	48.27
			Си	rrent NIR						
3.H Urea Application	270.14	229.79	189.44	149.09	117.71	86.33	54.95	61.00	59.96	48.27

Category	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
Previous NIR										
3.H Urea Application	82.20	117.00	116.91	191.10	35.83	138.32	171.32	212.11	355.18	175.03
	Current NIR									
3.H Urea Application	82.20	117.00	116.91	191.10	35.83	138.32	171.32	212.11	355.18	175.03

Category	2010	2011	2012	2013	2014	2015	2016	2017	2018	
Previous NIR										
3.H Urea Application	334.73	391.52	351.36	381.75	386.03	372.50	450.79	512.14		
Current NIR										
3.H Urea Application	334.73	391.52	340.50	381.75	386.03	372.50	449.91	512.07	201.18	

A3.3 Land Use, Land Use Change and Forestry (CRF Sector 4)

A3.3.1 Methodological issues of the land-use category Forest land

Calculation of total annual GHG emissions/removals in the forestry sector was held for the two categories of Forest and: a) for Forest land remaining forest land; b) for Land converted to forest land.

Activity data for the Forest land category were obtained from national statistical reporting form 16-zem (previously 6-zem). For afforestation (Land converted to forest land), the land-use change matrix was used (Table 6.2) and the actual data of afforestation (database). The land-use change matrix is used to determine "conversion vectors" of land areas at change of land-use categories, since there is no data in national statistics on the land-use categories from which conversion takes place.

In the table A3.3.1 the areas of Forest land remaining Forest land are presented with subdivision on actually covered with forest vegetation and unstocked (temporary or permanently). In the right part actually covered areas with forest vegetation are presented with unstocked lands in the FM category. In both sectors actually covered with forest vegetation areas (stocked) were used to calculate C-gains due to forest growth.

Table A3.3.1. Areas covered by forest vegetation and unstocked areas

		Forest land rema			Forest Manager	nent, kha	
Year	Total area of the category	Unmanaged forests	Areas of mar	naged Forest	Total area of the category	Area covered by forest vegetation (stocked)	Unstocked areas
			Stocked	Unstocked and other		, ,	
1990	10211.95	21.44	9211.68	1000.27	=	=	=
1991	10230.85	21.44	9238.20	992.65	-	-	-
1992	10282.73	21.44	9234.90	1047.83	-	-	-
1993	10299.97	21.44	9272.80	1027.17	-	-	-
1994	10314.62	21.44	9299.45	1015.17	-	-	-
1995	10312.69	21.44	9324.00	988.69	-	-	-
1996	10317.84	21.44	9328.30	989.54	-	-	-
1997	10318.63	21.44	9337.80	980.83	-	-	-
1998	10331.65	21.44	9339.50	992.15	-	-	-
1999	10333.10	21.44	9369.28	963.82	-	-	-
2000	10338.40	21.44	9398.42	939.98	-	-	-
2001	10345.95	21.44	9406.37	939.58	-	-	-
2002	10351.79	21.44	9431.84	919.95	-	-	-
2003	10365.21	21.44	9443.29	921.92	-	-	-
2004	10376.16	21.44	9451.38	924.78	-	-	-
2005	10396.29	21.44	9476.30	919.99	_	-	-
2006	10411.90	21.44	9508.45	903.45	-	-	-
2007	10403.65	21.44	9520.75	882.90	-	-	-
2008	10389.16	21.44	9515.40	873.76	-	-	-
2009	10373.12	21.44	9522.24	850.88	=	=	=
2010	10368.55	21.44	9527.41	841.14	-	-	-
2011	10364.11	21.44	9536.66	827.45	-	-	-
2012	10362.35	21.44	9541.61	820.74		-	-
2013	10358.38	21.44	9531.38	827.00	9549.10	9500.35	48.75
2014	10365.60	21.44	9516.88	848.71	9546.97	9479.30	67.67
2015	10373.36	21.44	9499.02	874.34	9547.11	9453.91	93.19
2016	10382.40	21.44	9468.74	913.66	9552.77	9414.58	138.19
2017	10389.81	21.44	9457.02	932.80	9552.35	9395.45	156.90
2018	10394.19	21.44	9476.01	918.18	9608.63	9410.06	198.57

From the database of activities regulated by Article 3.3 of the Kyoto Protocol, actual data on afforestation and deforestation were used. The information is presented based on the cumulative approach and 20-years transition period - Table A3.3.2.

Table A3.3.2. Land areas converted to and from the land-use category Forest land on cumulative basis, kha

Year	Cropland	Grassland	To forests Wetlands	Settlements	Other land	Total
1990	9.55	0.00	0.00	0.00	0.00	9.55
1991	15.92	0.00	0.00	0.61	0.83	17.35
1991	15.92	0.51	0.00	3.52	3.92	23.87
1992	21.08	0.51	0.00	3.52	5.92	
						31.03
1994	26.77	0.51	0.00	3.52	6.78	37.58
1995	28.83	0.51	0.00	8.99	6.78	45.11
1996	36.97	0.51	0.18	8.99	7.50	54.16
1997	43.94	0.51	0.18	8.99	7.94	61.57
1998	45.37	0.51	0.18	8.99	10.89	65.95
1999	48.35	0.51	0.18	8.99	12.16	70.20
2000	53.19	0.51	0.27	9.07	12.16	75.20
2001	57.37	0.51	0.27	9.94	12.16	80.25
2002	62.70	0.51	0.51	9.94	13.46	87.11
2003	67.21	0.51	0.51	10.32	13.73	92.29
2004	74.29	0.58	0.51	10.63	13.73	99.74
2005	78.84	3.70	0.51	10.63	13.73	107.41
2006	94.52	8.61	0.51	10.63	13.73	128.00
2007	110.78	13.18	0.51	10.63	17.55	152.65
2008	119.18	28.05	0.51	10.63	22.57	180.94
2009	133.20	48.64	0.51	10.63	25.79	218.78
2010	138.80	55.32	0.51	10.63	27.29	232.54
2011	141.41	62.72	0.51	10.03	32.52	247.18
2012	145.52	75.31	0.51	7.11	30.60	259.05
2013	140.37	88.93	0.51	7.11	28.87	265.78
2014	136.52	91.03	0.51	7.11	29.51	264.68
2015	134.25	93.73	0.61	1.64	29.51	259.74
2016	134.40	98.98	0.43	1.64	45.95	281.40
2017	129.77	104.27	0.43	1.64	49.02	285.14
2018	128.35	111.82	0.49	1.64	49.08	291.37
	•	From	forests to other ca	ategories		
Year	Cropland	Grassland	Wetlands	Settlements	Other land	Total
1990	0.04	0.01	0.00	0.08	0.01	0.14
1991	0.14	0.02	0.00	0.28	0.04	0.48
1992	2.94	0.50	0.04	5.98	0.93	10.39
1993	2.94	0.54	0.04	6.00	0.93	10.46
1994	2.95	0.54	0.04	6.01	0.93	10.47
1995	2.96	0.55	0.06	6.03	0.98	10.58
1996	3.07	2.32	0.22	7.48	1.49	14.58
1997	3.09	2.35	0.22	7.48	1.52	14.66
1998	3.09	3.75	2.63	27.51	1.52	38.50
1999	3.09	3.77	2.65	27.53	1.52	38.56
		3.90	2.65	27.53	1.62	38.81
	5.11	.).7()				
2000	3.11			27.56	1.65	19. U/.
2000 2001	3.16	3.98	2.66	27.56 27.96	1.65 1.65	39.02 39.61
2000 2001 2002	3.16 3.16	3.98 4.17	2.66 2.67	27.96	1.65	39.61
2000 2001 2002 2003	3.16 3.16 3.26	3.98 4.17 4.17	2.66 2.67 2.73	27.96 27.96	1.65 1.73	39.61 39.85
2000 2001 2002 2003 2004	3.16 3.16 3.26 3.85	3.98 4.17 4.17 4.17	2.66 2.67 2.73 2.73	27.96 27.96 28.21	1.65 1.73 1.83	39.61 39.85 40.80
2000 2001 2002 2003 2004 2005	3.16 3.16 3.26 3.85 3.86	3.98 4.17 4.17 4.17 4.19	2.66 2.67 2.73 2.73 2.75	27.96 27.96 28.21 28.29	1.65 1.73 1.83 1.83	39.61 39.85 40.80 40.93
2000 2001 2002 2003 2004 2005 2006	3.16 3.16 3.26 3.85 3.86 3.86	3.98 4.17 4.17 4.17 4.19 4.27	2.66 2.67 2.73 2.73 2.75 2.75	27.96 27.96 28.21 28.29 28.37	1.65 1.73 1.83 1.83 1.86	39.61 39.85 40.80 40.93 41.10
2000 2001 2002 2003 2004 2005 2006 2007	3.16 3.16 3.26 3.85 3.86 3.86 3.86	3.98 4.17 4.17 4.17 4.19 4.27 4.28	2.66 2.67 2.73 2.73 2.75 2.75 2.86	27.96 27.96 28.21 28.29 28.37 28.46	1.65 1.73 1.83 1.83 1.86 2.01	39.61 39.85 40.80 40.93 41.10 41.47
2000 2001 2002 2003 2004 2005 2006 2007 2008	3.16 3.16 3.26 3.85 3.86 3.86 3.86 3.86	3.98 4.17 4.17 4.17 4.19 4.27 4.28 4.28	2.66 2.67 2.73 2.73 2.75 2.75 2.86 2.86	27.96 27.96 28.21 28.29 28.37 28.46 36.41	1.65 1.73 1.83 1.83 1.86 2.01 2.01	39.61 39.85 40.80 40.93 41.10 41.47 49.41
2000 2001 2002 2003 2004 2005 2006 2007 2008 2009	3.16 3.16 3.26 3.85 3.86 3.86 3.86 3.86 3.87	3.98 4.17 4.17 4.17 4.19 4.27 4.28 4.28 4.28	2.66 2.67 2.73 2.73 2.75 2.75 2.86 2.86 2.86	27.96 27.96 28.21 28.29 28.37 28.46 36.41 36.43	1.65 1.73 1.83 1.83 1.86 2.01 2.01 2.01	39.61 39.85 40.80 40.93 41.10 41.47 49.41 49.45
2000 2001 2002 2003 2004 2005 2006 2007 2008	3.16 3.16 3.26 3.85 3.86 3.86 3.86 3.86	3.98 4.17 4.17 4.17 4.19 4.27 4.28 4.28	2.66 2.67 2.73 2.73 2.75 2.75 2.86 2.86	27.96 27.96 28.21 28.29 28.37 28.46 36.41	1.65 1.73 1.83 1.83 1.86 2.01 2.01	39.61 39.85 40.80 40.93 41.10 41.47 49.41

2013	0.93	3.73	2.82	31.01	1.08	39.57
2014	0.92	3.73	2.82	31.00	1.12	39.59
2015	0.91	3.72	2.80	30.98	1.09	39.50
2016	0.80	1.95	2.64	29.53	0.58	35.50
2017	0.78	1.92	2.64	29.53	0.61	35.49
2018	0.78	0.53	0.23	9.50	0.62	11.65

Special attention should be paid to the situation regarding determination of data of the area of land converted to Forest land. Ukraine is working on filling in the database for the activity features in accordance with paragraph 3, Article 3 of the Kyoto Protocol. Description of the database development process is presented in Chapter 11. This chapter presents the areas of land taken for the estimation.

In order to reflect actual values of converted areas to and from forests, the decision was made to use for the both cases information from the database. This improves reliability of the results, since the primary data was collected at the level of individual plots of the territory on which the respective activity was implemented by quarter by every forestry enterprise in Ukraine (the so-called plot-wise information database). Moreover, the conservative principle is thus ensured, because form 16-zem takes into account only the legal fact of a change in attribution to a certain land-use category, which is not in line with the actually performed afforestation or deforestation activities.

Thus, information about the area of land converted to forest land from the land-use change matrix was used to determine proportional ratios among donor categories for the land-use category Forest Land. This was done because national statistical reporting, as well as land plot logs at forestry enterprises for the period since 1990 do not reflect information on the land-use categories from and/or into which plots of forest land were converted. Based on those ratios, the values from the database were distributed. Thus, special attention was paid to maintaining the balance of territories with use of the forest land not covered in the estimation. The areas of sub-categories indicated in the land-use category are shown in the reporting tables [22].

Donor categories are defined annually based on comparison of total areas of every category in year X-1 and X of form 16-zem. Consequently donor categories might change from year to year.

For all the other land-use categories (including the categories Cropland and Grassland) for land converted to categories, information on the areas from statistical reporting form 16-zem, as well as the land-use change matrix was used (Table 6.4).

Estimations of carbon emissions/removals were made in the context of sub-categories 4.A.1 Forest land remaining forest and 4.A.2 Land converted to forest land. In sub-category 4.A.1, emissions/removals were estimated only for managed forests in living biomass based on age structure of stands. Since databases with detailed information about forest features are available mostly for the forests under management of the State Forest Resources Agency of Ukraine, the calculations were performed based on that data and then extrapolated to entire area of forest covered lands excluding unmanaged forests.

The ERT recommended to revise estimations for DOM category by developing more accurate and mutually consistent EFs for litter and deadwood. Development of EFs is an important step recognized by including it into improvement plan but in the current submission conservative decision is taken to apply Tier 1. Thus it is assumed zero CSC in continuously forested areas until new methodology and EFs will be developed.

For forest soils, the decision on the zero carbon balance was made, based on the studies [4]. The annual increase in carbon stocks in living biomass of Forest land remaining forest land was estimated under Formula 2.9 of the 2006 IPCC Guidelines [1] in the context of the key forest tree species, climatic zones and with consideration of age structure.

The classification (Table A3.3.3) was used for distribution of areas into natural zones.

Table A3.3.3. Distribution of the forest area of Ukrainian regions' territory by climatic zones, relative units

Regions	Polissia (Woodland)	Forest Steppe	North Steppe	South Steppe	Carpathian Mts.	Crimean Mts.
AR Crimea				0.1		0.9
Vinnytska		1.0				

Regions	Polissia (Woodland)	Forest Steppe	North Steppe	South Steppe	Carpathian Mts.	Crimean Mts.
Volynska	0.8	0.2				
Dnipropetrovska			0.9	0.1		
Donetska			1.0			
Zhytomyrska	0.8	0.2				
Transcarpathian					1.0	
Zaporizhska			0.5	0.5		
Ivano-Frankivska		0.2			0.8	
Kyivska	0.7	0.3				
Kirovohradska		0.5	0.5			
Luganska			1.0			
Lvivska		0.3			0.7	
Mykolaivska			0.6	0.4		
Odesska		0.2	0.3	0.5		
Poltavska		1.0				
Rivnenska	0.8	0.2				
Sumska	0.2	0.8				
Ternopilska		1.0				
Kharkivska		0.5	0.5			
Khersonska				1.0		
Khmelnytska		1.0				
Cherkaska		1.0				
Chernivetska		0.3			0.7	
Chernihivska	0.8	0.2		<u> </u>		

Table A3.3.4 presents national factors of above-ground biomass growth rates for the main tree species by natural zones, as well as the ratio of below-ground and above-ground biomass growth. It is based on national study [9].

Table A3.3.4. Biomass growth by natural zones and species for Forest land remaining forest land (national data), t d.m./ha/yr

	Age														
	1-10	11-20	21-30	31-40	41-50	51-60	61-70	71-80	81-90	91-100	101-110	111-120	121-130	131-140	141-999
Polissia (Woodland)															
Pine	3.6	3.6	4.9	4.9	4.2	4.2	3.2	3.2	2.9	2.9	1.9	1.9	1.9	1.9	1.9
Spruce	5.5	5.5	6.9	6.9	6.0	6.0	4.7	4.7	3.2	3.2	2.0	2.0	2.0	2.0	2.0
Other conifers	4.5	4.5	5.8	5.8	5.0	5.0	3.9	3.9	3.0	3.0	1.9	1.9	1.9	1.9	1.9
Oak	2.9	2.9	4.8	4.8	4.8	4.8	3.7	3.7	2.9	2.9	2.1	2.1	2.1	2.1	2.1
Beech	1.7	1.7	7.1	7.1	6.4	6.4	5.5	5.5	4.1	4.1	2.7	2.7	2.7	2.7	2.7
Other hardwoods	2.5	2.5	5.5	5.5	5.2	5.2	4.3	4.3	3.3	3.3	2.3	2.3	2.3	2.3	2.3
Birch	2.9	2.9	3.8	3.8	3.1	3.1	2.4	2.4	1.6	1.6	0.9	0.9	0.9	0.9	0.9
Aspen	4.7	4.7	5.4	5.4	3.9	3.9	2.7	2.7	1.7	1.7	0.7	0.7	0.7	0.7	0.7
Alder	4.3	4.3	5.7	5.7	3.8	3.8	2.8	2.8	1.8	1.8	1.0	1.0	1.0	1.0	1.0
Other softwoods	3.8	3.8	4.6	4.6	3.5	3.5	2.5	2.5	1.6	1.6	0.8	0.8	0.8	0.8	0.8
Other tree species	3.8	3.8	4.6	4.6	3.5	3.5	2.5	2.5	1.6	1.6	0.8	0.8	0.8	0.8	0.8
Shrubs	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9
Forest Steppe															
Pine	2.9	2.9	4.4	4.4	4.6	4.6	3.7	3.7	3.0	3.0	1.7	1.7	1.7	1.7	1.7
Spruce	5.8	5.8	7.3	7.3	6.4	6.4	5.0	5.0	3.6	3.6	2.2	2.2	2.2	2.2	2.2
Other conifers	4.3	4.3	5.8	5.8	5.5	5.5	4.3	4.3	3.3	3.3	1.9	1.9	1.9	1.9	1.9
Oak	2.9	2.9	4.8	4.8	4.8	4.8	3.7	3.7	2.9	2.9	2.1	2.1	2.1	2.1	2.1
Beech	1.7	1.7	7.1	7.1	6.4	6.4	5.5	5.5	4.1	4.1	2.7	2.7	2.7	2.7	2.7
Other hardwoods	2.5	2.5	5.6	5.6	5.3	5.3	4.3	4.3	3.3	3.3	2.3	2.3	2.3	2.3	2.3
Birch	2.9	2.9	3.8	3.8	3.1	3.1	2.4	2.4	1.6	1.6	0.9	0.9	0.9	0.9	0.9
Aspen	4.7	4.7	5.4	5.4	3.9	3.9	2.7	2.7	1.7	1.7	0.7	0.7	0.7	0.7	0.7
Alder	4.3	4.3	5.7	5.7	3.8	3.8	2.8	2.8	1.8	1.8	1.0	1.0	1.0	1.0	1.0
Other softwoods	3.8	3.8	4.6	4.6	3.5	3.5	2.5	2.5	1.6	1.6	0.8	0.8	0.8	0.8	0.8
Other tree species	3.8	3.8	4.6	4.6	3.5	3.5	2.5	2.5	1.6	1.6	0.8	0.8	0.8	0.8	0.8
Shrubs	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9
North Steppe															
Pine	2.1	2.1	2.9	2.9	2.6	2.6	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1

	Age														
	1-10	11-20	21-30	31-40	41-50	51-60	61-70	71-80	81-90	91-100	101-110	111-120	121-130	131-140	141-999
Spruce	5.6	5.6	7.0	7.0	6.1	6.1	4.8	4.8	3.3	3.3	2.0	2.0	2.0	2.0	2.0
Other conifers	3.9	3.9	5.0	5.0	4.3	4.3	3.5	3.5	2.7	2.7	2.0	2.0	2.0	2.0	2.0
Oak	1.4	1.4	3.9	3.9	3.7	3.7	3.3	3.3	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Beech	1.7	1.7	7.1	7.1	6.4	6.4	5.5	5.5	4.1	4.1	2.8	2.8	2.8	2.8	2.8
Other hardwoods	1.6	1.6	5.5	5.5	5.1	5.1	4.4	4.4	3.0	3.0	2.4	2.4	2.4	2.4	2.4
Birch	2.9	2.9	3.8	3.8	3.1	3.1	2.4	2.4	1.6	1.6	0.9	0.9	0.9	0.9	0.9
Aspen	4.7	4.7	5.4	5.4	3.9	3.9	2.7	2.7	1.7	1.7	0.7	0.7	0.7	0.7	0.7
Alder	4.3	4.3	5.7	5.7	3.8	3.8	2.8	2.8	1.8	1.8	1.0	1.0	1.0	1.0	1.0
Other softwoods	3.8	3.8	4.6	4.6	3.5	3.5	2.5	2.5	1.6	1.6	0.8	0.8	0.8	0.8	0.8
Other tree species	3.8	3.8	4.6	4.6	3.5	3.5	2.5	2.5	1.6	1.6	0.8	0.8	0.8	0.8	0.8
Shrubs	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9
South Steppe															
Pine	2.1	2.1	2.9	2.9	2.6	2.6	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1
Spruce	5.6	5.6	7.0	7.0	6.1	6.1	4.8	4.8	3.3	3.3	2.0	2.0	2.0	2.0	2.0
Other conifers	3.9	3.9	5.0	5.0	4.3	4.3	3.5	3.5	2.7	2.7	2.0	2.0	2.0	2.0	2.0
Oak	1.4	1.4	3.9	3.9	3.7	3.7	3.3	3.3	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Beech	1.7	1.7	7.1	7.1	6.4	6.4	5.5	5.5	4.1	4.1	2.8	2.8	2.8	2.8	2.8
Other hardwoods	1.6	1.6	5.5	5.5	5.1	5.1	4.4	4.4	3.0	3.0	2.4	2.4	2.4	2.4	2.4
Birch	2.9	2.9	3.8	3.8	3.1	3.1	2.4	2.4	1.6	1.6	0.9	0.9	0.9	0.9	0.9
Aspen	4.7	4.7	5.4	5.4	3.9	3.9	2.7	2.7	1.7	1.7	0.7	0.7	0.7	0.7	0.7
Alder	4.3	4.3	5.7	5.7	3.8	3.8	2.8	2.8	1.8	1.8	1.0	1.0	1.0	1.0	1.0
Other softwoods	3.8	3.8	4.6	4.6	3.5	3.5	2.5	2.5	1.6	1.6	0.8	0.8	0.8	0.8	0.8
Other tree species	3.8	3.8	4.6	4.6	3.5	3.5	2.5	2.5	1.6	1.6	0.8	0.8	0.8	0.8	0.8
Shrubs	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9
Carpathian Mts.															
Pine	2.9	2.9	4.4	4.4	4.6	4.6	3.7	3.7	3.0	3.0	1.7	1.7	1.7	1.7	1.7
Spruce	5.8	5.8	7.3	7.3	6.4	6.4	5.0	5.0	3.6	3.6	2.2	2.2	2.2	2.2	2.2
Other conifers	4.3	4.3	5.8	5.8	5.5	5.5	4.3	4.3	3.3	3.3	1.9	1.9	1.9	1.9	1.9
Oak	2.9	2.9	4.8	4.8	4.7	4.7	3.7	3.7	2.9	2.9	2.1	2.1	2.1	2.1	2.1

	Age														
	1-10	11-20	21-30	31-40	41-50	51-60	61-70	71-80	81-90	91-100	101-110	111-120	121-130	131-140	141-999
Beech	1.7	1.7	7.1	7.1	6.4	6.4	5.5	5.5	4.1	4.1	2.8	2.8	2.8	2.8	2.8
Other hardwoods	2.5	2.5	5.5	5.5	5.2	5.2	4.3	4.3	3.3	3.3	2.3	2.3	2.3	2.3	2.3
Birch	2.9	2.9	3.8	3.8	3.1	3.1	2.4	2.4	1.6	1.6	0.9	0.9	0.9	0.9	0.9
Aspen	4.7	4.7	5.4	5.4	3.9	3.9	2.7	2.7	1.7	1.7	0.7	0.7	0.7	0.7	0.7
Alder	4.3	4.3	5.7	5.7	3.8	3.8	2.8	2.8	1.8	1.8	1.0	1.0	1.0	1.0	1.0
Other softwoods	3.8	3.8	4.6	4.6	3.5	3.5	2.5	2.5	1.6	1.6	0.8	0.8	0.8	0.8	0.8
Other tree species	3.8	3.8	4.6	4.6	3.5	3.5	2.5	2.5	1.6	1.6	0.8	0.8	0.8	0.8	0.8
Shrubs	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9
Crimean Mts.															
Pine	2.1	2.1	2.9	2.9	2.6	2.6	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1
Spruce	5.5	5.5	6.9	6.9	6.0	6.0	4.7	4.7	3.2	3.2	2.0	2.0	2.0	2.0	2.0
Other conifers	3.8	3.8	4.9	4.9	4.3	4.3	3.4	3.4	2.6	2.6	2.0	2.0	2.0	2.0	2.0
Oak	1.4	1.4	3.9	3.9	3.7	3.7	3.3	3.3	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Beech	1.7	1.7	7.1	7.1	6.4	6.4	5.5	5.5	4.1	4.1	2.8	2.8	2.8	2.8	2.8
Other hardwoods	1.5	1.5	5.4	5.4	5.0	5.0	4.3	4.3	3.0	3.0	2.3	2.3	2.3	2.3	2.3
Birch	2.9	2.9	3.8	3.8	3.1	3.1	2.4	2.4	1.6	1.6	0.9	0.9	0.9	0.9	0.9
Aspen	4.7	4.7	5.4	5.4	3.9	3.9	2.7	2.7	1.7	1.7	0.7	0.7	0.7	0.7	0.7
Alder	4.3	4.3	5.7	5.7	3.8	3.8	2.8	2.8	1.8	1.8	1.0	1.0	1.0	1.0	1.0
Other softwoods	3.8	3.8	4.6	4.6	3.5	3.5	2.5	2.5	1.6	1.6	0.8	0.8	0.8	0.8	0.8
Other tree species	3.8	3.8	4.6	4.6	3.5	3.5	2.5	2.5	1.6	1.6	0.8	0.8	0.8	0.8	0.8
Shrubs	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9

Carbon stock losses were calculated as the sum of losses from harvesting and other losses (equation 2.11 of the 2006 IPCC Guidelines).

GHG emissions from biomass losses reported in CRF Table 4.A include:

- GHG emissions from losses of above-ground biomass from all types of harvesting (excluding wood included into HWP estimations in order to avoid double counting);
- GHG emissions from below-ground biomass losses from all types of harvesting;
- GHG emissions from losses of above-ground and below-ground biomass from disturbances (not including forest fires);
- GHG emissions from below-ground biomass losses from forest fires (emissions from aboveground biomass burning are reported under biomass burning in CRF Table 4(V)).

Data on the amount of annual carbon losses at harvesting were calculated according to equation 2.12 from 2006 IPCC Guidelines.

To estimate the amount of biomass at harvesting, information about logging in forests of Ukraine was used. This information for the period of 1990-2017 was obtained based on data of the State Statistics Service of Ukraine and the State Forest Resources Agency of Ukraine (Table A3.3.5).

Table A3.3.5. Harvesting volumes (total stock), thousand m³

Year	Harvesting volumes, thousand m ³
1990	14127.8
1991	12061.0
1992	12514.2
1993	12497.2
1994	11782.5
1995	11651.3
1996	13782.0
1997	13546.7
1998	11521.1
1999	11244.2
2000	12735.9
2001	13365.4
2002	14692.1
2003	15953.3
2004	17300.7
2005	17124.3
2006	17759.8
2007	19013.9
2008	17687.5
2009	15876.5
2010	18064.6
2011	19746.2
2012	19763.6
2013	20340.6
2014*	20751.5
2015*	22107.9
2016*	22834.6
2017*	22151.2
2018*	22749.2
*Data City Ciaty City C	

^{*}Data of the State Statistic Service of Ukraine, corrected using analytical study [3]

The statistics presented in the total amount of harvested wood. In the 2006 IPCC Guidelines, equation 2.12 implies introduction of biomass conversion and expansion factor for conversion of removals in merchantable volume to total biomass removals (including bark) - BCEF_R. For a number of species (namely - conifers and hardwoods, as indicated in Table 4.5), default factors were used. For softwood species, due to lack of default values, the method of use of biomass expansion factors and wood density was applied (introduced in GHG LULUCF and also available as additional method in 2006 IPCC Guidelines, below equation 2.12). Table A3.3.6 presents factors for specific species.

According to the IPCC, BCEF_R for softwood species was estimated as the ratio of the biomass expansion factor BEF₂ and wood density D. The result of such an assessment is also listed in Table A3.3.5.

Moreover, Table A3.3.6 shows average ratios of below-ground to above-ground biomass. Selection of the BCEF_R factor was justified by the average stand stock in Ukraine in the relevant year. Table A3.3.5 presents values for 2015. It should be noted that apart from hardwood species, for other species this indicator has the same value throughout the time series. Because hardwood species in 1995 had the average stock less than 200 m 3 /ha, the corresponding BCEF_R factor was used (1.17, according to the IPCC, Table 4.5).

1 4010 1 15151	9. 1 		inggroung ironin cronne	DD 1000
	Conversion factor for the entire above- ground biomass by harvesting above- ground biomass BCEF _R	Ratio of below- ground to above- ground biomass R	Biomass expansion factor BEF ₂	Density, D
Pine (Pinus)	0.77	0.16	NA	NA
Spruce (Picea)	0.77	0.14	NA	NA
Fir (Abies)	0.77	0.14	NA	NA
Other conifers	0.77	0.14	NA	NA
Oak (Quercus)	0.89	0.16	NA	NA
Beech (Fagus)	0.89	0.15	NA	NA
Ash (Fraxinus)	0.89	0.15	NA	NA
Hornbeam (Carpinus)	0.89	0.15	NA	NA
Other hardwood	0.89	0.15	NA	NA
Birch (Betula)	0.437	0.12	1.15	0.38
Aspen (Populus)	0.4025	0.12	1.15	0.35
Alder (Alnus)	0.4025	0.12	1.15	0.35
Other softwood	0.4025	0.12	1.15	0.35

Table A3.3.6. Factors used at estimation of GHG emissions from biomass loss

GHG emissions from disturbances were estimated using equation 2.14 of the 2006 IPCC Guidelines, however it was modified for a more accurate account of national circumstances. In particular, the rate of the average amount of above-ground biomass $(B_{\rm w})$ was replaced with the average growing stock, which with the factors from Table A3.3.6 was converted into dry matter.

Considering the proportion of biomass losses as a result of disturbances for 1990-2013 and 2018, it was determined by introducing a correction factor. It was delivered by overlapping data on timber losses due to disturbances, collected by the State Statistic Service of Ukraine, and calculated data losses by multiplying areas of disturbances by average wood stock. Since data on actual wood loss was collected only for 2014-2017 years, correction factor based on comparison for these years was applied for the rest of years, when actual wood loss was unknown from official sources.

Factors for AR Crimea, Sevastopol city, Donetsk and Lugansk regions were accepted as 1.0 because activity data were adjusted to cover entire territory of Ukraine, not covered by official statistics.

For some particular years the correction factors are higher, than 1.0. This is seen as actual losses of wood per ha is higher than average wood stock per ha in that region. Taking into account, that it is common that middle-age and old stands are more frequently affected by disturbances, the factor higher than 1.0 is possible.

Table A3.3.7. Determination of the correction factor relative to actual losses of wood at disturbance events based on data for 2014-2017 years

Region	Estimated loss of erage values of	f wood with avgrowing stock,		wood according orting 3-LG*, m ³	Correction factor			
	Coniferous	Deciduous	Coniferous	Deciduous	Coniferous	Deciduous		
			2014					
Ukraine	3630989	560867	2774685	687080				
AR Crimea			4233	4246	1.00	1.00		
Vinnytska 102170 13		13681	33773	5227	0.33	0.38		

Region		of wood with av-	Actual losses of to statistical repo		Correction factor		
	Coniferous	Deciduous	Coniferous	Deciduous	Coniferous	Deciduous	
Volynska	285141	48476	151887	36164	0.53	0.75	
Dnipropetrovska	2658	5813	1558	4468	0.59	0.77	
Donetska	4889	8825	42369	76485	8.67	8.67	
Zhytomyrska	355567	6778	246098	6267	0.69	0.92	
Transcarpathian	598721	143109	518837	195002	0.87	1.36	
Zaporizhska	39	770	41	784	1.06	1.02	
Ivano-Frankivska	349391	5356	281079	6342	0.80	1.18	
Kyivska	221	45	283	82	1.28	1.84	
Kirovohradska	11796	88273	10699	91885	0.91	1.04	
Luganska	47632	17609	145095	53641	3.05	3.05	
Lvivska	237573	30342	120644	19896	0.51	0.66	
Mykolaivska	2047	14177	1435	12913	0.70	0.91	
Odesska	703	52025	1002	51526	1.43	0.99	
Poltavska	0	0	0	0			
Rivnenska	565306	21187	361086	17218	0.64	0.81	
Sumska	151998	11790	122626	13940	0.81	1.18	
Ternopilska	11487	18201	7280	15014	0.63	0.82	
Kharkivska	4763	902	2891	710	0.61	0.79	
Khersonska	19751 76119	7886 17676	217 70595	119 23830	0.01 0.93	0.02 1.35	
Khmelnytska					0.93		
Cherkaska Cherniyetska	151257 308745	26774 16592	112848 257308	26492 18411	0.75	0.99 1.11	
Chernilvetska	318515	4582	257488	5524	0.83	1.11	
Kyiv city	24501	0	22982	0	0.81	1.21	
Sevastopol	0	0	332	893	1.00	1.00	
Sevasiopoi	0	0	2015	673	1.00	1.00	
Ukraine	4371450	798548	3040252	832883			
AR Crimea	0	0	4634	5132	1.00	1.00	
Vinnytska	22414	3212	18044	2793	0.81	0.87	
Volynska	355033	57198	211620	50386	0.60	0.88	
Dnipropetrovska	1506	2771	998	2860	0.66	1.03	
Donetska	422	674	46385	92444	109.97	137.15	
Zhytomyrska	458244	8604	287793	7329	0.63	0.85	
Transcarpathian	680116	219726	619793	232946	0.91	1.06	
Zaporizhska	55	640	55	1045	1.01	1.63	
Ivano-Frankivska	367586	6403	294690	6649	0.80	1.04	
Kyivska	76800	16050	25749	7498	0.34	0.47	
Kirovohradska	16051	119302	16046	137804	1.00	1.16	
Luganska	267497	90344	158848	64833	0.59	0.72	
Lvivska	346527	51482	279631	46115	0.81	0.90	
Mykolaivska	2403	25115	1855	16699	0.77	0.66	
Odesska	1478	43188	910	46787	0.62	1.08	
Poltavska	0	0	0	0			
Rivnenska	964929	35222	457292	21805	0.47	0.62	
Sumska	63097	5397	78593	8934	1.25	1.66	
Ternopilska	13324	20093	6393	13187	0.48	0.66	
Kharkivska	0	0	0	0	0.00	0.00	
Khersonska	99589	43586	0	0	0.00	0.00	
Khmelnytska	42786	8882	84222	28429	1.97	3.20	
Cherkaska	149836	25551	97965	22999	0.65	0.90 1.04	
Chernivetska Chernihivska	194291 217142	11122 3985	161888 165345	11584 3547	0.83 0.76	0.89	
Kyiv city	30324	3985	21140	0	0.76	0.89	
Sevastopol	0	0	363	1079	1.00	1.00	
Бечаморог	U	<u> </u>	2016	10/7	1.00	1.00	
Ukraine	4182795	619240	3351330	685789			
AR Crimea	0	0	5086	4188	1.00	1.00	
Vinnytska	8400	1207	5916	915	0.70	0.76	
Volynska	470873	76029	265327	63173	0.56	0.83	
Dnipropetrovska	8342	15986	3334	9558	0.40	0.60	
Donetska	1706	2821	50901	75447	29.84	26.75	
Zhytomyrska	556037	10469	367150	9350	0.66	0.89	
		211051	606784	228057	0.93	1.08	
Transcarpathian	655524	211031	000764	228037	0.53	1.00	
Transcarpathian Zaporizhska	0	0	0	0	0.93	1.00	

Region	Estimated loss of erage values of	growing stock,	Actual losses of to statistical repo	wood according orting 3-LG*, m ³	Correction factor			
	Coniferous	Deciduous	Coniferous	Deciduous	Coniferous	Deciduous		
Kyivska	14217	2963	5523	1608	0.39	0.54		
Kirovohradska	650	4817	375	3225	0.58	0.67		
Luganska	32143	11351	174314	52913	5.42	4.66		
Lvivska	284707	43438	237641	39190	0.83	0.90		
Mykolaivska	1796	9946	1099	9887	0.61	0.99		
Odesska	1307	86271	1240	63762	0.95	0.74		
Poltavska Rivnenska	978442	0 35462	0 752344	0 35875	0.77	1.01		
Sumska	91093	7594	72138	8201	0.77	1.01		
Ternopilska	7708	12499	5437	11214	0.79	0.90		
Kharkivska	0	0	0	0	0.71	0.90		
Khersonska	53330	18622	2327	1283	0.04	0.07		
Khmelnytska	92933	22876	76948	25974	0.83	1.14		
Cherkaska	141568	26625	93859	22035	0.66	0.83		
Chernivetska	147394	9173	108557	7768	0.74	0.85		
Chernihivska	363064	5214	293188	6290	0.81	1.21		
Kyiv city	0	0	0	0	0.01	1.21		
Sevastopol	0	0	399	881	1.00	1.00		
ээтиморог		<u> </u>	2017	001	1.00	1.00		
Ukraine	2430133	440791	1857200	515063				
AR Crimea	0	0	3165	14691	1.00	1.00		
Vinnytska	4994	718	4785	741	0.96	1.03		
Volynska	611952	98809	437260	104109	0.71	1.05		
Dnipropetrovska	463	888	453	1299	0.98	1.46		
Donetska	14997	24801	31679	64946	2.11	2.62		
Zhytomyrska	191485	3605	118732	3024	0.62	0.84		
Transcarpathian	300094	96618	248345	93339	0.83	0.97		
Zaporizhska	0	0	0	0				
Ivano-Frankivska	52085	925	46276	1044	0.89	1.13		
Kyivska	261631	54537	175882	51219	0.67	0.94		
Kirovohradska	1903	14108	2379	20435	1.25	1.45		
Luganska	45210	15966	108487	45548	2.40	2.85		
Lvivska	172400	26304	106354	17539	0.62	0.67		
Mykolaivska	198	1097	197	1769	0.99	1.61		
Odesska	599	39523	956	49153	1.60	1.24		
Poltavska	0	0	0	0				
Rivnenska	555615	20137	451104	21510	0.81	1.07		
Sumska	1681	140	1734	197	1.03	1.41		
Ternopilska	90	145	156	323	1.75	2.22		
Kharkivska	0	0	0	0				
Khersonska	47577	16614	0	0	0.00	0.00		
Khmelnytska	69472	17101	47078	15891	0.68	0.93		
Cherkaska	40347	7588	27072	6355	0.67	0.84		
Chernivetska	9883	615	7512	537	0.76	0.87		
Chernihivska	38576	554	29618	635	0.77	1.15		
Kyiv city	8882	0	7729	0	0.87			
Sevastopol	0	0	248	758	1.00	1.00		
			Average					
Ukraine	-	1	-	-	-	-		
AR Crimea	-	1	-	-	1.00	1.00		
Vinnytska	-	ı	-	-	0.70	0.76		
Volynska	-	-	-	-	0.60	0.88		
Dnipropetrovska	-	-	-	-	0.66	0.97		
Donetska	-	-	-	-	1.00	1.00		
Zhytomyrska	-	-	-	-	0.65	0.88		
Transcarpathian	-	-	-	-	0.88	1.12		
Zaporizhska	-	-	-	-	1.03	1.33		
Ivano-Frankivska	-	-	-	-	0.83	1.10		
Kyivska	-	-	-	-	0.67	0.95		
Kirovohradska	-	-	-	-	0.93	1.08		
Luganska	-	1	-	-	1.00	1.00		
Lvivska	-	-	-	-	0.69	0.78		
Mykolaivska	-	-	-	-	0.77	1.05		
						4.04		
Odesska Poltavska	-	-	-	-	1.15 1.00	1.01		

Region	Estimated loss of erage values of	growing stock,		wood according orting 3-LG*, m ³	Correction factor			
	Coniferous	Deciduous	Coniferous	Deciduous	Coniferous	Deciduous		
Rivnenska	-	-	-	-	0.67	0.88		
Sumska	-	-	-	-	0.97	1.33		
Ternopilska	-	-	-	-	0.89	1.15		
Kharkivska	-	-	-	-	0.61	0.79		
Khersonska	-	-	-	-	0.01	0.02		
Khmelnytska	-	-	-	-	1.10	1.65		
Cherkaska	-	-	-	-	0.68	0.89		
Chernivetska	-	-	-	-	0.79	0.97		
Chernihivska	-	-	-	-	0.79	1.11		
Kyiv city	-	-	-	-	0.84	1.00		
Sevastopol	-	-	-	-	1.00	1.00		

^{*}statistical form data were adjusted for Crimea and the city of Sevastopol, Donestk and Lugansk regions

Table A3.3.8. Average stock of forest stands in forests of the State Forest Resources Agency of Ukraine, m³/ha

		1995			2001			2007			2008	- ,	2009		
Region	Conifer-	Hard-	Soft-												
	ous	wood	wood												
Ukraine, in	239	106	150	262	214		277	222	173	270	220	171	279	226	1(0
average	239	196	156	262	214	167	277	222	1/3	279	230	171	278	226	169
AR Crimea	126	147	219	143	150	225	165	156	240	168	158	243	173	159	246
Vinnytska	220	203	211	229	216	188	256	227	200	257	229	205	262	231	205
Volynska	205	162	142	230	176	150	244	187	149	248	190	151	252	193	153
Dniprope- trovska	131	115	198	161	133	219	190	149	232	195	152	236	202	155	239
Donetska	186	135	211	184	147	209	206	152	188	211	151	190	214	154	192
Zhytomyrska	222	181	161	245	213	172	268	224	180	261	227	162	262	228	163
Transcarpa- thian	415	312	194	399	330	188	418	345	177	421	346	181	427	350	186
Zaporizhska	73	73	182	90	75	211	122	89	248	97	71	169	101	70	171
Ivano-Frank- ivska	259	196	144	306	237	161	325	255	180	322	236	189	303	245	162
Kyivska	254	198	154	279	211	170	294	218	174	292	220	175	295	221	177
Kirovohradska	183	188	185	183	190	167	196	187	182	188	181	161	192	183	163
Luganska	182	119	160	208	132	177	216	126	172	220	133	162	223	132	161
Lvivska	268	215	144	289	190	157	282	253	170	287	256	173	291	259	176
Mykolaivska	96	78	148	120	91	153	133	99	127	136	100	129	141	103	131
Odesska	61	142	155	68	143	175	93	142	186	98	145	186	102	147	190
Poltavska	248	176	177	256	192	191	272	206	197	271	200	191	279	207	187
Rivnenska	183	160	140	208	174	146	220	180	154	223	182	157	212	188	141
Sumska	301	219	163	331	236	185	336	258	192	348	261	194	347	265	200
Ternopilska	361	203	202	237	183	192	259	201	192	264	203	195	268	205	199
Kharkivska	247	186	185	270	203	193	289	218	213	291	220	216	295	223	221
Khersonska	86	104	193	109	111	211	127	75	131	130	76	133	135	77	135
Khmelnytska	242	189	177	266	199	182	292	210	196	296	212	196	299	214	198
Cherkaska	254	208	169	272	215	183	288	226	200	291	228	204	293	231	206
Chernivetska	345	230	202	341	269	189	350	282	204	350	284	209	353	287	212
Chernihivska	269	182	166	305	212	152	327	228	192	330	232	194	333	235	197
Kyiv city	254	198	154	279	211	170	294	218	174	292	220	175	295	221	177
Sevastopol	60	90	140	89	111	208	111	120	270	115	122	274	119	123	278

		2010			2011			2012			2013			2014	
Region	Conifer-	Hard-	Soft-												
	ous	wood	wood												
Ukraine, in average	274	223	162	277	228	171	277	230	171	279	229	172	280	231	174
AR Crimea	190	166	255	182	162	252	173	158	212	173	158	212	182	161	217
Vinnytska	238	220	181	251	235	197	256	238	200	259	240	205	259	242	207
Volynska	240	193	148	260	198	159	241	198	147	246	201	150	250	204	153
Dniprope- trovska	216	161	230	215	161	245	220	164	249	226	149	200	234	152	205
Donetska	229	158	200	217	158	195	220	161	198	221	162	200	223	164	203
Zhytomyrska	257	224	155	268	232	167	271	233	168	271	235	171	272	236	171
Transcarpa- thian	381	318	117	398	342	154	403	346	159	406	349	163	408	352	167
Zaporizhska	106	72	176	112	75	179	118	76	183	125	77	187	130	79	191
Ivano-Frank- ivska	316	251	159	313	252	170	318	255	173	321	258	177	325	260	181
Kyivska	293	216	159	301	224	182	302	226	185	304	228	188	285	225	171
Kirovohradska	199	185	167	204	186	171	210	188	176	215	189	180	212	189	181
Luganska	223	134	164	217	135	161	220	138	164	222	140	166	225	143	168
Lvivska	277	247	146	282	262	171	285	265	174	288	268	177	290	270	180
Mykolaivska	146	105	136	150	108	138	152	109	143	119	73	113	125	75	118
Odesska	106	151	193	111	151	193	114	153	195	99	135	162	105	137	165
Poltavska	280	210	194	285	214	194	273	215	193	275	217	197	278	220	201
Rivnenska	210	184	138	219	194	147	222	196	150	224	198	153	226	200	156
Sumska	332	238	183	354	272	208	358	275	211	363	278	215	366	281	219
Ternopilska	234	202	161	274	210	204	278	211	206	258	208	194	265	210	196
Kharkivska	288	224	207	290	226	213	293	229	217	295	232	221	297	233	224
Khersonska	139	75	136	143	76	138	144	77	140	142	76	139	153	79	143
Khmelnytska	275	204	179	287	217	179	292	219	181	296	221	184	298	223	187
Cherkaska	292	231	209	298	235	213	301	237	216	277	229	190	282	231	194
Chernivetska	306	265	170	314	276	176	314	279	183	315	280	185	313	281	188
Chernihivska	325	228	192	313	232	185	318	235	188	322	238	192	326	241	197
Kyiv city	293	216	159	301	224	182	302	226	185	304	228	188	285	225	171
Sevastopol	123	124	280	120	122	279	124	124	263	124	124	263	133	127	270

ъ.	2015	5	20	16	20	17	2018		
Region	Coniferous	Decidious	Coniferous	Decidious	Coniferous	Decidious	Coniferous	Decidious	
Ukraine, in average	281	219	284	224	280	220	279	223	
AR Crimea	168	154	174	160	173	153	172	158	
Vinnytska	261	242	262	243	262	243	263	246	
Volynska	252	170	252	171	255	172	258	175	
Dnipropetrovska	253	162	256	171	267	168	276	176	
Donetska	225	163	227	171	229	167	225	172	
Zhytomyrska	275	203	278	205	278	206	252	186	
Transcarpathian	410	352	418	358	396	336	397	339	
Zaporizhska	137	84	145	92	146	87	149	90	
Ivano-Frankivska	327	253	335	264	334	259	338	268	
Kyivska	287	206	296	212	292	212	295	216	
Kirovohradska	219	189	222	192	226	187	229	191	
Luganska	232	146	230	152	225	151	227	155	
Lvivska	287	258	287	265	286	265	290	268	
Mykolaivska	101	118	132	81	124	109	139	83	
Odesska	131	74	113	144	131	74	112	142	
Poltavska	112	137	283	221	112	137	259	215	
Rivnenska	280	214	229	174	253	210	230	175	
Sumska	228	172	374	275	224	168	336	264	
Ternopilska	368	269	274	216	331	260	278	219	
Kharkivska	268	212	297	241	276	217	300	243	
Khersonska	295	234	142	90	299	240	136	76	
Khmelnytska	139	85	305	222	139	80	304	223	
Cherkaska	299	217	291	233	302	221	296	237	
Chernivetska	286	229	303	263	293	233	302	260	
Chernihivska	308	264	331	222	300	259	332	227	
Kyiv city	287	206	296	212	330	221	295	216	
Sevastopol	168	154	124	125	173	153	124	124	

The average stock of stem wood in forested forest land of the State Forest Resources Agency of Ukraine is presented in Table A3.3.8. It should be noted that before 2007 the average stock was determined with the same frequency as the forest inventory was held. To obtain the data for the other years, the methods of interpolation and extrapolation were used.

Emissions from above-ground biomass due to fires are not included into 4.A CSC in Forest Land CRF reporting table and were reported separately in the CRF reporting Table 4(V).

Forest fires in Ukraine traditionally are divided into 3 groups according to burnt biomass:

- Ground fires only the litter burns, wood is not damaged or slightly damaged;
- Crown fires litter and wood burn;
- Underground fires the organic matter (peat) burns.

Data on fires are provided by the State Statistical Service of Ukraine in statistical form 3-lg. Information on fires for years 1990-2017 is presented in Table A3.3.9. It should be noticed that for the years 2014-2017 the data was corrected using analytical study.

For 2018 the State Statistical Service of Ukraine stopped to collect data on forest fires. Thus, the data on areas of forest fires were obtained from the State Forestry Agency of Ukraine. The data on burnt and damaged wood were calculated based on area of crown fires and average stock per hectare, contained in table A3.3.8.

Table A3.3.9. Area covered by forest fires and completely burned harvested forest products

	Area c	overed by forest fire			Burnt and dam-			
Year	Ground	Crown	Underground	Burnt and damaged standing timber, m ³	aged harvested wood products, m ³			
1990	1375	1012	1	79236	673			
1991	1042	665	10	38051	241			
1992	3318	672	111	77758	241			
1993	2415	712	51	174354	155			
1994	6071	3432	537	391159	840			
1995	2095	1416	26	145400	2247			
1996	7163	5466	42	308543	4169			
1997	1355	110	2	11806	44			
1998	3208	1208	2	123034	326			
1999	2896	2632	14	163858	2863			
2000	1386	222	2	20249	398			
2001	1992	1770	3	139604	955			
2002	4245	657	64	59206	417			
2003	2406	359	49	19720	351			
2004	536	37	1	1944	28			
2005	2006	294	9	32101	90			
2006	3729	557	1	53119	7039			
2007	6238	7549		1304271	3952			
2008	4218	1311		395257	7572			
2009	5300	1010	5	223764	2832			
2010	2697	966	5	343840	677			
2011	979	70		11804	2405			
2012	1611	1866	2	289291	999			
2013	409	8	1	2496	1340			
2014*	12897	912	4	144975	1265			
2015*	14471	354	27	170967	10387			
2016*	1789	166	0	32840	257			
2017*	4830	1128	0	150056	82			
2018*	1115	272	0	38851	-			
*Data corrected us	Data corrected using analytical study [3]							

To estimate carbon emissions from fires, equation 2.14 of 2006 IPCC Guidelines was adapted to the above-mentioned classification (table A3.3.9). Accordingly, the emissions were estimated using the following method:

$$L_{fires} = (L_{ground} + L_{crown} + L_{underground} + L_{harvested}) \times G_{ef} \times 10^{-6}$$
 (A3.3.1)

where L_{fires} – total emissions from fires, kt C;

 L_{around} – biomass losses in ground fires, t d.m.;

 L_{crown} – biomass losses in crown fires, t d.m.;

 $L_{underground}$ – biomass losses in underground fires, t d.m.;

 $L_{harvested}$ – losses of harvested wood products, t d.m;

G_{ef} – EFs of gasses, kg/ t d.m.

Each component of equation A3.3.1 was respectively defined as:

$$L_{ground} = A_{ground} \times B_{litter} \times CF_{organic\ matter}$$
 (A3.3.2)

$$L_{crown} = A_{crown} \times B_{litter} \times CF_{organic\ matter} + + W_{wood} \times BCEF_R \times (1+R) \times C_f \times CF$$
(A3.3.3)

$$L_{underground} = A_{underground} \times B_{organic \ matter} \times CF_{organic \ matter}$$
 (A3.3.4)

$$L_{harvested} = W_{harvested} \times D \times CF \tag{A3.3.5}$$

where A is the area affected by fires: respectively, ground, crown, and underground ones, ha;

B_{litter} - litter stock burned in fire, t of d.s./ha;

CF_{organic matter} - the fraction of carbon in litter and organic matter, t C/t d.m.;

W_{wood} - the amount of burnt and damaged wood, m³;

BCEF_R - coefficient accounting for the entire above-ground biomass by removed above-ground biomass, dimensionless;

R - the ratio of below-ground to above-ground biomass, dimensionless;

C_f - the fraction of biomass lost in fires, dimensionless;

CF - carbon content in dry matter of wood (the value by default is 0.47), t C/t d.m.;

Borganic matter - the organic matter burned in fire, t d.m./ha;

Wharvested - the amount of burnt harvested wood, m³;

D - the average density of wood, t d.m./m³.

According to national studies [10], the following values were applied: $B_{litter} = 10 \text{ t/ha}$, $B_{organic\ matter} = 100 \text{ t/ha}$; $CF_{organic\ matter} = 0.37$, $f_d = 0.7$, besides, the average value of D density values were determined based on density of individual species (listed in Table A3.3.6) and the ratio of coniferous/deciduous trees for particular years, as data on fires do not include a breakdown by species. The same $BSEF_R$ and R ratios were used as for biomass losses (see Table A3.3.6). G_{ef} coefficients were taken by default from Table 2.5 of 2006 IPCC.

During crown fires in standings it is assumed that all biomass is lost – above- and below-ground. But with aim to be consistent in reporting (GHG emissions from biomass losses – Table 4.A, emissions from actual burning – Table 4(V)), losses from below-ground biomass, above-ground part of which was burnt, were included in GHG emissions in Forest land table (CRF Table 4.A).

With aim to assess below-ground losses from fires part of equation A3.3.3 on burnt wood estimation was used, but the ratios of below-ground to above-ground biomass were applied from Table A.3.3.4.

CO₂ emissions from liming on forest land were not calculated, since this type of activity is not performed in the forestry in Ukraine.

 N_2O emissions from fertilizer application were not estimated due to lack of fertilizer application in forestry in Ukraine.

 N_2O emissions from drainage of organic soils were calculated using the default coefficient [1] and are presented in CRF Table 5(II).

On the lands converted to forests, carbon emission/removal estimations in living biomass estimates were conducted similarly to estimations for sub-category 4.A.1, but with application of biomass growth rates for Land converted to forest land (Table A3.3.10).

Table A3.3.10. Biomass growth by natural zones and species for Land converted to forest land (national data), t/ha/yr

Natural zones and species	Increase in above-	Ratio of below-ground and above-ground bio-	Aggregated value of the factors adopted for esti-
Natural zones and species	ground biomass	mass growth	mation
		mass grower	Polissia
Pine	3.1	0.20	3.72
Spruce	4.8	0.30	6.24
Other conifers	3.4	0.20	4.08
Oak	2.5	0.25	3.13
Other hardwood	2.4	0.24	2.98
Birch	2.6	0.15	2.99
Alder	3.8	0.15	4.37
Aspen	4.2	0.15	4.83
Other softwood	4.0	0.15	4.60
Other tree species	3.4	0.15	3.91
			Forest Steppe
Pine	2.5	0.20	3.00
Spruce	4.4	0.30	5.72
Other conifers	3.4	0.20	4.08
Oak	2.6	0.25	3.25
Beech	1.6	0.22	1.95
Other hardwood	2.0	0.20	2.40
Birch	2.6	0.20	3.12
Alder	3.8	0.20	4.56
Aspen	4.2	0.20	5.04
Other softwood	4.0	0.20	4.80
Other tree species	3.4	0.20	4.08
D.	2.0	0.22	North Steppe
Pine	2.0	0.22	2.44
Oak	1.4	0.27	1.78
Other hardwood	1.5	0.25	1.88
Birch	2.5	0.21	3.03
Alder	3.6	0.21 0.21	4.36
Aspen Other softwood	4.0	0.21	4.84 4.56
	3.2	0.20	3.84
Other tree species	3.2	0.20	South Steppe
Pine	1.6	0.22	1.95
Oak	1.2	0.28	1.54
Other hardwood	1.4	0.25	1.75
Birch	2.4	0.20	2.88
Alder	3.5	0.20	4.20
Other softwood	3.6	0.20	4.32
Other tree species	3.2	0.20	3.84
¥ *** ***		1	Carpathian Mts.
Pine	2.4	0.20	2.88
Spruce	5.0	0.30	6.50
Other conifers	4.8	0.20	5.76
Oak	1.6	0.25	2.00
Beech	1.8	0.22	2.20
Other hardwood	1.5	0.20	1.80
Birch	2.6	0.20	3.12
Alder	3.8	0.20	4.56
Aspen	4.2	0.20	5.04
Other softwood	4.0	0.20	4.80
Other tree species	3.4	0.20	4.08
			<u>Crimean Mts.</u>
Pine	1.6	0.20	1.92
Oak	1.4	0.26	1.76
Beech	1.5	0.24	1.86
Other hardwood	1.6	0.24	1.98

Natural zones and species	Increase in above- ground biomass	Ratio of below-ground and above-ground bio- mass growth	Aggregated value of the factors adopted for esti- mation
Aspen	3.2	0.20	3.84
Other softwood	2.8	0.20	3.36
Other tree species	2.6	0.20	3.12
Shrubs (all zones)	0.4	0.20	0.5

Annual changes in carbon stocks in dead organic matter pool were calculated using Tier 1 method and default EFs. Until new approach for DOM CSC estimations will be delivered it is assumed to have Carbon balance in DOM pool for Forest land remaining Forest land. For Land converted to Forest land equation 2.23 of IPCC 2006 was used with default EFs (table 2.2). This approach was used consistently for entire time series for any conversions to and from Forest land.

Estimation of carbon stock changes in soils for forest land remaining forest land was not performed, since national studies confirm stable carbon stocks in forest soils [4]. It was also assumed that after a period of conversion from sub-category 4.A.2 to 4.A.1, in those areas a stable stock of carbon in soil is formed as well, so the carbon balance was also taken to be zero.

Estimation of carbon stock change in SOM pool of Land converted to forest land was held under Tier 1 with application of default factors. Ukraine made an estimation of soils based on data from Harmonized World Soil Database v.1.2 for use of Table 2.3 of 2006 IPCC guidelines. The exact soil types were selected as included into description of Table 2.3 of IPCC 2006. The following results were observed.

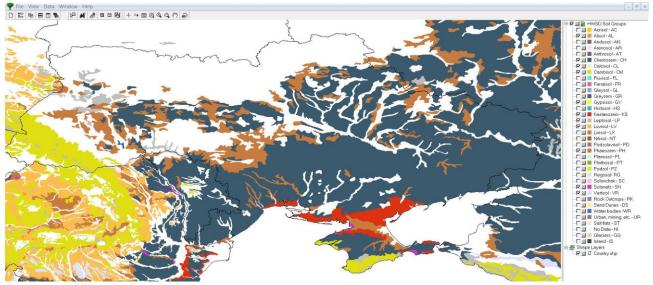
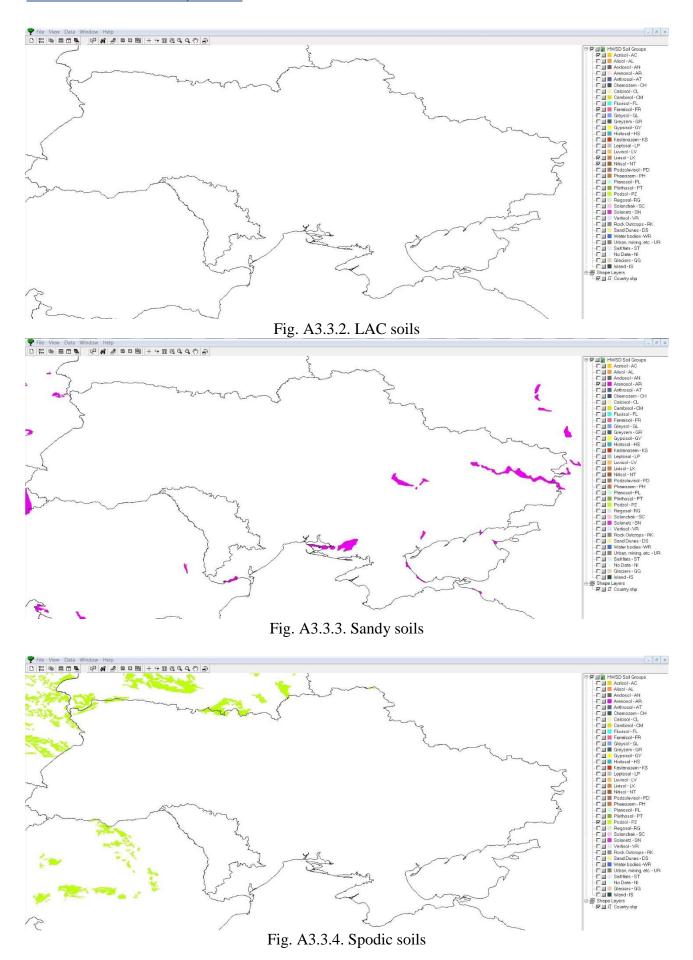
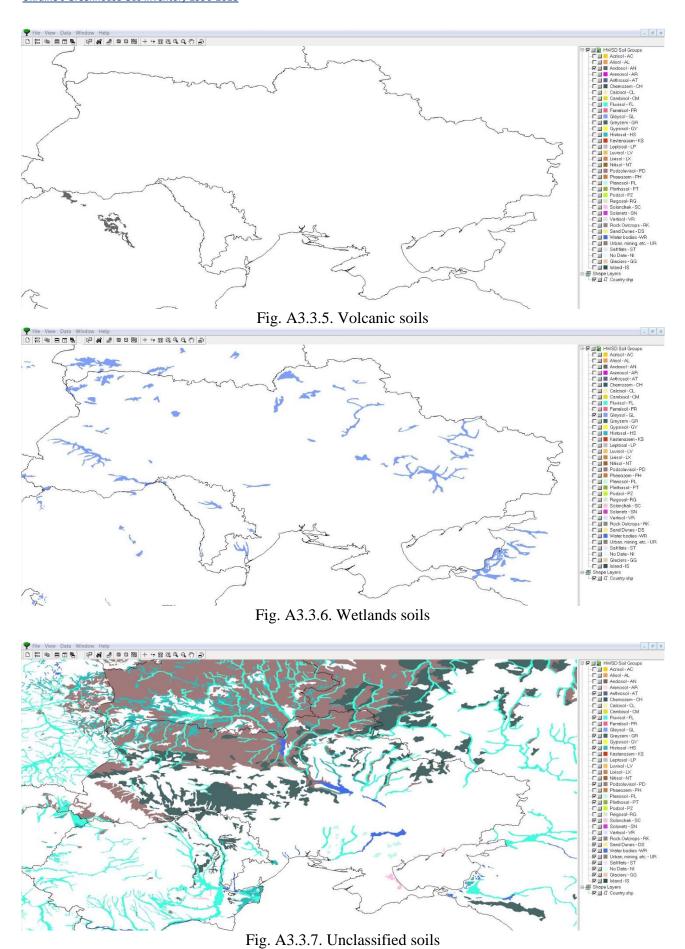
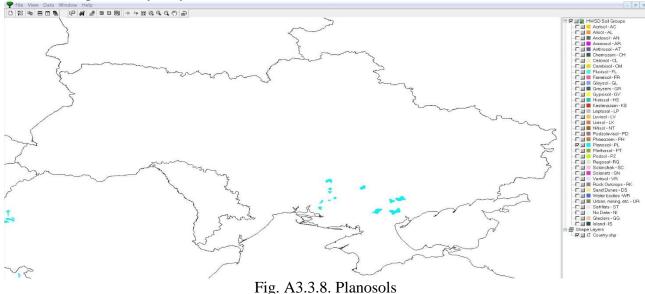




Fig. A3.3.1. HAC soils



Among soils, not classified clearly by IPCC:

a) Anthrosol – absent in Ukraine;

- b) Fluvisol in Ukraine clearly common alongside rivers. According to the HWSD, sand content is 80 %, clay is 8 %, so it's a sandy soil, in accordance with guidance from fig. 3A.5.3 of IPCC 2006.
- c) Greyzem in the current FAO classification it is included into Phaeozems, which are HAC
- d) Histosols organic soils;
- e) Podzoluvisols in the current FAO classification included into Albeluvisols, which are HAC
- f) Planosols low sand content (14 %) and high clay content (41 %) in 0-30 cm layer. Literature sources indicates its low C-content, thus potentially SOCref for this soil might be taken as for LAC soils;
- g) Plinthosols absent in Ukraine;
- h) Solonchak commonly grouped with Solonetz soils, it is expected to be included into the same group of soils by C content in 30 cm layer (HAC soils).

So, potentially only Planosols could be LAC soils.

Based on that, the absolute majority of mineral soils in Ukraine are HAC soils. Thus conservatively all conversions between land-use categories consider to occur on HAC soils.

Direct and indirect nitrogen emissions from mineralization from land conversion to forest land emissions were estimated using the Tier 1 method (equations 11.1 and 11.8 of the 2006 IPCC Guidelines). However due to Carbon stock gains on lands converted to Forest Land, these emissions do not occur.

A3.3.2 Methodological issues for the land-use categories Cropland and Grassland

Information on areas in the Cropland category was taken from statistical reporting form 16zem, and from the land-use change matrix (Table 6.4) the areas of land converted to cropland were used.

To determine carbon stock changes in living biomass, the area of perennial fruit trees from form 16-zem and default EFs were used [1]. In Ukrainian statistics, there are no data on the dynamics of the areas of orchards, 6-zem form provides total area only.

To perform calculations of CSC the total area of orchards of 1990 was divided equally by default 30-year living cycle according to 2006 IPCC (see table A3.3.11). Any changes in the total area from 16-zem form was interpret as increase or decrease of planting of perennial woody vegetation, resulting in corresponding increase or decrease of 1-year old area of plants.

To calculate losses 30-year old vegetation area was used as well as default carbon stock from Table 5.1 of Chapter 4 Volume 4 of 2006 IPCC Guidelines.

Table A3.3.11. Distribution of orchards areas by age and corresponding emissions, kha

			ISHIDUHO													
Age	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005
1	28.37	19.37	20.37	34.67	20.47	12.77	20.27	8.32	8.32	20.22	20.22	22.57	21.37	23.57	23.97	26.47
2	28.37	28.37	19.37	20.37	34.67	20.47	12.77	20.27	8.32	8.32	20.22	20.22	22.57	21.37	23.57	23.97
3	28.37	28.37	28.37	19.37	20.37	34.67	20.47	12.77	20.27	8.32	8.32	20.22	20.22	22.57	21.37	23.57
4	28.37	28.37	28.37	28.37	19.37	20.37	34.67	20.47	12.77	20.27	8.32	8.32	20.22	20.22	22.57	21.37
5	28.37	28.37	28.37	28.37	28.37	19.37	20.37	34.67	20.47	12.77	20.27	8.32	8.32	20.22	20.22	22.57
6	28.37	28.37	28.37	28.37	28.37	28.37	19.37	20.37	34.67	20.47	12.77	20.27	8.32	8.32	20.22	20.22
7	28.37	28.37	28.37	28.37	28.37	28.37	28.37	19.37	20.37	34.67	20.47	12.77	20.27	8.32	8.32	20.22
8	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	19.37	20.37	34.67	20.47	12.77	20.27	8.32	8.32
9	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	19.37	20.37	34.67	20.47	12.77	20.27	8.32
10	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	19.37	20.37	34.67	20.47	12.77	20.27
11	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	19.37	20.37	34.67	20.47	12.77
12	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	19.37	20.37	34.67	20.47
13	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	19.37	20.37	34.67
14	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	19.37	20.37
15	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	19.37
16	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37
17	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37
18	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37
19	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37
20	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37
21	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37
22	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37
23	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37
24	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37
25	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37
26	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37
27	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37
28	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37
29	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37
30	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37
Gains, kt C	1787.10	1768.20	1751.40	1764.63	1748.04	1715.28	1698.27	1656.17	1614.06	1596.95	1579.83	1567.65	1552.95	1542.87	1533.63	1529.64
Losses, kt C	-1787.10	-1787.10	-1787.10	-1787.10	-1787.10	-1787.10	-1787.10	-1787.10	-1787.10	-1787.10	-1787.10	-1787.10	-1787.10	-1787.10	-1787.10	-1787.10

Age	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018
1	26.07	29.67	28.67	27.57	27.97	29.57	28.37	28.07	28.77	27.77	28.37	28.37	28.37
2	26.47	26.07	29.67	28.67	27.57	27.97	29.57	28.37	28.07	28.77	27.77	28.37	28.37
3	23.97	26.47	26.07	29.67	28.67	27.57	27.97	29.57	28.37	28.07	28.77	27.77	28.37
4	23.57	23.97	26.47	26.07	29.67	28.67	27.57	27.97	29.57	28.37	28.07	28.77	27.77
5	21.37	23.57	23.97	26.47	26.07	29.67	28.67	27.57	27.97	29.57	28.37	28.07	28.77
6	22.57	21.37	23.57	23.97	26.47	26.07	29.67	28.67	27.57	27.97	29.57	28.37	28.07
7	20.22	22.57	21.37	23.57	23.97	26.47	26.07	29.67	28.67	27.57	27.97	29.57	28.37
8	20.22	20.22	22.57	21.37	23.57	23.97	26.47	26.07	29.67	28.67	27.57	27.97	29.57
9	8.32	20.22	20.22	22.57	21.37	23.57	23.97	26.47	26.07	29.67	28.67	27.57	27.97
10	8.32	8.32	20.22	20.22	22.57	21.37	23.57	23.97	26.47	26.07	29.67	28.67	27.57
11	20.27	8.32	8.32	20.22	20.22	22.57	21.37	23.57	23.97	26.47	26.07	29.67	28.67
12	12.77	20.27	8.32	8.32	20.22	20.22	22.57	21.37	23.57	23.97	26.47	26.07	29.67
13	20.47	12.77	20.27	8.32	8.32	20.22	20.22	22.57	21.37	23.57	23.97	26.47	26.07
14	34.67	20.47	12.77	20.27	8.32	8.32	20.22	20.22	22.57	21.37	23.57	23.97	26.47
15	20.37	34.67	20.47	12.77	20.27	8.32	8.32	20.22	20.22	22.57	21.37	23.57	23.97
16	19.37	20.37	34.67	20.47	12.77	20.27	8.32	8.32	20.22	20.22	22.57	21.37	23.57
17	28.37	19.37	20.37	34.67	20.47	12.77	20.27	8.32	8.32	20.22	20.22	22.57	21.37
18	28.37	28.37	19.37	20.37	34.67	20.47	12.77	20.27	8.32	8.32	20.22	20.22	22.57
19	28.37	28.37	28.37	19.37	20.37	34.67	20.47	12.77	20.27	8.32	8.32	20.22	20.22
20	28.37	28.37	28.37	28.37	19.37	20.37	34.67	20.47	12.77	20.27	8.32	8.32	20.22
21	28.37	28.37	28.37	28.37	28.37	19.37	20.37	34.67	20.47	12.77	20.27	8.32	8.32
22	28.37	28.37	28.37	28.37	28.37	28.37	19.37	20.37	34.67	20.47	12.77	20.27	8.32
23	28.37	28.37	28.37	28.37	28.37	28.37	28.37	19.37	20.37	34.67	20.47	12.77	20.27
24	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	19.37	20.37	34.67	20.47	12.77
25	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	19.37	20.37	34.67	20.47
26	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	19.37	20.37	34.67
27	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	19.37	20.37
28	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	19.37
29	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37
30	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37
Gains, kt C	1524.81	1527.54	1528.17	1526.49	1525.65	1528.17	1528.17	1527.54	1528.38	1527.12	1527.12	1527.12	1527.12
Losses, kt C	-1787.10	-1787.10	-1787.10	-1787.10	-1787.10	-1787.10	-1787.10	-1787.10	-1787.10	-1787.10	-1787.10	-1787.10	-1787.10

For estimation of carbon emissions in the pool of mineral soils, the nitrogen flow estimation balance method was used with subsequent recalculation for carbon.

The method is based on estimation of the balance between the amount of nitrogen outflow from soil, its removal from the field, and nitrogen inflow into the soil surface, taking into account the intensity and vectors of flows, its further movement. Removal of nitrogen from soil takes place with main products (harvest), side products, post-harvest crop residues, and plant roots. Inflow of nitrogen on the soil surface (or into the upper soil horizon) occurs with post-harvest crop residues, roots, organic and nitrogen mineral fertilizers, as a result of nitrogen fixation by legume crops, with precipitations.

Formation of the nitrogen balance indicating the link between the amount of carbon and nitrogen for agricultural land is explored in detail in national studies [26, 27, 28, 29, etc.] and originates from the Soviet practice of the soil science [30-36 et al.]. Also, prior to application of this method for preparation of the GHG inventory for the pool of mineral soils in the land use Cropland category, it was presented at workshops [37, 38], and also was published [9, 39]. Before moving from application of IPCC Tier 2 methods to the national method of balance estimations, consultation with industry experts were held. The method was approved.

Thus, determination of the dynamics of nitrogen during agricultural land cultivation was held based on the following components of the credit and debit sides of balance estimations:

- components of the nitrogen debit part are soil inflows from:
 - > humification of plant residues processes;
 - humification of organic fertilizers processes;
 - nitrogen-fixation by legumes;
 - > precipitations;
- components of the credit part of the nitrogen is its removal with:
 - the yield of main products;
 - > post-harvest crop residues;
 - > by-products;
 - roots.

Beside, in the total amount of nitrogen removed with plants, it is necessary to determine the part that consumed by the plants due to humus mineralization processes. For this purpose, from the total nitrogen content in plants is reduced by the amount of nitrogen that entered the plant from:

- crop residues (above- and below-ground);
- organic fertilizers (the effect of leaching processes is taken into account);
- nitrogen mineral fertilizers (the effect of run-off processes is taken into account).

The amount of nitrogen that consumed by the plants due to processes of soil humus mineralization and led to carbon emissions into the atmosphere is estimated as the difference between the credit and debit sides of the balance calculation. If as a result of the estimations a value more than zero (>0) is obtained, it indicates accumulation of nitrogen and humus in soil, and, as a result, presence of carbon removal processes in mineral soils. In the NIR preparation, the described calculation scheme was applied taking into account the effect of climatic conditions and soil differences. This is because the intensity of the processes mentioned above is dependent on temperature conditions, humidity, soil texture, and other factors.

The values obtained for nitrogen credit and debit are converted into carbon volumes, equation A3.3.6:

$$\overline{C_r} = (\sum N_{D_i} + \sum N_j - \sum N_{M_{is}}) \times k_{C:N_s}, \tag{A3.3.6}$$

where $\overline{C_r}$ is the average annual carbon balance of soil humus, t/ha;

r - the index of the territory for which the estimation is performed;

 N_{D_i} - the total amount of nitrogen released into the humus as a result of humification of dead organic matter (above- and below-ground) under crops grown for 2 years prior to the inventory, t/ha; i - the type of crop;

 N_j - the total amount of nitrogen released into the humus as a result of humification of organic fertilizers introduced into soil in the inventory year, t/ha;

j - the index of the type of organic fertilizer (manure bedding, liquid manure, poultry manure);

 $N_{M_{is}}$ - the total amount of nitrogen in humus mineralized as a result of cultivation of crop i in the inventory year on soil s, t/ha;

s - the index of the soil type for which estimations were performed;

 $k_{C:N_S}$ - carbon to nitrogen content ratio (C:N) in humic substances of ploughed layer.

To perform estimations based on data of the carbon in soil inventory, the assumption was made that humification processes take place one year after the harvest and introduction of the materials into the soil. Thus, the amounts of nitrogen input from crop residues, for example, for 1990, were calculated on the basis of data the harvest of 1988. The assumption makes it possible to more accurately take into account the features of the dynamics of nitrogen flows and does not introduce a substantial error into the calculations, because the increment adopted is covered by the estimation period (from 1990 to the inventory year).

The debit part of equation A3.3.6 is the sum of values of plant residue and organic fertilizer humification volumes.

The amount of nitrogen generated as a result of humification of the dead below- and above-ground organic matter (N_{D_i}) of agricultural crop biomass is estimated by multiplying the amount of biomass returned into soil after harvesting by the value of nitrogen content in it (taking into account direct emissions of nitrogen), and by humification factors, equation A3.3.7:

$$N_{D_i} = \sum_{RS_i} [(B \times \eta - N_{CR}) \times k] + \sum_{RL_i} [(B \times \eta - N_{CR}) \times k], \tag{A3.3.7}$$

where B is the amount of aboveground (Rs_i) and underground (Rs_i) crop residues, t/ha;

 η - nitrogen content is aboveground (Rs_i) and underground (Rt_i) plant residues, relative units;

k - the factor of humification of above-ground (Rs_i) and below-ground (Rt_i) crop residues, relative units;

 N_{CR} - the amount of nitrogen that is released annually as direct emissions from above-ground (Rs_i) and below-ground (Rt_i) plant residues, t/ha;

i - the crop index;

The amount of nitrogen coming from above- and below-ground plant residues is calculated on the basis of the linear regression equations [40], Table A3.3.12; their humification factors - Table A3.3.13 [27, 32], and their nitrogen content - Table A3.3.14 [33].

Table A3.3.12. Regression equation to determine the mass of crop residues based on the main product yield

Tham product great	Viold of the main	Weight do	etermination regression	n equation
Crop	Yield of the main products	for by-products	for above-ground residues	for roots
Winter rue	10-25	x=1.8y+3.8	x=0.3y+3.2	x=0.6y+8.9
Winter rye	26-40	x=1.0y+25	x=0.2y+3.6	x=0.6y+13.9
Winter wheat	10-25	x=1.7y+3.4	x=0.4y+2.6	x=0.9y+5.8
winter wheat	26-40	x=0.8y+25.9	x=0.1y+8.9	x=0.7y+10.2
Coming subset	10-20	x=1.3y+4,2	x=0.4y+1.8	x=0.8y+6.5
Spring wheat	21-30	x=0.5y+19.8	x=0.2y+5.4	x=0.8y+6.0
Davidan	10-20	x=0.9y+6.5	x=0.4y+1.8	x=0.8y+6.5
Barley	21-35	x=0.9+7.2	x=0.09y+7.6	x=0.4y+13.4
Onto	10-20	x=1.5y-1.2	x=0.3y+3,2	x=1.0y+2
Oats	21-35	x=0.7y+16.2	x=0.15y+6.1	x=0.4y+16
N. C:11 - 4	5-20	x=1.5y+4.5	x=0.2y+5	x=0.8y+7
Millet	21-30	x=2.0y-7.1	x=0.3y+3,3	x=0.56y+11.2
Maize for grain	10-35	x=1.2y+17.5	x=0.23y+3.5	x=0.8y+5.8
D	5-20	x=1.3y+4.5	x=0.14y+3.5	x=0.66y+7.5
Peas	21-30	x=1.2y+3	x=0.20y+1.7	x=0.37y+12.9
D 1 1	5-15	x=1.7y+4.7	x=0.25y+4.3	x=1.1y+5.3
Buckwheat	16-30	x=1.3y+10.3	x=0.2y+5.2	x=0.54y+14.1
Sunflower	8-30	x=1.8y+5.3	x=0.4y+3.1	x=1.0y+6.6
Distriction	50-200	x=0.12y+2	x=0.04y+1	x=0.08y+4
Potato	201-350	x=0.1y+3.9	x=0.03y+4.1	x=0.06y+8.6

	Yield of the main	Weight de	etermination regression	n equation
Стор	products	for by-products	for above-ground residues	for roots
Sugar boot	100-200	x=0.14y-1.7	x=0.02y+0.8	x=0.07y+3.5
Sugar beet	201-400	x=0.1y+10	x=0.003y+2.3	x=0.06y+5.4
Vacatables	50-200	x=0.12y+0.5	x=0.02y+1.5	x=0.06y+5
Vegetables	250-400	x=0.12y+0.0	x=0.006y+3.6	x=0.04y+6
Feed root crops	50-200	x=0.08y+0.1	x=0.01y+1	x=0.05y+5.5
reed foot crops	200-400	x=0.11y-4.6	x=0.003y+2.4	x=0.05y+5.2
Flax	3-10	x=5y+15	-	x=1.3y+9,4
Hemp	3-10	x=5y+30	-	x=2.2y+9.1
Silage crops (with- out maize)	100-200	-	x=0.04y+4	x=0.09y=7
Maiza for ailege	100-200	-	x=0.03y+3.6	x=0.12y+8.7
Maize for silage	201-350	-	x=0.02y+5	x=0.08y+16.2
Annual grasses (vetch, peas, oats)	10-40	-	x=0.13y+6	x=0.7y+7.5
Doronnial grasses	10-30	-	x=0.2y+6	x=0.8y+11
Perennial grasses	30-60	-	x=0.1y+10	x=1y+15

Table A3.3.13. Humification and mineralization factors for crop residues in the ploughed layer of soil

	Crop res	idue humif tive	ication fact units	Crop residue mineralization fac- tors, t/ha			
Agricultural crop	Poliss	ia, Forest S				ĺ	
guuuuop	humus <2.5%	humus >2.5%	humus >3.0%	Steppe	Polissia	Forest Steppe	Steppe
Winter wheat	0.15	0.20	0.20	0.20	0.8	0.7	0.7
Spring wheat	0.15	0.20	0.20	0.20	0.8	0.7	0.7
Winter rye	0.15	0.20	0.20	0.20	0.8	0.7	0.7
Spring rye	0.15	0.20	0.20	0.20	0.8	0.7	0.7
Winter barley	0.15	0.20	0.20	0.22	0.8	0.7	0.7
Spring barley	0.15	0.20	0.20	0.20	0.8	0.7	0.7
Oats	0.15	0.20	0.20	0.20	0.8	0.7	0.7
Millet	0.15	0.20	0.20	0.20	0.8	0.8	0.8
Buckwheat	0.15	0.20	0.20	0.20	0.8	0.8	0.8
Maize for grain	0.15	0.15	0.20	0.20	0.8	0.8	0.8
Rice	0.15	0.20	0.20	0.20	0.8	0.7	0.7
Sorghum	0.15	0.20	0.20	0.20	0.8	0.8	0.8
Peas	0.15	0.20	0.21	0.23	0.8	0.7	0.7
Vetch	0.15	0.20	0.22	0.23	0.8	0.7	0.7
Annual grasses	0.15	0.20	0.20	0.23	0.8	0.7	0.7
Perennial grasses	0.20	0.20	0.23	0.23	0.8	0.7	0.7
Fodder beans for grain	0.20	0.20	0.23	0.23	0.8	0.7	0.7
Sugar beet	0.05	0.07	0.07	0.10	0.8	0.8	0.8
Potato	0.05	0.07	0.07	0.13	0.8	0.8	0.8
Vegetables	0.05	0.07	0.07	0.10	0.8	0.8	0.8
Fodder root crops	0.05	0.07	0.07	0.10	0.8	0.8	0.8
Food cucurbits	0.05	0.07	0.07	0.10	0.8	0.8	0.8
Fodder cucurbits	0.05	0.07	0.07	0.10	0.8	0.8	0.8
Sunflower	0.15	0.20	0.15	0.14	0.8	0.8	0.8
Long-stalked flax (fiber)	0.15	0.20	0.20	0.20	0.8	0.7	0.7
Soybean	0.15	0.20	0.22	0.23	0.8	0.7	0.7
Hemp	0.15	0.20	0.20	0.20	0.8	0.7	0.7
Winter and spring rape	0.15	0.20	0.22	0.23	0.8	0.7	0.7
Maize for silage, green fod- der, haylage	0.10	0.15	0.15	0.17	0.8	0.8	0.8

Table A3.3.14. Nitrogen content in crop plant residues, %

Crop	Above-ground residues	Roots
Winter rye	0.45	0.75
Winter wheat	0.45	0.75
Spring wheat	0.65	0.80
Barley	0.50	1.20
Oats	0.60	0.75
Millet	0.50	0.75
Buckwheat	0.80	0.85
Maize for grain	0.75	1.00
Sunflower	0.75	1.00
Peas, vetch	1.25	1.70
Flax	0.50	0.80
Hemp	0.25	0.50
Sugar beet	1.40	1.20
Fodder root crops	1.30	1.00
Potato	1.80	1.20
Vegetables	0.35	1.00
Silage crops (without corn)	1.00	1.10
Maize for silage	0.80	1.20
Annual grasses	1.10	1.20
Perennial grasses:		
- with clover	1.80	2.00
- with lucerne	2.00	2.20

The amount of nitrogen appeared as a result of humification of organic fertilizers (N_j) is calculated by multiplying the values for the amount of their application (by type) by the value of nitrogen content in them (excluding direct and indirect emissions of nitrogen), equation A3.3.8:

$$N_i = N'_i \times k_r, \tag{A3.3.8}$$

where N_j is the amount of nitrogen introduced into the soil with organic fertilizers (this factor accounts for nitrogen loss through leaching processes - the IPCC default value of 30% was used), t N; k_r - manure humification factor, %.

Amount of nitrogen introduced into soil with organic fertilizers, calculated under equation A3.3.9:

$$N'_{i} = (N_{Ai} - V_{m}) \times d_{i},$$
 (A3.3.9)

where N_{Aj} is the amount of nitrogen in manure of animals after its storage (in the j system), just before introduction into the soil, t N;

V_m - direct nitrogen emissions released annually at application of organic fertilizers, t N/ha;

 d_j - the conversion rate for organic fertilizer into the equivalent of standard bedding manure, relative units.

The direct emissions of nitrogen released annually at application of organic fertilizer is calculated in the Agriculture category.

Conversion factors for the different types of organic fertilizers to the equivalent amount of standard bedding manure are presented in Table A3.3.15. The humification of bedding manure factor [28] is for Polissia 0.042, Forest Steppe 0.054, Steppe 0.059.

Table A3.3.15. Organic fertilizers to the equivalent bedding manure conversion factors, relative units

Organic fertilizers	Factor
Bedding manure (77% humidity)	1.0
Other manure:	
- semi-liquid, humidity does not exceed 92%	0.5
- liquid, humidity 93-97%	0.25
Peat manure compost	1.5
Peat litter compost	2.0
Poultry manure	1.4

Information on the amount of direct nitrous oxide emissions at crop residues (N_{CR}) and organic fertilizers (V_m) introduction into soil is also taken into account during GHG inventory in the Agriculture sector.

The estimations include the factors accounting for gaseous nitrogen losses at application of mineral nitrogen fertilizers to soil on the basis of expert assessments and analysis of domestic studies [41] - 14.5 %. The estimations also take into account the amount of nitrogen introduced into soil from the atmosphere - 2-5 kg/ha [28]. The conservative value used for the estimates was 2.5 kg/ha. Another section of nitrogen input into soil is the symbiotic nitrogen fixation with legumes (Table A3.3.16) [27].

Table A3.3.16. Symbiotic nitrogen fixation factors, kg/t

Crop	Nitrogen fixation
Peas for hay	10
Peas for green mass	3
Legumes	18
Annual grasses, hay	8
Annual grasses for green mass	2
Vetch	15
Perennial legumes for hay	24
Legume cereals for hay	24
Lucerne for hay	27
Clover for hay	24
Clover for green mass	5
Hayfields and pastures for hay	4

The credit part of equation 3.3.6 is the sum of the amount of mineralized humus in the inventory year in view of the crop and soil type (A3.3.10):

$$N_{M_{is}} = \left[N_i^* - (\frac{N_{fi} + N_{ri}}{2} + \nu_j \times N_j)\right] \times k_{mnr}, \tag{A3.3.10}$$

where $N_{M_{is}}$ is nitrogen emissions from humus mineralization at growing of crop i on soil s, t N/year;

 N_i^* - the volume of nitrogen removed by agricultural crops in the inventory year, t N/year;

 N_{fi} - the volume of nitrogen from soil fertilizer input into soil, t N/year;

 N_{ri} - the volume of nitrogen from organic residues input into soil, t N/year;

½ - the factor for nitrogen removal by plants consumed by roots of agricultural crops;

 v_i - the average amount of available nitrogen nutrient in animal manure factor, kg/t (Table A3.4.17);

 N_j - the amount of nitrogen introduced into soil with organic fertilizers (equation A3.3.10) t N/year; k_{mnr} - the factor to consider the links among the processes of nitrogen consumption by crops and humus mineralization, p.p.

Table A3.3.17. The average amount of nitrogen available to plants in animal manure

Animal species	Nitrogen content						
Spring application (for all soil types)							
Semi-liquid (kg/1,000 l)							
Cows	25						
Calves	19						
Piglets	41						
Pigs	25						
Hens	63						
Bedding manure (kg/t)							
Cows	16						
Piglets	22						
Hens (wet)	68						
Hens (humid)	129						
Broilers	142						
Mushroom compost	18						

It should be noted that the amount of nitrogen coming into the soil with organic residues of roots of perennial grasses (N_{ri}) should be multiplied by 0.25, because the duration of the plants' life cycle is 4 years.

The value of the nitrogen coming into the soil with fertilizers, which are calculated based on the total amount of mineral fertilizers (in weight units) by multiplying them by the corresponding factors, should include the amount of direct and indirect emissions of nitrogen. As already noted, the volumes of direct and indirect emissions of nitrogen from soil application of nitrogen-containing substances (such as fertilizers or plant residues) are considered in the Agriculture sector.

The amounts of nitrogen removals are determined for the plant species based on standard indicators of nitrogen removal in the main product and by-product harvest of crops, Table A3.3.18 [42].

Table A3.3.18. Standard removal factor of nutrients with the harvest of agricultural crops

Economic regions* and			1 ton of product,	Absolute d	ry matter of duct, %	Ratio of by-
natural zones	main products	by-prod- ucts	totally	main products	by-prod- ucts	products vs main products
	•	J		1.	I.	Winter wheat
Ukraine, on average	18.6	4.5	26.7	86	86	1.8
Donetsko-Dniprovsky	17.5	4.1	24.5	86	86	1.7
Forest-Steppe	16.5	4.8	24.5	86	86	1.7
Steppe	18.7	3.6	25.0	86	86	1.7
Southwestern	19.4	4.9	29.1	86	86	2.0
Forrest and Meadow	19.3	4.4	26.7	86	86	1.7
Forest-Steppe	19.7	5.3	31.2	86	86	2.2
Southern	19.6	4.6	27.8	86	86	1.8
Steppe	18.4	5.5	27.2	86	86	1.6
T. C.		- 1-				under irrigation)
Ukraine, on average	19.6	4.3	27.3	86	86	1.8
, ,		1				Winter rye
Southwestern	16.5	4.8	26.1	86	86	2.0
		J			l .	Winter barley
Southern	15.0	5.7	22.4	86	86	1.3
		J			l .	Spring barley
Ukraine, on average	16.8	5.4	23.8	86	86	1.3
Donetsko-Dniprovsky	16.7	5.6	24.5	86	86	1.4
Forest-Steppe	14.4	4.9	20.3	86	86	1.2
Steppe	19.1	6.5	28.9	86	86	1.5
Southwestern	16.5	5.2	23.3	86	86	1.3
Forrest and Meadow	16.7	5.3	23.1	86	86	1.2
Forest-Steppe	16.3	5.1	23.1	86	86	1.3
Southern	18.5	6.0	25.7	86	86	1.2
		J			l .	Spring cereals
Ukraine, on average	16.8	5.4	23.8	86	86	1.3
Donetsko-Dniprovsky	16.7	5.6	24.5	86	86	1.4
Southwestern	16.5	5.2	23.3	86	86	1.3
Southern	18.5	6.0	25.7	86	86	1.2
						Oats
Ukraine, on average	17.4	6.6	26.6	86	86	1.4
						Maize for grain
Ukraine, on average	13.7	6.4	22.2	86	86	1.3
Donetsko-Dniprovsky	14.6	6.2	23.1	86	84	1.4
Forest-Steppe	15.7	5.0	24.5	86	72	1.8
Steppe	14.1	6.9	22.1	86	91	1.2
Southern	13.5	6.9	21.9	86	93	1.2
		<u> </u>	**			under irrigation)
Ukraine, on average	13.7	7.0	22.0	86	92	1.2
,		<u> </u>				Millet
Ukraine, on average	16.6	5.2	23.0	86	86	1.2
,	2.4					Buckwheat
Ukraine, on average	18.1	8.8	37.5	86	83	2.2

Economic regions* and	Removal o	f nitrogen per i	1 ton of product,		ry matter of oduct, %	Ratio of by-
natural zones	main products	by-prod- ucts	totally	main products	by-prod- ucts	products vs main products
Ukraine, on average	10.8	5.4	15.8	86	90	Rice 0.9
,					1	Peas
Ukraine, on average	31.8	10.1	48.7	86	80	1.7
						Long-stalked flax
Ukraine, on average	5.6	35.4	53.8	81	88	0.6
Ukraine, on average (fi-						Hemp
ber)	6.3	7.8	60.0	87	81	0.6
Ukraine, on average (seeds)	37.4	-	-	-	-	-
						Sugar beet
Ukraine, on average	2.02	3.62	4.19	22.4	14.2	0.6
Donetsko-Dniprovsky	2.02	4.05	3.96	22.9	15.8	0.5
Forest-Steppe	1.99	3.84	3.72	21.9	14.7	0.4
Steppe	2.19	4.36	4.41	23.8	17.1	0.5
Southwestern	2.03	3.42	4.29	22.1	13.4	0.7
Forest-Steppe	1.99	3.43	4.29	22.3	13.3	0.7
T.11 '	1.01	4.06	4.70	21.1	, <u> </u>	under irrigation)
Ukraine, on average	1.91	4.86	4.78	21.1	15.3	0.6
Illimaina on avanaga	22.6	7.0	40.7	00	96	Sunflower
Ukraine, on average	22.6 21.7	7.9	40.7	88	86	2.2
Donetsko-Dniprovsky Forest-Steppe	24.2	7.9	37.1 43.5	88	86 87	2.5
	21.4		38.8	88 88	85	2.2
Steppe Southern	24.6	7.9 8.1	40.8	88	86	2.0
Southern	24.0	0.1	40.8	00	80	
Ukraine, on average	53.7	7.3	61.7	86	88	1.1
T T1 '	2.6	2.0	5.0	22.5	10.5	Potato
Ukraine, on average	3.6	3.0	5.0	22.5	19.5	0.5
Donetsko-Dniprovsky	3.8	3.2	5.1	22.5	20.0	0.4
Southwestern	3.5	2.9	5.0	22.5	19.4	0.5
Forrest and Meadow	3.6	3.0	5.1	22.6	19.1	0.5
Forest-Steppe	3.4	2.7	4.7	22.3	20.0	0.5 Fodder beet
Southwestern	1.9	4.7	3.5	13.2	14.1	0.3
Southwestern	1.9	4.7	3.3	13.2	14.1	Fodder turnip
Ukraine, on average	2.1	4.3	3.2	10.8	12.1	0.25
Okrame, on average	2.1	4.5	3.2	10.0	12.1	Turnips
Ukraine, on average	1.6	-	-	9.1	_	-
		<u>l</u>			Cabbage (under irrigation)
Ukraine, on average	1.9	3.2	3.5	7.7	12.7	0.5
· · · · · ·				1	Cucumbers (under irrigation)
Ukraine, on average	1.6	3.6	3.5	4.8	15.3	0.5
					Tomatoes (under irrigation)
Ukraine, on average	1.5	3.9	2.4	5.6	18.8	0.2 Red beet
Ukraine, on average	3.6	-	-	14.0	- Faanlant (under irrigation)
Ukraine, on average	1.4	4.4	2.2	7.7	18.1	0.2
chame, on a verage	1.1		2.2	,.,	10.1	Onion
Ukraine, on average	1.7	4.9	2.9	13.2	22.2	0.2
						Carrots
Ukraine, on average	1.5	3.4	2.9	10.9	15.8	0.4 Pepper
Ukraine, on average	2.0	3.7	5.0	9.5	15.4	0.8
,		<u>. </u>			1	Tobacco
Ukraine, on average	35.3	15.3	47.5	81	82	0.8
					1	Lavender

Economic regions* and	Removal o	f nitrogen per kg	1 ton of product,		ry matter of duct, %	Ratio of by-
natural zones	main products	by-prod- ucts	totally	main products	by-prod- ucts	products vs main products
Southern	7.6	7.6	19.8	35.6	40.4	1.6
						Clary sage
Ukraine, on average	8.4	4.8	14.6	30	30	1.3
						Mint
Ukraine, on average	24.1	15.3	37.9	86	85	0.9
						Maize for silage
Ukraine, on average	-	-	3.2	21.8	-	-
Donetsko-Dniprovsky	-	-	3.5	25.1	-	-
Southwestern	-	-	3.0	19.5	-	-
Southern	-	-	3.8	25.5	-	-
		1		Mai	ze for silage (under irrigation)
Ukraine, on average	-	-	3.3	22.1	-	-
		1		Annua	grasses (hay	, legume-cereals)
Ukraine, on average	=	-	18.8	84	-	-
Donetsko-Dniprovsky	=	-	14.8	84	=	-
Southwestern	-	-	19.0	84	-	-
Southern	-	-	19.8	84	-	-
					Annual gras	ses (hay, cereals)
Ukraine, on average	=	-	13.2	84	-	-
Donetsko-Dniprovsky	-	-	12.5	84	-	-
Southwestern	-	-	15.4	84	-	-
					Annual gr	asses, total (hay)
Ukraine, on average	-	_	15.9	84	-	-
Donetsko-Dniprovsky	-	-	13.5	84	_	-
Southwestern	-	_	17.9	84	_	-
Southern	-	-	19.8	84	_	-
		ı	· -		Perennial gras	sses (hay, alfalfa)
Ukraine on average (dur-			20.0			(, ,
ing irrigation)	-	-	29.8	84	-	-
5 5 /				Perennia	l grasses (hav	, legume-cereals)
Ukraine, on average	-	-	20.9		-	-
, ,		1]	Perennial gra	sses (hay, clover)
Ukraine, on average	-	_	24.3	84	-	-
Donetsko-Dniprovsky	-	-	19.3	84	-	-
Southwestern	-	-	24.8	84	-	-
				1		<u> </u>

^{*} The economic regions of Ukraine during the times of the USSR included the following oblasts: Donetsko-Dnieprovsky economic region - Dnipropetrovsk, Donetsk, Zaporizhya, Kirovograd, Luhansk, Poltava, Sumy, and Kharkiv Oblasts; Southwest - Vinnytsia, Volyn, Zhytomyr, Ivano-Frankivsk, Kyiv, Rivne, Ternopil, Khmelnytsky, Cherkasy, Chernivtsi, and Chernihiv Oblasts; Southern - Odessa, Mykolaiv, Kherson Oblasts, and the AR Crimea

The factor to consider the links between the processes of plant consumption of nitrogen and the processes of humus mineralization of (k_{mnr}) in equation 3.3.11 is calculated by taking into account the correction factors for the soil particle size distribution and the type of agricultural plants based on the equation:

$$k_{mnr} = k_i \times k_s, \tag{A3.3.11}$$

where k_i is mineralization factors to account for the effect of the type of crop cultivated; k_s - factors to account the soil particle size distribution.

The above factors are shown in Tables A3.3.19 and 3.3.20, respectively [28].

Table A3.3.19. The factors to account the type of agricultural crops at soil humus mineralization, relative units

Cron	Soil and climatic zone							
Crop	Polissia	Forest Steppe	Steppe					
Winter grains	0.9	0.7	1.35					
Sugar beet	1.7	1.5	1.59					
Maize for grain	1.4	1.1	1.56					
Maize for silage	0.3	0.25	1.47					

C		Soil and climatic zone	
Crop	Polissia	Forest Steppe	Steppe
Barley	0.05	0.7	1.23
Oats	0.27	0.82	1.20
Millet	0.00	0.72	1.10
Buckwheat	0.12	1.06	1.10
Spring wheat	-	-	1.10
Vegetables	1.34	1.20	1.60
Flax	0.90	-	-
Potato	1.50	1.20	1.61
Sunflower	-	1.00	1.39
Annual grasses	0.80	0.80	1.10
Perennial grasses	0.55	0.30	0.60

Table A3.3.20. The factors to account for the soil particle size distribution at soil humus mineralization, p.p.

The soil group based on particle size distribution	Mineralization factor
Sandy	1.8
Sandy loam	1.4
Light loamy	1.2
Medium loamy	1.0
Heavy loamy and clay	0.8

Equation A3.3.8 includes the factor, which allow to consider the ratio of carbon and nitrogen (C:N) content in ploughed layer humic substances. Values of the parameters are shown in Table A3.3.21 [43].

Table A3.3.21. The ratio of carbon and nitrogen (C:N) content in ploughed level humic substances for various types of soils

Types of soil	Humus content, %	Organic C in the general initial soil,	Gross ni- trogen, %	C:N
			Polis	sia soils
Sod-podzolic clay and sandy soils on water-glacial sands	0.57	0.33*	0.03	11.02
Sod-mesopodzolic sabulous soils on layered water-glacial sands	0.87	0.5*	0.05	10.09
Sod-mesopodzolic light loamy soils on water-glacial loam underlaid by layered sands	1.17	0.67	0.07	9.57
		Soils	of the Fores	t Steppe
Light gray podzolized soils on loess	4.19	2.43	0.23	10.57
Gray podzolized soils on loess	2.03	1.18	0.13	9.08
Dark gray podzolized soils on loess	7.29	4.23	0.14	10.58
Dark gray degraded soils on loess	3.48	2.02	0.21	9.62
Degraded black soil on loess	3.53	2.05	0.21	9.76
Typical thick low-humic black soil on loess	4.58	2.66	0.30	8.87
Typical thick medium-humic black soil on loess	5.61	3.25	0.29	11.21
Meadow black soil on loess loam	4.90	2.84	0.28	10.15
Alkali meadow deep black soil on loess loam	2.40	1.39	0.14	9.94
Meadow surface alkaline loamy soil on alluvial sediments	6.90	4.00	0.43	9.30
			Step	pe soils
Ordinary thick medium-humic black soil on loess	6.10	3.54*	0.30	11.79
Ordinary thick low-humic black soil on loess	4.70	2.73*	0.27	10.10
Ordinary medium-thick low-humic black soil on loess	4.60	2.90	0.25	11.60
Black soils on clay shale eluvium	4.59	2.66*	0.23	11.58
Black soils on sandy shale eluvium	3.30	1.91*	0.16	11.96
Highly alkalinized saline balck soils on saline Paleogene clays	3.00	1.74*	0.15	11.60
Southern micellar-carbonate black soils on loess	3.40	1.97*	0.22	8.96
Dark brown alkaline (arable) on loess	3.40	1.97*	0.16	12.33
Brown alkaline soils on loess	3.60	2.09*	0.21	9.94
Brown medium alkali on loess	4.10	1.97	0.20	9.85

Types of soil	Humus content, %	Organic C in the general initial soil,	Gross ni- trogen, %	C:N
Meadow black soil surface gley low-solodized soils on gleying loess	5.20	2.33	0.27	8.63
Solodized gley soils (gley-malt) on gleyed loess	4.40	2.47	0.26	9.50
	Soils of	the Carpathian bro	wnsoil-fores	st region
Acid moderate-humic brownsoil on eluvium shale	21.04	12.20*	1.06	11.51
Meadowlike brownsoil acid on ancient lake alluvial sediments	5.91	3.43	0.29	11.83
		Soils of th	ne mountain	Crimea
Ordinary micellar-carbonate foothills black soil on ancient clay talus	3.60	2.66	0.25	10.64

Calculated by multiplying the value of the humus content in soil by the factor of 1/1.724.

To perform estimations using the described method, it is necessary to know the areas by soil types in Ukraine (Table A3.3.22) [42], as well as take into account the distribution of soil types by natural zones (Table A3.3.23) [44].

Table A3.3.22. The area of soil types in Ukraine, ha

	Area of t	he soils	Arc	ea of arable la	and
Soil	kha	%	kha	% of the total	% of ar- able land
Sod-podzolic sabulous and clay sabulous	1573.0	3.5	1015.0	64.5	3.5
Sod-podzolic gley	1916.3	4.3	1140.7	59.5	3.6
Gray forest	7924.0	17.8	6719.1	84.8	21.3
Typical black soils (on-eroded and eroded) on loess rocks	6272.2	14.1	5731.4	91.4	18.1
Ordinary black soils (on-eroded and eroded) on loess rocks	10395.0	23.4	8760.0	84.3	27.7
Southern black soils (on-eroded and eroded) on loess rocks	6237.9	14.1	4662.4	74.7	14.8
Meadow black soil, mainly on loess rocks	1124.9	2.5	700.7	62.3	2.2
Dark brown and chestnut in loess rocks	1489.9	3.4	1241.0	83.3	3.9
Meadow, mainly on alluvial rocks	1939.1	4.4	663.0	34.2	2.1
Swampy, peat swampy, and peatlands	2061.8	4.6	83.5	3.8	0.26
Alkali and solodized	537.8	1.2	256.1	47.6	0.8
Sod	1627.1	3.7	396.3	24.4	1.3
Brownsoil, sod-brownsoil	956.4	2.2	192.7	20.1	0.6
Brown mountain, mountain meadow	41.8	0.1	7.2	17.2	0.02
Rock exposures	311.0	0.7	21.6	6.9	0.1
TOTAL	44406	100	31586.3	71.7	100

Table A3.3.23. Characteristics of agricultural land by the mechanical composition (without homestead land for personal use), kha

		, 1110			Mechanica	al compositi	on of soils		
Region	Total area as on November 1, 1990	Of them explored	Hard and medium-clay	Light clay	Hard loamy	Average loamy	Light loamy	Sandy loam	Arenaceous
1	2	3	4	5	6	7	8	9	10
AR Crimea	1729.2	1668.4	378.10	861.20	340.50	70.80	15.00	2.30	0.50
Vinnytska	1850.2	1824.9	8.00	30.50	579.20	1042.40	135.10	17.50	5.90
Volynska	967.5	960.2	0.00	0.00	1.10	9.60	269.10	216.60	289.50
Dnipropetrovska	2373.1	2351.4	14.90	672.40	1251.8	334.20	39.90	27.30	10.20
Donetska	1917.3	1896.1	161.70	1265.3	338.70	94.20	14.90	19.90	1.40

					Mechanica	al compositi	on of soils		
Region	Total area as on November 1, 1990	Of them explored	Hard and medium-clay	Light clay	Hard loamy	Average loamy	Light loamy	Sandy loam	Arenaceous
Zhytomyrska	1475.0	1455.2	0.00	0.00	1.20	203.20	441.10	591.30	195.90
Transcarpathian	357.2	343.2	7.30	34.60	91.70	155.50	43.90	9.70	0.50
Zaporizhska	2160.5	2117.7	235.20	1241.2	417.50	154.00	51.50	16.00	2.30
Ivano-Frankivska	340.1	333.4	6.40	47.40	88.40	100.70	82.90	6.10	0.00
Kyivska	1539.3	1522.1	0.00	0.00	5.80	275.40	778.90	241.30	119.50
Kirovohradska	1938.3	1892.6	0.80	1041.8	626.60	182.20	21.90	8.30	1.10
Luganska	1816.3	1807.3	24.10	735.40	789.60	179.10	44.20	29.30	5.60
Lvivska	1118.3	1113.8	2.30	4.80	32.60	210.50	555.80	149.60	77.00
Mykolaivska	1934.8	1902.7	18.60	980.60	750.10	126.40	16.50	6.60	3.60
Odesska	2445.9	2427.9	54.20	400.40	1649.2	245.90	36.50	35.40	6.30
Poltavska	2054.3	2027.2	0.00	0.90	416.70	1129.50	362.30	57.10	24.00
Rivnenska	815.6	798.9	0.00	0.00	0.50	37.20	350.70	123.70	188.10
Sumska	1618.0	1610.9	0.20	6.70	101.50	719.00	474.30	189.40	46.80
Ternopilska	962.2	947.2	0.00	0.00	137.60	671.10	92.30	12.90	2.10
Kharkivska	2287.6	2244.7	16.10	1284.7	768.80	117.50	28.70	22.60	5.90
Khersonska	1908.6	1886.5	16.30	436.90	806.20	363.50	159.30	76.00	27.80
Khmelnytska	1437.8	1418.6	0.00	2.20	110.50	656.70	500.30	56.90	12.00
Cherkaska	1293.7	1285.2	0.60	55.10	422.80	458.40	285.60	37.20	8.30
Chernivetska	410.3	408.8	3.80	46.50	179.00	114.20	55.60	8.70	1.00
Chernihivska	1954.3	1943.4	0.00	0.00	0.00	54.10	981.60	579.00	184.10
Total	38705.4	38188.3	948.6	9148.6	9907.7	7705.3	5837.9	2540.7	1219.3

Data on fires on agricultural land is shown in Table A3.3.24.

Table A3.3.24. Distribution of areas damaged by fires by agricultural crops, ha

Tuest 112.2.12 11 Distribution of arous damaged by thes by agricultural crops, ha										
Crop	2005	2010	2011	2012	2013	2014	2015	2016	2017	2018
Wheat	45.5	143.01	342.85	164.28	380.21	2062.9	2202.5	1352.8	1526.6	1177.2
Barley	18.6	76.3	64.8	61.3	13.0	220.4	118.1	336.6	285.7	29.6
Maize	28.048	98.87	52.7	49.9	3.0	618.8	1718.2	67.2	476.3	103.4
Oats	0.4	0	0	0	5.5	0.4	30.9	0.6	0	0.1
Rye	0	0	28.0	10.2	7.8	0	10.0	2.5	3.0	0
Millet	0	0	0	0	0	0	0	3.10	3.5	1.2
Buckwheat	0	3.5	0	0	0	0	0	0	0	0
Peas	0	0	0	0	0	0	0	0.5	6.0	0
Sunflower	0	0	0	15.0	70.0	2.1	0	0.2	41.0	20.5
Ribbon grass	0	0	0	1.3	0	0	0	0	0	0
Soybeans	0	10.0	0	0	0	27.0	8.7	22.61	0	53.2
Spring vetch	0	6.0	0	0	0	0	0	0	0	0
Medicago	0	0	0	0	0	45.0	2.3	2.0	0	0
Sorghum	0	0	0	0	0	1.1	0	0.5	6.9	2.0
Sainfoin	0	0	0	0	0	2.5	0	0	0	0
Phalaris	0	0	0	0	0	0	0	169.75	0	23.6

Estimation of CH_4 , N_2O , CO, and NO_x emissions was conducted under Tier 1 of 2006 IPCC (2006 IPCC equation 2.27) using default EFs.

To estimate emissions of non-methane volatile organic compounds, 2013 EMEP/EEA Emission Inventory Guidebook [8] was used. In accordance with the methodological guidelines, estimation of NMVOC emissions was carried out according to equation A3.3.12 [12]:

$$E_{pollutant} = AR_{residues\ burnt} \times EF_{pollutant}$$
 (A3.3.12)

where:

E_{pollutant} - emissions of pollutant (kg);

AR_{residues_burnt} - the indicator of activity data, the burnt residue mass (kg of dry matter); EF_{pollutant} - the emission factor for pollutant (kg/kg of dry matter).

To determine the mass of burnt residues, equation A3.3.13 was used [12]:

$$AR_{residues\ burnt} = A \times M_B \times C_f \tag{A3.3.13}$$

where:

A - burned area, ha;

M_B - mass of fuel available for combustion, t/ha;

C_f - combustion factor (dimensionless).

To estimate emissions of non-methane volatile organic compounds, the default emission factor was used from Table 3-1 of 2013 EMEP/EEA Emission Inventory Guidebook [8].

The same M_B and C_f values were used as for estimation of CH_4 , CO, N_2O , and NO_x . Their source was Table 2.4. of the 2006 IPCC Guidelines [1].

Also, information was obtained on the number of fires and the areas affected by fires on pastures and wetlands (Table A3.3.25) from the Ukrainian Scientific Research Institute of Civil Protection.

Table A3.3.25. The number of fires and the area of burnt pastures and non-forest peatlands in Ukraine

	Destroyed and damaged pastures, ha	Destroyed and damaged non-for- est peatlands, ha
2000	-	-
2001	-	-
2002	-	-
2003	-	-
2004	-	-
2005	752	156
2006	193	259
2007	338	90
2008	157	125
2009	230	310
2010	1049	242
2011	839	123
2012	733	89
2013	739	51
2014*	876	420
2015*	2533	1167
2016*	299	33
2017*	861	221
2018*	489	271
*Data of the Ukrainian Scientific	Research Institute of Civil Protection corrected	with analytical study

Statistics on the number of fires has been conducted since 2000, and that on the areas - only since 2005.

The estimation of GHG emissions from burning of pastures was produced using Equation 2.27 of the 2006 IPCC Guidelines [1]. The default EFs were also used.

Nitrogen emissions from mineralization of soil Carbon during land-use conversions were estimated using the Tier 1 method (Equations 11.1 and 11.8 of the 2006 IPCC Guidelines). For lands

converted to cropland, nationally determined C:N ratio was used (table A3.3.22), for grassland the default ratio was used - 15.

A3.3.3 Methodological aspects of the HWP category

Calculations in HWP category was performed with Tier 1 method by production approach. With necessity to comply requirements of KP-Supplement it was decided to apply KP reporting approach to reporting under the Convention also.

The main data sources for the calculations are the State Statistic Service of Ukraine (production of sawnwood, industrial roundwood production, import and export, production for particular years, import and export of pulp) and FAO. For recent years due to necessity to comply with legislation the State Statistic Service of Ukraine do not provide data of pulp production, this data was derived from the Ukrainian Association of Pulp and Paper industry «UkrPapir».

Activity data for the calculations is provided in table A3.3.26. For the years 1990-1991 FAO data for production of wood panels, paper and paperboard is absent. Thus GDP data was used to derive data for these years.

Table A3.3.26. Activity data for HWP category calculations

	Sawnwood production, m ³	Industrial roundwood pro- duction, m ³	Industrial roundwood ex- port, m ³	Industrial roundwood im- port, m³	Wood panels production, m ³	Paper and paperboard production, m ³	Pulp produc- tion, t	Pulp export, t	Pulp import, t
1990	7 441 000	8 900 000	No data	No data	3 158 939	1 242 367	104 049	No data	No data
1991	6 106 000	7 600 000	No data	No data	2 779 858	1 114 463	89 685	No data	No data
1992	4 700 000	7 000 000	693	No data	1 307 000	228 790	75 810	0	2 112
1993	3 882 000	6 600 000	1 100	200	1 036 000	145 290	47 699	0	2 100
1994	3 124 000	6 200 000	1 100	200	644 000	78 500	51 167	0	2 100
1995	2 917 000	5 900 000	20 100	470 300	596 000	85 200	60 751	0	2 100
1996	2 296 000	5 200 000	303 692	391 662	413 500	292 890	33 988	600	63 200
1997	2 306 000	4 741 900	452 013	167 079	398 800	264 000	26 334	500	48 100
1998	2 258 000	4 659 000	825 459	90 658	389 000	292 900	29 537	300	53 445
1999	2 141 000	4 700 500	2 305 667	83 828	434 000	310 900	37 302	301	54 827
2000	2 127 000	5 239 200	1 259 205	94 890	543 000	411 000	38 639	301	54 827
2001	1 995 000	5 350 100	1 086 604	112 020	726 000	479 900	40 777	50	64 600
2002	1 950 000	5 584 400	1 757 505	89 177	932 100	531 600	41 243	0	73 030
2003	2 197 000	5 788 900	1 845 406	116 784	1 045 000	618 037	39 633	0	87 090
2004	2 414 000	6 536 500	2 607 308	135 505	1 300 000	722 999	34 400	310	95 050
2005	2 409 000	6 617 000	2 394 944	170 124	1 509 000	768 010	38 600	0	91 440
2006	2 385 000	6 906 700	2 205 802	172 537	1 675 000	804 000	31 400	949	88 049
2007	2 525 000	7 364 400	2 586 028	133 351	2 029 000	937 001	32 300	344	107 841
2008	2 266 000	7 062 600	2 066 372	125 803	2 029 000	937 001	29 800	99	95 636
2009	1 753 000	6 181 600	1 883 311	11 955	1 578 000	813 999	4 100	12	82 726
2010	1 736 000	7 536 000	2 933 874	18 519	1 828 000	857 001	5 800	66	84 131
2011	1 888 000	7 989 400	3 008 873	22 268	2 081 700	986 998	4 100	53	77 385
2012	1 823 000	7 850 800	3 018 713	19 808	2 207 290	1 123 060	0	0	73 421
2013	1 804 000	8 102 100	3 453 913	14 009	2 277 690	1 079 350	0	0	68 819
2014	1 780 900	8 158 792	3 518 169	7 699	2 327 690	1 079 350	0	0	61 454
2015	1 928 954	8 302 600	2 976 300	14 000	2 377 690	1 079 350	0	0	49 924
2016	2 150 842	8 311 300	2 074 100	14 000	2 377 690	1 079 350	0	0	57 368
2017	2 498 003	7 296 600	12 100	9 290	2 377 690	924 000	0	0	58 928
2018	3 270 975	8 976 000	3 300	23 117	2 195 700	966 000	0	0	66 295

A3.4 Waste (CRF Sector 5)

This annex presents additional information regarding activity data, emission factors, and estimations of GHG emissions along the time series for the period of 1990-2018. All the data relate to category 5.A "Solid Waste Management" of the "Waste" Sector.

A3.4.1 Information on the amount of solid waste dumped in landfills and methane emissions adopted for estimations in

general and by landfill categories for the period of 1900-2018

	ai aiiu by ia	The		•	Weight		of	them:				
	Cracifia	share of	Cnaifia		of		MSW		industrial	Ummonocod	Ummonocod	
Year	Specific MSW gener-	MSW	Specific dumping	Urban	dumped		(of it:	organic	Unmanaged shallow	Unmanaged	Managed
rear	ation	dumped on land- fills	MSW	population	solid waste, total	Total	official*	unofficial**		landfills	deep land- fills	landfills
	lag/parson/waar		lea/parson/waar	thous. peo-	thousand	thousand	thousand	thousand	thousand	thousand	thousand	thousand
	kg/person/year		kg/person/year	ple	tons	tons	tons	tons	tons	tons	tons	tons
1900	173.1	0.85	147.2	3590.31	607.64	607.64	528.38	79.26	0.00	251.51	356.13	0.00
1901	173.5	0.85	147.5	3772.55	639.98	639.98	556.51	83.48	0.00	264.90	375.08	0.00
1902	174.0	0.85	147.9	3954.79	672.47	672.47	584.76	87.71	0.00	278.34	394.13	0.00
1903	174.4	0.85	148.2	4137.02	705.10	705.10	613.13	91.97	0.00	291.85	413.25	0.00
1904	174.8	0.85	148.6	4319.26	737.88	737.88	641.64	96.25	0.00	305.42	432.46	0.00
1905	175.2	0.85	148.9	4501.50	770.81	770.81	670.27	100.54	0.00	319.05	451.76	0.00
1906	175.6	0.85	149.2	4683.74	803.87	803.87	699.02	104.85	0.00	332.73	471.14	0.00
1907	176.0	0.85	149.6	4865.98	837.09	837.09	727.90	109.19	0.00	346.48	490.61	0.00
1908	176.4	0.85	149.9	5048.22	870.45	870.45	756.91	113.54	0.00	360.29	510.16	0.00
1909	176.8	0.85	150.3	5230.46	903.95	903.95	786.04	117.91	0.00	374.16	529.79	0.00
1910	177.2	0.85	150.6	5412.70	937.60	937.60	815.30	122.30	0.00	388.08	549.51	0.00
1911	177.6	0.85	151.0	5544.57	962.65	962.65	837.09	125.56	0.00	398.45	564.20	0.00
1912	178.0	0.85	151.3	5676.45	987.80	987.80	858.96	128.84	0.00	408.86	578.94	0.00
1913	178.4	0.85	151.7	5808.32	1013.06	1013.06	880.92	132.14	0.00	419.32	593.74	0.00
1914	178.8	0.85	152.0	5940.19	1038.42	1038.42	902.98	135.45	0.00	429.82	608.61	0.00
1915	179.2	0.85	152.4	6072.07	1063.89	1063.89	925.12	138.77	0.00	440.36	623.53	0.00
1916	179.7	0.85	152.7	6203.94	1089.47	1089.47	947.36	142.10	0.00	450.94	638.52	0.00
1917	180.1	0.85	153.0	6335.81	1115.15	1115.15	969.69	145.45	0.00	461.57	653.57	0.00
1918	180.5	0.85	153.4	6467.68	1140.93	1140.93	992.11	148.82	0.00	472.25	668.68	0.00
1919	180.9	0.85	153.7	6599.56	1166.82	1166.82	1014.62	152.19	0.00	482.96	683.86	0.00
1920	181.3	0.85	154.1	6731.43	1192.81	1192.81	1037.23	155.58	0.00	493.72	699.09	0.00
1921	181.7	0.85	154.4	6834.86	1213.86	1213.86	1055.53	158.33	0.00	502.43	711.43	0.00
1922	182.1	0.85	154.8	6938.28	1234.99	1234.99	1073.90	161.09	0.00	511.18	723.81	0.00
1923	182.5[5]	0.85	155.1	7041.71	1256.20	1256.20	1092.35	163.85	0.00	519.96	736.24	0.00
1924	182.9	0.85	155.5	7145.14	1277.49	1277.49	1110.86	166.63	0.00	528.77	748.72	0.00
1925	183.3	0.85	155.8	7248.56	1298.87	1298.87	1129.45	169.42	0.00	537.62	761.25	0.00

		The			Weight		of	them:				
	C	share of	C		\mathbf{of}		MSW		industrial	T	TI	
V /22.	Specific	MSW	Specific	Urban	dumped			of it:	organic	Unmanaged	Unmanaged	Managed
Year	MSW gener- ation	dumped on land- fills	dumping MSW	population	solid waste, total	Total	official*	unofficial**	J	shallow landfills	deep land- fills	landfills
	kg/person/year		kg/person/year	thous. peo-	thousand	thousand	thousand	thousand	thousand	thousand	thousand	thousand
	•		01	ple	tons	tons	tons	tons	tons	tons	tons	tons
1926	183.7	0.85	156.2	7351.99	1320.32	1320.32	1148.11	172.22	0.00	546.50	773.82	0.00
1927	184.1	0.85	156.5	7455.42	1341.86	1341.86	1166.84	175.03	0.00	555.41	786.45	0.00
1928	184.5	0.85	156.9	7558.84	1363.49	1363.49	1185.64	177.85	0.00	564.36	799.12	0.00
1929	184.9	0.85	157.2	7662.27	1385.19	1385.19	1204.51	180.68	0.00	573.35	811.84	0.00
1930	185.3	0.85	157.5	7765.70	1406.98	1406.98	1223.46	183.52	0.00	582.37	824.61	0.00
1931	185.8	0.85	157.9	7998.80	1452.39	1452.39	1262.95	189.44	0.00	601.16	851.23	0.00
1932	186.2	0.85	158.2	8231.91	1497.99	1497.99	1302.60	195.39	0.00	620.04	877.95	0.00
1933	186.6	0.85	158.6	8465.01	1543.78	1543.78	1342.42	201.36	0.00	638.99	904.79	0.00
1934	187.0	0.85	158.9	8698.11	1589.75	1589.75	1382.39	207.36	0.00	658.02	931.73	0.00
1935	187.4	0.85	159.3	8931.22	1635.91	1635.91	1422.53	213.38	0.00	677.12	958.79	0.00
1936	187.8	0.85	159.6	9164.32	1682.25	1682.25	1462.83	219.42	0.00	696.31	985.95	0.00
1937	188.2	0.85	160.0	9397.42	1728.78	1728.78	1503.29	225.49	0.00	715.56	1013.22	0.00
1938	188.6	0.85	160.3	9630.53	1775.49	1775.49	1543.91	231.59	0.00	734.90	1040.59	0.00
1939	189.0	0.85	160.7	9863.63	1822.39	1822.39	1584.69	237.70	0.00	754.31	1068.08	0.00
1940	189.4	0.85	161.0	10096.73	1869.48	1869.48	1625.63	243.84	0.00	773.80	1095.68	0.00
1941	189.8	0.85	161.4	10367.06	1923.65	1923.65	1672.74	250.91	0.00	796.23	1127.43	0.00
1942	190.2	0.85	161.7	10637.39	1978.05	1978.05	1720.04	258.01	0.00	818.74	1159.31	0.00
1943	190.6	0.85	162.0	10907.71	2032.65	2032.65	1767.53	265.13	0.00	841.34	1191.31	0.00
1944	191.0	0.85	162.4	11178.04	2087.48	2087.48	1815.20	272.28	0.00	864.03	1223.44	0.00
1945	191.5	0.85	162.7	11448.37	2142.51	2142.51	1863.06	279.46	0.00	886.81	1255.70	0.00
1946	191.9	0.85	163.1	11718.69	2197.77	2197.77	1911.10	286.67	0.00	909.68	1288.08	0.00
1947	192.3	0.85	163.4	11989.02	2253.23	2253.23	1959.33	293.90	0.00	932.64	1320.59	0.00
1948	192.7	0.85	163.8	12259.35	2308.92	2308.92	2007.75	301.16	0.00	955.69	1353.23	0.00
1949	193.1	0.85	164.1	12529.67	2375.54	2364.81	2056.36	308.45	10.73	978.83	1396.71	0.00
1950	193.5	0.85	164.5	12800.00	2442.38	2420.93	2105.15	315.77	21.45	1002.05	1440.33	0.00
1951	193.9	0.85	164.8	13400.00	2571.92	2539.74	2208.47	331.27	32.18	1051.23	1520.69	0.00
1952	194.3	0.85	165.2	14200.00	2739.92	2697.01	2345.23	351.78	42.90	1116.33	1623.59	0.00
1953	194.7	0.85	165.5	14800.00	2870.49	2816.86	2449.44	367.42	53.63	1165.93	1704.56	0.00
1954	195.1	0.85	165.8	15400.00	3001.54	2937.18	2554.07	383.11	64.36	1215.74	1785.80	0.00
1955	195.5	0.85	166.2	15700.00	3075.73	3000.65	2609.26	391.39	75.08	1242.01	1833.72	0.00
1956	195.9	0.85	166.5	16000.00	3150.16	3064.35	2664.65	399.70	85.81	1268.37	1881.78	0.00
1957	196.3	0.85	166.9	17000.00	3359.17	3262.63	2837.07	425.56	96.54	1350.45	2008.72	0.00
1958	196.7	0.85	167.2	18300.00	3626.67	3519.41	3060.36	459.05	107.26	1456.73	2169.94	0.00
1959	197.2	0.85	167.6	19147.40	3807.98	3690.00	3208.69	481.30	117.99	1527.34	2280.65	0.00

		The			Weight	of MSW ind						
	Specific	share of	Specific		of		MSW		industrial	Unmanaged	Unmanaged	
Year	MSW gener-	MSW	dumping	Urban	dumped		(of it:	organic	shallow	deep land-	Managed
1 cai	ation	dumped on land- fills	MSW	population	solid waste, total	Total	official*	unofficial**		landfills	fills	landfills
	kg/person/year		kg/person/year	thous. peo-	thousand	thousand	thousand	thousand	thousand	thousand	thousand	thousand
	• • •			ple	tons	tons	tons	tons	tons	tons	tons	tons
1960	197.6	0.85	167.9	19850.60	3962.12	3833.41	3333.40	500.01	128.71	1586.70	2375.43	0.00
1961	198.0	0.85	168.3	20646.80	4134.82	3995.38	3474.24	521.14	139.44	1653.74	2481.08	0.00
1962	198.4	0.85	168.6	21130.20	4247.50	4097.33	3562.90	534.43	150.17	1695.94	2551.56	0.00
1963	198.8	0.85	169.0	21628.00	4363.35	4202.46	3654.31	548.15	160.89	1739.45	2623.90	0.00
1964	199.2	0.85	169.3	22228.80	4499.66	4328.04	3763.52	564.53	171.62	1791.43	2708.23	0.00
1965	199.6	0.85	169.7	22786.00	4627.94	4445.60	3865.74	579.86	182.35	1840.09	2787.85	0.00
1966	200.0[6]	0.85	170.0	23357.90	4759.54	4566.47	3970.84	595.63	193.07	1890.12	2869.42	0.00
1967	202.2	0.85	171.9	23939.30	4936.26	4732.47	4115.19	617.28	203.80	1958.83	2977.43	0.00
1968	204.5	0.85	173.8	24519.00	5115.19	4900.66	4261.45	639.22	214.52	2028.45	3086.74	0.00
1969	206.7	0.85	175.7	25126.10	5302.18	5076.93	4414.72	662.21	225.25	2101.41	3200.77	0.00
1970	208.9	0.85	177.6	25688.60	5482.72	5246.75	4562.39	684.36	235.98	2171.70	3311.03	0.00
1971	211.2	0.85	179.5	26244.00	5664.26	5417.55	4710.92	706.64	246.70	2242.40	3421.86	0.00
1972	213.4	0.85	181.4	26918.20	5873.00	5615.57	4883.11	732.47	257.43	2324.36	3548.64	0.00
1973	215.7	0.85	183.3	27519.20	6069.27	5801.11	5044.44	756.67	268.15	2401.16	3668.11	0.00
1974	217.9	0.85	185.2	28042.60	6251.63	5972.75	5193.69	779.05	278.88	2472.20	3779.43	0.00
1975	220.1	0.85	187.1	28561.00	6435.20	6145.60	5344.00	801.60	289.61	2543.74	3891.46	0.00
1976	222.4	0.85	189.0	29112.50	6628.24	6327.91	5502.53	825.38	300.33	2619.20	4009.04	0.00
1977	224.6[7]	0.85	190.9	29579.60	6805.16	6494.10	5647.04	847.06	311.06	2687.99	4117.17	0.00
1978	229.3	0.85	194.9	30049.20	7057.77	6735.98	5857.38	878.61	321.79	2788.11	4269.66	0.00
1979	234.0	0.85	198.9	30511.50	7312.99	6980.48	6069.98	910.50	332.51	2889.31	4423.68	0.00
1980	238.8	0.85	203.0	30917.90	7559.44	7216.20	6274.96	941.24	343.24	2986.88	4572.56	0.00
1981	243.5	0.85	207.0	31315.80	7807.61	7453.65	6481.43	972.22	353.96	3085.16	4722.45	0.00
1982	248.2	0.85	211.0	31688.90	8053.44	7688.75	6685.87	1002.88	364.69	3182.48	4870.97	0.00
1983	252.9	0.85	215.0	32053.50	8300.62	7925.20	6891.48	1033.72	375.42	3280.34	5020.27	0.00
1984	257.7	0.85	219.0	32492.70	8569.95	8183.81	7116.35	1067.45	386.14	3387.38	5182.57	0.00
1985	262.4[8]	0.85	223.0	32921.30	8841.05	8444.18	7342.77	1101.42	396.87	3495.16	5345.89	0.00
1986	267.1	0.86	229.7	33311.90	9131.46	8723.87	7652.52	1071.35	407.60	3566.07	5565.39	0.00
1987	271.8	0.87	236.5	33731.30	9432.87	9014.55	7977.48	1037.07	418.32	3637.73	5795.14	0.00
1988	276.6	0.88	243.4	34163.70	9741.30	9312.26	8314.52	997.74	429.05	3708.27	6033.03	0.00
1989	281.3	0.89	250.3	34587.60	10050.86	9611.08	8658.63	952.45	439.77	3775.16	6275.69	0.00
1990	286.0[9]	0.90	257.4	34869.20	10323.37	9872.87	8975.33	897.53	450.50	3819.00	6360.20	144.17
1991	277.4	0.90	249.6	35085.20	10046.04	9634.73	8758.84	875.88	411.31	3722.51	6042.15	281.38
1992	268.8	0.90	241.9	35296.90	9762.53	9391.76	8537.97	853.80	370.76	3624.37	5726.74	411.42
1993	260.2	0.90	234.1	35471.00	9453.56	9135.50	8305.00	830.50	318.05	3521.32	5398.64	533.60

		The			Weight		of	them:					
	Specific	share of	Specific		of		MSW		industrial	Unmanaged	Unmanaged		
Year	MSW gener-	MSW	dumping	Urban	dumped		(of it:	organic	shallow	deep land-	Managed	
Tear	ation	dumped on land- fills	MSW	population	solid waste, total	Total	official*	unofficial**		landfills	fills	landfills	
	kg/person/year		kg/person/year	thous. peo-	thousand	thousand	thousand	thousand	thousand	thousand	thousand	thousand	
			•	ple	tons	tons	tons	tons	tons	tons	tons	tons	
1994	251.5	0.90	226.4	35400.70	9060.48	8815.41	8014.01	801.40	245.07	3393.93	5022.92	643.63	
1995	242.9	0.90	218.6	35118.80	8660.97	8445.63	7677.85	767.78	215.34	3247.73	4673.29	739.95	
1996	234.3[10]	0.90	210.9	34767.90	8258.37	8064.66	7331.51	733.15	193.72	3097.56	4336.47	824.34	
1997	248.9	0.90	224.0	34387.50	8660.89	8473.03	7702.76	770.28	187.86	3250.56	4420.52	989.80	
1998	263.5	0.90	237.1	34048.20	9065.40	8881.14	8073.76	807.38	184.25	3403.09	4495.14	1167.16	
1999	278.1	0.90	250.3	33702.10	9461.38	9277.58	8434.16	843.42	183.80	3550.78	4555.86	1354.74	
2000	292.7	0.90	263.4	33338.60	9853.59	9658.98	8780.89	878.09	194.62	3692.36	4609.76	1551.47	
2001	307.2	0.90	276.5	32951.70	10235.39	10022.76	9111.60	911.16	212.64	3826.87	4652.26	1756.26	
2002	321.8	0.90	289.6	32574.40	10602.32	10378.42	9434.93	943.49	223.90	3957.95	4674.24	1970.13	
2003	336.4	0.90	302.8	32328.40	11011.99	10766.92	9788.11	978.81	245.07	4101.22	4709.67	2201.10	
2004	351.0	0.90	315.9	32146.41	11445.36	11170.55	10155.05	1015.50	274.81	4249.89	4748.74	2446.73	
2005	_	_	_	_	12624.63	12342.16	11220.15	1122.01	282.46	4690.02	5051.03	2883.58	
2006	_	_	_	_	12397.62	12094.43	10994.94	1099.49	303.19	4628.87	4932.06	2836.69	
2007	_	_	_	_	12173.76	11846.70	10769.73	1076.97	327.06	4494.39	4887.22	2792.15	
2008	_	_	_	_	12167.81	11833.53	10757.76	1075.78	334.27	4482.58	4880.26	2804.97	
2009	_	-	_	_	12633.94	12348.77	11226.16	1122.62	285.17	4670.08	5022.60	2941.25	
2010	_	_	_	_	12801.82	12465.79	11332.54	1133.25	336.02	4714.34	5118.35	2969.13	
2011	_	_	_	_	13121.36	12850.86	11682.60	1168.26	270.50	4859.96	5200.56	3060.84	
2012		-	_	_	13483.12	13312.13	12101.93	1210.19	171.00	5034.40	5278.01	3170.71	
2013		_	_	_	13404.77	13345.16	12131.96	1213.20	59.61	5046.90	5179.30	3178.57	
2014	_	_	_	_	11946.67	11850.58	10773.25	1077.33	96.09	4481.67	4642.40	2822.59	
2015	_	_	_	_	11579.71	11353.65	10321.50	1032.15	226.07	4293.74	4581.74	2704.23	
2016	_	_	_	_	13758.00	13712.96	12466.33	1246.63	45.04	5185.99	5305.83	3266.18	
2017	_	_	_	_	11958.71	11925.55	10841.41	1084.14	33.16	4510.02	4608.24	2840.45	
2018	_	_	_	_	11491.70	11285,01	10259.10	1025.91	206.69	4267.78	4536.03	2687.88	

^{* –} includes MSW collected from the urban territories and self-organized removal at the containers' sites and landfills from rural ones

** – includes MSW from rural territories thrown out at the dumps illegally

A3.4.2 The content of biodegradable components, DOC and MCF parameters, recycling, as well as methane emissions for

MSW landfill categories in the period of 1990-2018

Year	I*	II*	III*	IV*	V *	VI*	VII*	VIII*	DOC	MCF	R**	TOTAL	Unmanaged MSW dumps, shallow	Unmanaged MSW dumps, deep	Managed MSW dumps
		N	Aorphol	ogical s	tructure	of MSV	V, %		%		kt CO ₂ -eq.	Methane	emissions from	MSW dumping,	, kt CO2-eq.
1990	27.5	5.5	37.8	2.3	1.7	0.0	3.0	22.3	20.47	0.655	0.00	6534.85	1591.08	4943.76	0.00
1991	25.9	5.3	38.1	2.3	2.0	0.0	2.9	23.5	19.88	0.657	0.00	6765.19	1635.76	5115.31	14.12
1992	24.4	5.1	38.4	2.4	2.4	0.0	2.7	24.7	19.29	0.660	0.00	6953.04	1671.07	5241.86	40.10
1993	22.8	4.9	38.7	2.5	2.7	0.0	2.6	25.9	18.71	0.662	0.00	7101.03	1697.67	5327.50	75.87
1994	21.3	4.6	39.0	2.5	3.0	0.0	2.5	27.1	18.12	0.664	0.00	7210.39	1716.03	5374.89	119.46
1995	19.7	4.4	39.3	2.6	3.3	0.0	2.4	28.3	17.53	0.667	0.00	7278.76	1725.94	5384.11	168.71
1996	18.1	4.2	39.6	2.7	3.7	0.1	2.2	29.4	16.97	0.670	0.00	7309.64	1727.45	5360.66	221.53
1997	16.6	4.0	39.9	2.7	4.0	0.4	2.1	30.3	16.45	0.673	0.00	7306.50	1721.28	5308.94	276.28
1998	15.0	3.8	40.2	2.8	4.3	0.5	2.0	31.5	15.88	0.676	0.00	7318.96	1718.60	5260.87	339.50
1999	13.4	3.5	40.5	2.9	4.6	0.4	1.8	32.8	15.27	0.679	0.00	7343.51	1718.55	5214.29	410.66
2000	11.8	3.3	40.8	2.9	5.0	0.4	1.7	34.0	14.69	0.682	0.00	7376.58	1720.26	5167.23	489.09
2001	10.3	3.1	41.2	3.0	5.3	0.5	1.6	35.1	14.12	0.685	0.00	7416.36	1723.14	5119.02	574.19
2002	8.6	2.9	41.2	3.1	5.6	0.6	1.4	36.6	13.47	0.688	0.00	7460.82	1726.66	5068.85	665.30
2003	9.3	3.0	40.5	2.9	5.4	0.7	1.5	36.8	13.59	0.691	7.25	7496.75	1729.63	5013.54	753.58
2004	9.8	3.1	39.4	2.8	5.2	0.7	1.5	37.3	13.62	0.694	7.25	7557.25	1735.96	4962.84	858.45
2005	10.4	3.2	38.4	2.7	5.0	0.8	1.6	37.9	13.66	0.697	0.00	7639.24	1744.87	4915.10	979.27
2006	11.0	3.4	37.4	2.5	4.8	0.9	1.6	38.5	13.69	0.696	0.25	7765.54	1764.87	4885.98	1114.69
2007	11.6	3.5	36.4	2.4	4.5	1.0	1.7	39.0	13.75	0.698	0.00	7864.40	1780.22	4849.07	1235.11
2008	12.2	3.6	35.3	2.2	4.3	1.3	1.7	39.3	13.83	0.699	3.66	7937.90	1789.55	4810.18	1338.18
2009	12.7	3.7	34.3	2.1	4.1	1.2	1.8	40.0	13.84	0.699	54.00	7956.44	1797.24	4772.31	1386.88
2010	13.3	3.8	33.3	1.9	3.9	1.3	1.8	40.6	13.87	0.699	57.85	8035.20	1808.77	4743.13	1483.30
2011	13.7	3.9	31.8	1.8	3.6	1.3	1.9	42.0	13.72	0.699	114.16	8060.61	1819.95	4719.73	1520.93
2012	13.7	3.9	31.8	1.8	3.6	1.4	1.9	41.9	13.73	0.698	250.85	8003.23	1831.93	4697.13	1518.04
2013	13.7	3.9	31.8	1.8	3.6	1.4	1.9	41.9	13.73	0.697	264.37	8082.15	1848.32	4681.17	1652.47
2014	13.7	3.9	31.8	1.8	3.6	1.4	1.9	41.9	13.73	0.697	334.14	8094.76	1864.11	4661.16	1730.95
2015	13.7	3.9	31.8	1.8	3.6	1.4	1.9	41.9	13.73	0.698	293.10	8142.40	1863.09	4612.76	1806.69
2016	13.7	3.9	31.8	1.8	3.6	1.4	1.9	41.9	13.73	0.697	193.98	8232.27	1857.17	4564.91	2001.54
2017	13.7	3.9	31.8	1.8	3.6	1.4	1.9	41.9	13.73	0.697	340.70	8183.77	1877.06	4561.62	2085.01
2018	13.7	3.9	31.8	1.8	3.6	1.4	1.9	41.9	13.73	0.697	391.64	8136.75	1876.66	4519.46	2132.26

^{*}I - paper, II - textiles, III - food waste, IV - wood, V - garden and park waste, VI - personal care, VII - rubber and leather, VIII - non-biodegradable components ** - the total reduction in methane emissions from flaring and landfill biogas recover

ANNEX 4 FUEL BALANCES

A4.1 Energy balance of Ukraine in 2018 (thd. tonnes of oil eq.)

DELIVERY AND CONSUMPTION	Coal and peat	Crude oil	Petroleum products	Natural gas	Nuclear energy	Hydropower	Energy of wind, sun	Biofuels and waste	Electric power	Heat	Total
Production	14087	2341	-	16487	22145	897	197	3726	-	534	60413
Import	13806	1333	10365	8459	-	-	-	37	3	-	34003
Export	-60	-41	-301	-	ı	-	-	-542	-524	-	-1468
International bunkering	-	-	-300	1	1	-	-	-	-	ı	-300
Changes in inventories	-246	1	81	707	1	-	-	-26	-	ı	517
Total primary energy supply	27587	3635	9844	25653	22145	897	197	3195	-522	534	93165
Transfers	-	387	-219	-	-	-	-	-	-	-	168
Statistical divergences	325	-	-1055	-422	-	-	-	-	-	1	-1152
Power plants	-12499	-	-132	-212	-21991	-897	-197	-3	12295	-130	-23765
Combined heat and power (CHP)	-2248	-	-157	-3624	-	-	-	-146	1314	3083	-1778
Heating plants	-679	-	-37	-4912	-154	-	-	-762	-	6208	-337
Coke enterprises (blast furnaces)	-2935	-	-	-	-	-	-	-	-	-	-2935
Gas companies	-37	-	-	-	-	-	-	-	-	=	-37
Enterprises manufacturing briquettes	-2402	-	-	-	-	-	-	-	-	-	-2402
Oil refineries	-	-4003	2430	-	-	-	-	-	-	-	-1573
Petrochemical compa- nies	-	-	-	-	-	-	-	-	-	-	-
Other processing enterprises	-118	-	-28	-	ı	-	-	-336	-	-	-482
Own consumption within the energy sector	-640	-5	-47	-947	-	-	-	-	-1423	-1115	-4178
Losses at transportation and distribution	-408	-5	-	-592	-	-	-	-	-1461	-1057	-3523
Final consumption	5944	9	10599	14943	-	-	-	1950	10203	7523	51171
Industry	5101	-	453	2927	•	-	-	30	4448	3542	16501
Ferrous metallurgy	4314	-	79	1445	ı	-	-	2	1519	1250	8608

DELIVERY AND CONSUMPTION	Coal and peat	Crude oil	Petroleum products	Natural gas	Nuclear energy	Hydropower	Energy of wind, sun	Biofuels and waste	Electric power	Heat	Total
Chemical and petro- chemical	3	-	2	216	-	-	-	-	268	511	1000
Non-ferrous metals	102	-	27	150	-	-	-	-	138	275	692
Non-metal mineral products	549	-	36	430	-	-	-	1	221	73	1310
Transportation equipment	-	-	6	22	-	-	-	1	77	53	159
Machine engineering	5	-	11	147	-	-	-	8	351	98	621
Mining (excluding fuel)	98	-	165	297	-	-	-	1	812	90	1463
Food and tobacco	30	-	20	175	ı	-	-	6	390	863	1484
Pulp and paper, printing	-	-	1	22	ı	-	-	ı	88	154	264
Wood processing and wood products	-	-	10	1	-	-	-	6	70	99	187
Construction	2	-	87	9	-	-	-	1	83	16	197
Textile and leather	-	-	1	6	-	-	-	1	32	22	62
Other industries	1	=	8	7	ı	-	-	3	398	39	455
Transport	5	-	7539	1455	•	-	-	36	598	-	9633
Domestic air transportation	-	-	6	-	-	-	-	-	-	-	6
Automobile	-	-	7350	23	-	-	-	36	-	-	7409
Railway	5	-	139	-	ı	-	-	1	461	-	605
Pipeline	-	-	5	1431	ı	-	-	1	48	-	1485
Inland navigation	-	-	39	-	-	-	-	-	-	-	39
Other types of transport	1	-	-	-	-	-	-	-	88	-	89
Other	307	-	1384	9677	•	-	-	1883	5157	3982	22390
Household sector	260	-	78	8689	-	-	-	1814	3091	2271	16203
Trade and services	40	-	116	866	-	-	-	33	1731	1491	4277
Agriculture	7	-	1190	122	-	-	-	37	333	219	1907
Fishing	-	-	1	-	-	-	-	-	2	-	3
Other consumers	-	-	_	-	-	-	-	-	-	-	-
Non-energy use	531	9	1223	884	-	-	-	-	-	-	2647
Industrial and energy sector, conversion sector	531	6	437	884	-	-	-	-	-	-	1859
including: feedstock for industries	-	-	116	823	-	-	-	-	-	-	939
On transport	-	-	12	-	-	-	-	-	-	-	12

DELIVERY AND CONSUMPTION	Coal and peat	Crude oil	Petroleum products	Natural gas	Nuclear energy	Hydropower	Energy of wind, sun	Biofuels and waste	Electric power	Heat	Total
In other sectors	ı	3	774	-	-	-	1	=	-	ı	777

¹ Not accounting for the temporarily occupied by the Russian Federation territory of the Autonomous Republic of Crimea, Sevastopol, and certain districts of Donetsk and Luhansk regions.

² The data include volumes of energy distributed to the temporarily occupied by the Russian Federation territory of the Autonomous Republic of Crimea, Sevastopol, and certain districts of Donetsk and Luhansk regions

A4.2 Balance of natural gas

Col- umn	Balance sheet item	Unit	2011	2012	2013	2014	2015	2016	2017	2018
1	Visible (balance) consumption, total, including:	mln. m3	62951.47	52667.55	48527.09	43285.34	38008.41	36281	33781	33905
2	- production	mln. m3	19886.50	19739.40	20554.20	21322.30*	20765.02*	21741*	21761*	22558*
3	- imports	mln. m3	43061.13	32926.96	27972.04	20265.95*	15584.89*	13942	14051	10472
4	- stocks change	mln. m3	-3.84	-1.19	-0.85	-1697.09	-1658.50	-598	2031	-875
5	Actual consumption, total, including:	mln. m3	57761.95	53492.99	49403.87	41267.56	35135.06	34153	34309	35631
6	- Stationary Combustion**	mln. m3	47689.10	44766.26	41674.74	35845.71*	30408.21*	29499*	30225*	31971*
7	- Mobile Combustion**	mln. m3	2643.43	1818.88	1992.33	1398.37*	1145.11*	1400*	1944*	1802*
8	- Non-energy use**	mln. m3	595.54	577.64	403.15	171.41	174.87	494	407	226
9	- Category 2.B.1 Ammonia Production**	mln. m3	5876.51	5661.05	4677.67	3225.98	2779.87	2153	1077	884
10	- Natural Gas Leaks**	mln. m3	957.37	669.16	655.98	626.09	627.01	607	656	748
The di	fference between the balance sheet and ac-	mln. m3	5189.52	-825.44	-876.78	2017.78	2873.34	2128	528	-1726
tual co	nsumption	%	8.24%	-1.57%	-1.81%	4.66%	7.56%	5.9%	1,5%	-4,84%
			Data of the	Internationa	Energy Agen	ncy				
11	Domestic consumption of natural gas. observational**	mln. m3	58401	53452	49488	41027	33120	32962	31754	31624
		•	Comp	arison with th	ne IEA data		•	•	•	•
/D1 1:		mln. m3	4550.47	-784.45	-960.91	-2258.34	-4888.41	-3319	-2027	-2282
i ne di	fference between graphs 11 and 1	%	7.23%	-1.49%	-1.98%	-5.22%	-12.86%	-9.14%	-6,0%	-6,73%
The dia	Fformance hoteveen growths 11 and 5	mln. m3	-639.05	40.99	-84.13	-240.56	-2015.06	-1191	-2555	-4007
i ne di	fference between graphs 11 and 5	%	-1.09%	0.08%	-0.17%	-0.59%	-6.08%	-3.49%	-7,4%	-11,25%

^{*}in view of analytical study [26]

** Determined for standard conditions (20°C, 101.3 kPa)

A4.3 Coal Balance

Col- umn	Balance sheet item	Unit	2010	2011	2012	2013	2014	2015	2016	2017	2018
1	Visible consumption (according to national statistics), including	kt	64977.17	67884.07	71571.50	71499.99	58930.96	52938.26	51905	48406	52208
2	- mining	kt	54957.14	62684.00	65522.60	64203.10	48866.74*	39673.20*	33985	28879	31026
3	- imports	kt	12145.05	12708.78	14764.24	14207.72	14694.16	14598.17	15648	19778	21387
4	- exports	kt	6193.02	6990.34	6113.96	8537.28	7033.94	563.11	52	636	63
5	- stocks change	kt	-4068.00	518.37	2601.38	-1626.45	-2404.00	770.00	-2324	-385	142
6	Actual consumption, total, including:	kt	69714.70	74659.24	75660.98	74043.46	60182.05	48451.38	56705	51468	51203
7	- Stationary Combustion	kt	39978.98	44689.82	47064.28	47271.03	41602.00*	35848.86*	37456	33622	36287
8	- Used by coke production enter- prises	kt	26369.38	27480.15	26330.36	24154.64	17020.00	11898.00	19083	17641	14691
9	- Non-energy use and losses	kt	3366.34	2489.27	2266.34	2617.79	1560.05	704.53	166	205	225
The diff	ference between the balance sheet and	kt	-4737.53	-6775.17	-4089.48	-2543.47	-1251.09	4486.88	-4800	-3062	1005
actual c	onsumption	%	-7.29%	-9.98%	-5.71%	-3.56%	-2.12%	8.48%	-8,46%	-5,95%	1,96%
			D	ata of the Int	ernational E	nergy Agenc	y				
11	Gross total coal consumption (IEA annual questionnaire)	kt	66095	72929	73586	71396	60572	45285	49862	42664	47612
12	Gross consumption of coal for coking (IEA annual questionnaire)	kt	26369	27487	27009	24165	17020	11898	14292	14167	15550
13	Gross consumption of coal without coking coal (IEA annual questionnaire)	kt	39726	45442	46577	47231	43442	33387	35570	28497	32062
					on with the						
The diff	ference hetween graphs 11 and 1	kt %	1117.83	5044.93	2014.50	-103.99	1641.04	-7653.26	-2043	-5742	-4596
THE UIII	The difference between graphs 11 and 1		1.69%	6.92%	2.74%	-0.15%	2.71%	-16.90%	-3,94%	-11,86%	-8,80%
The diff	ference between graphs 11 and 6	kt	-3619.70	-1730.24	-2074.98	-2647.46	389.95	-3166.38	-6843	-8804	-3591
THE UIII	erence between graphs 11 and 0	%	-5.48%	-2.37%	-2.82%	-3.71%	0.64%	-6.99%	-12,07%	-17,1%	-7,01%
The diff	ference between graphs 12 and 8	kt	-0.38	6.85	678.64	10.36	0.00	0.00	4791	-3474	859
I IIC GIII	C 1 1 1	%	0.00%	0.02%	2.51%	0.04%	0.00%	0.00%	25.1%	-19,7%	5,85%

^{*} in view of analytical study [26]

A4.4 The coking coal, coke, and coke gas balance

Table A4.4.1 presents the balance of coal for coking in 2018 compiled on the basis of data on the production amount (finished hard coal for coking in accordance with statistical form 1-P and the analytical study [26]), exports, imports, as well as information on stocks of coal for coking stored by enterprises as of the beginning and end of the reporting period (according to statistical form No. 4-MTP).

Table A4.4.1. The balance of apparent consumption of coal for coking in 2018

	Production (extraction)	Import	Export	Stocks change	Total consumption
Amount, kt	4606.3	13551.1	46.5	12.3	18098.6

According to coke enterprises, the humidity of the coking charge is on average approximately 10%. Thus, the charge consumption for coking calculated as the dry state was 16288.7 kt.

The result of the cooking process is coke, coke oven gas, coal tars, and other products (Table A4.4.2).

Table A4.4.2. Yield of coke ovens in 2018, according to statistical form 1P-NPP

Indicator	Coke, calculated as the dry weight, kt	Coke oven gas, mln. m3	Coal tars, calculated as the anhydrous state, kt	Other products (benzene, ammonium sulfate, etc.).
Amount	10824.1	4581.1	475.6	Not estimated
Yield by weight as dry- charge	73.7%	14.8%	3.2%	8.3%

^{*} For conversion into units of weight, the density of coke oven gas is taken to be 0.475 kg/m³

Table A4.4.3 presents the coke weight balance in 2018 (in terms of dry weight) compiled on the basis of data on the production volume, imports, exports, and reserves of coke in warehouses of enterprises as of the beginning and the end of the reporting period.

Table A4.4.3. Balance of coke in 2018, dry weight, kt

	Production	Import	Export	Changes in inventories	Total consump- tion on the bal- ance	Actual consumption	Discrepancy
Amount	10824.1	839.8	25.6	-14.1	11652.4	12168.5	-4.24%
Data	Form 1P-	Statistical data on ex-		Form 4-	Estimated	Form 4-MTP, en-	Estimated
source	NPP	ports/imports	of products	MTP	value	terprise data	value

The data on coke consumption in form 4-MTP are more detailed and are collected at the enterprise level. Therefore, they are used to calculate GHG emissions.

Table A4.4.4 presents data on aggregated volumes of coke consumption by industries with an indication of the categories of the respective amounts of GHG emissions.

Table A4.4.4. Coke consumption in 2018, according to statistical reporting form 4-MTP,

and its accounting by CRF categories

Indicator	The index value, kt	Percentage of total consumption	CFR category of the GHG emissions
Total consumption	12168.5	100.00%	
Consumption for iron production	11118.3	91.4%	2.C. Iron Production, Ferroalloys Production
Other consumption	1050.2	8.6%	

^{**} The final consumption of coking coal is taken from the form 4-mtp as 15 877 kt.

Table A4.4.5 presents aggregated data on the volumes of coke gas production and consumption by industries with an indication of the categories of the respective GHG emissions.

Table A4.4.5. Coke oven gas production and consumption in 2018, according to statistical

reporting, and its accounting by CRF categories

Indicator	Index value, mln. m3	Index value, %	CFR category of the GHG emissions
Consumption of coke oven gas for stationary combustion in coke batteries, boilers of enterprises, etc.	4179.2	90.8	1.A
Losses due to non-use, no account, and for other reasons	424.6	9.2	1.B.1.b

Comparison of the data coke oven gas production and consumption demonstrates the following: the total amount of coke oven gas consumed, taking into account the losses, is 4604 th. m³, which is 0.5 % differs from the amount of its production (4581 th. m³).

ANNEX 5 COMPLETENESS ASSESSMENT

A5.1 Inventory of greenhouse gases

Table A5.1 shows detailed information about the categories, where notation keys were used (NE, IE) during the GHG inventory.

Table A5.1 Abcent sources / sinks in the NIR

Sector	Gas	/ SINKS III UI	Category source		The reason for the use in the NIR
ENERGY	CO ₂	1.A.3.b.ii	Light duty trucks (gasoline, diesel oil, liquefied petroleum gases, other liquid fuels, biomass, kerosene, lubricants)	IE	Emissions are accounted in 1.A.3.b.i Cars and 1.A.3.e.ii Off-road vehicles and other machinery
		1.A.3.b.iii	Heavy duty trucks and buses (gas- oline, diesel oil, liquefied petro- leum gases, other liquid fuels, bi- omass, kerosene, lubricants)	IE	Emissions are accounted in 1.A.3.b.i Cars and 1.A.3.e.ii Off-road vehicles and other machinery
		1.A.3.b.iv	Motorcycles (gasoline, diesel oil, liquefied petroleum gases, other liquid fuels, biomass, kerosene)	IE	Emissions are accounted in 1.A.3.b.i Cars and 1.A.3.e.ii Off-road vehicles and other machinery
		1.A.4.c.ii	Off-road vehicles and other ma- chinery (gasoline, diesel oil, liq- uefied petroleum gases, gaseous fuels, biomass)	IE	Emissions are accounted in 1.A.3.e.ii Off-road vehicles and other machin- ery
		1.A.4.c.iii	Fishing (residual fuel oil, diesel oil, gasoline, gaseous fuels, biomass)	ΙE	Emissions are accounted in 1.A.3.e.ii Off-road vehicles and other machin- ery
		1.AA	Fuel Combustion - Sectoral approach/Information item/ (biomass, fossil fuels)	IE	Emissions are accounted in 1.A.1.a Public Electricity and Heat Produc- tion
		1.B.1.a.1.ii			Not considered by IPCC Guidelines
		1.B.1.a.2.i	Mining Activities	NE	Not considered by IPCC Guidelines
		1.B.1.a.2.ii	Post-Mining Activities	NE	CO ₂ emissions were not estimated due to lack of the IPCC methodology
		1.B.2.a.4	Refining / Storage	NE	No IPCC methodology for calculation of CO ₂ emissions
		1.B.2.a.5	Distribution of Oil Products	NE	CO ₂ emissions are not estimated due to lack of IPCC default EFs
		1.B.2.c.1.ii	Gas	ΙE	CO ₂ emissions included in 1.B.2.b.4 Transmission and storage and 1.B.2.b.5 Distribution
		1.B.2.c.1.iii	Combined	IE	CO ₂ emissions included in 1.B.2.c.1.i Oil and 1.B.2.c.1.ii Gas
		1.B.2.c.2.iii	Combined	IE	CO ₂ emissions included in 1.B.2.c.2.i Oil and 1.B.2.c.2.ii Gas
		1.AD	Feedstocks, reductants and other non-energy use of fuels / Liquid fossil / Naphtha	IE	Emissions are accounted in 1.AD Lubricants
	CH ₄	1.A.3.b.ii	Light duty trucks (gasoline, diesel oil, liquefied petroleum gases, other liquid fuels, biomass, kerosene, lubricants)	IE	Emissions are accounted in 1.A.3.b.i Cars and 1.A.3.e.ii Off-road vehicles and other machinery
		1.A.3.b.iii	Heavy duty trucks and buses (biomass, gasoline, diesel oil, liquefied petroleum gases, other liquid fuels, kerosene, lubricants)	IE	Emissions are accounted in 1.A.3.b.i Cars and 1.A.3.e.ii Off-road vehicles and other machinery
		1.A.3.b.iv	Motorcycles (gasoline, diesel oil, liquefied petroleum gases, other liquid fuels, biomass, kerosene)	IE	Emissions are accounted in 1.A.3.b.i Cars and 1.A.3.e.ii Off-road vehicles and other machinery
		1.A.4.c.ii	Off-road vehicles and other ma- chinery (gasoline, diesel oil, liq- uefied petroleum gases, gaseous fuels, biomass)	IE	Emissions are accounted in 1.A.3.e.ii Off-road vehicles and other machin- ery

			Fishing (residual fuel oil, diesel		Emissions are accounted in 1.A.3.e.ii
		1.A.4.c.iii	oil, gasoline, gaseous fuels, biomass)	IE	Off-road vehicles and other machinery
		1.AA	Fuel Combustion - Sectoral approach/Information item/ (biomass, fossil fuels)	IE	Emissions are accounted in 1.A.1.a Public Electricity and Heat Produc- tion
		1.B.2.a.5	Distribution of Oil Products	NE	Rrefinery outputs generally contain negligible amounts of methane. Con- sequently, methane emissions are not estimated for transporting and distrib- uting refined products
		1.B.2.c.1.ii	Gas	IE	CH ₄ emissions included in 1.B.2.b.4 Transmission and storage and 1.B.2.b.5 Distribution
		1.B.2.c.1.iii	Combined	IE	CH ₄ emissions included in 1.B.2.c.1.i Oil and 1.B.2.c.1.ii Gas
		1.B.2.c.2.iii	Combined	IE	CH ₄ emissions included in 1.B.2.c.2.i Oil and 1.B.2.c.2.ii Gas
	N ₂ O	1.AA	Fuel Combustion - Sectoral ap- proach/Information item/ (bio- mass, fossil fuels)	IE	Emissions are accounted in 1.A.1.a Public Electricity and Heat Production
		1.A.3.b.ii	Light duty trucks (gasoline, diesel oil, liquefied petroleum gases, other liquid fuels, biomass, kerosene, lubricants)	ΙE	Emissions are accounted in 1.A.3.b.i Cars and 1.A.3.e.ii Off-road vehicles and other machinery
		1.A.3.b.iii	Heavy duty trucks and buses (gas- oline, diesel oil, liquefied petro- leum gases, other liquid fuels, bi- omass, kerosene, lubricants)	IE	Emissions are accounted in 1.A.3.b.i Cars and 1.A.3.e.ii Off-road vehicles and other machinery
		1.A.3.b.iv	Motorcycles (gasoline, diesel oil, liquefied petroleum gases, other liquid fuels, biomass, kerosene)	IE	Emissions are accounted in 1.A.3.b.i Cars and 1.A.3.e.ii Off-road vehicles and other machinery
		1.A.4.c.ii	Off-road vehicles and other ma- chinery (gasoline, diesel oil, liq- uefied petroleum gases, gaseous fuels, biomass)	IE	Emissions are accounted in 1.A.3.e.ii Off-road vehicles and other machin- ery
		1.A.4.c.iii	Fishing (residual fuel oil, diesel oil, gasoline, gaseous fuels, biomass)	IE	Emissions are accounted in 1.A.3.e.ii Off-road vehicles and other machin- ery
		1.B.2.a.4	Refining / Storage	NE	No IPCC methodology for calculation of N ₂ O emissions N ₂ O emissions included in 1.B.2.c.2.i
		1.B.2.c.2.iii	Combined	IE	Oil and 1.B.2.c.2.ii Gas
INDUSTRIAL PRO- CESSES AND PRODUCT USE	CO ₂	2.B.5.a	Silicon carbide	ΙE	Included in 2.B.5.b Calcium Carbide
		2.C.1.d	Sinter	IE	Included in 2.C.1.b Pig Iron
		2.C.1.e	Pellet	ΙE	Included in 2.C.1.b Pig Iron
	CH ₄	2.B.1	Ammonia Production	NE	No IPCC Metodology provided
		2.B.5.b	Calcium Carbide	NE	No IPCC Metodology provided
AGRICULTURE	N ₂ O	3.B.2	N2O and NMVOC Emissions (Pasture, Range, and Paddock)	IE	Included in 3.D.1.3 Urine and Dung Deposited by Grazing Animals
		3.B.2.5	Indirect N ₂ O Emissions (N lost through leaching and run-off; Ni- trogen leaching and run-off)	NE	There are no country specific factors for 2006 IPCC methodology application
		3.D	Agricultural Soils (N-fixed crops)	ΙE	Included in 3.D.1.4 Crop Residues
LAND USE, LAND- USE CHANGE AND FORESTRY	CO ₂	4.A	Forest Land / 4(II) Emissions and removals from drainage and rewetting and other management of organic and mineral soils/Total Organic Soils/Drained Organic Soils	IE	CO ₂ emissions were reported in carbon stock change reporting tables of Forest Land category
		4.B	Cropland / 4(II) Emissions and removals from drainage and rewetting and other management of organic and mineral soils/Total	ΙE	CO ₂ emissions from drained organic soils are included into CSC reporting tables for Cropland Remaining Cropland

			Organic Soils/Drained Organic Soils		
		4.B.2	Land Converted to Cropland/4(V) Biomass Burning/Wildfires	IE	Emissiona are included into Cropland remaining Cropland
4.0		4.C	Grassland/4(II) Emissions and removals from drainage and rewetting and other management of organic and mineral soils/Total Organic Soils/Drained Organic Soils	IE	CO ₂ emissions from drained organic soils are reported in CSC reporting ta- bles in Grassland Remaining Grass- land category
		4.D	Wetlands/4(II) Emissions and removals from drainage and rewetting and other management of organic and mineral soils/Peat Extraction Lands/Total Organic Soils/Drained Organic Soils	IE	CO ₂ emissions from drained organic soils on peatlands are reported in CSC reporting tables for Wetlands Re- maining Wetlands
		4.D.2	Land Converted to Wetlands/4(V) Biomass Burning/Wildfires	ΙE	Emissions are included into Wetlands remaining Wetlands category
	CH ₄	4.A	Forest Land/4(II) Emissions and removals from drainage and rewetting and other management of organic and mineral soils/Total Organic Soils/Drained Organic Soils	NE	There is no EF for CH ₄ emissions in IPCC 2006
		4.B	Cropland/4(II) Emissions and removals from drainage and rewetting and other management of organic and mineral soils/Total Organic Soils/Drained Organic Soils	NE	There is no EF for CH ₄ emissions in IPCC 2006
		4.B.2	Land Converted to Cropland/4(V) Biomass Burning/Wildfires)	IE	Emissiona are included into Cropland remaining Cropland
4.C		4.C	Grassland/4(II) Emissions and removals from drainage and rewetting and other management of organic and mineral soils/Total Organic Soils/Drained Organic Soils	NE	There is no EF for CH ₄ emissions in IPCC 2006
		4.C.2	Land Converted to Grass- land/4(V) Biomass Burn- ing/Wildfires	IE	Emissions are included into Grassland remaining Grassland
		4.D.2	Land Converted to Wetlands/4(V) Biomass Burning/Wildfires	IE	Emissions are included into Wetlands remaining Wetlands category
	N ₂ O	4.A.2.3	Wetlands converted to forest land	NE	IPCC 2006 do not provide methods for estimation of CSC during conver- sions of Wetlannd to Forest Land on mineral soils
		4.B.2	Land Converted to Cropland/4(V) Biomass Burning/Wildfires	IE	Emissiona are included into Cropland remaining Cropland
		4.C.2	Land Converted to Grass- land/4(V) Biomass Burn- ing/Wildfires	IE	Emissions are included into Grassland remaining Grassland
		4.D.1	Wetlands Remaining Wetlands/4(V) Biomass Burning/Wildfires	NE	IPCC Wetlands Supplementary do not provide EF for N ₂ O emissions during fires on Wetlands
		4.D.2	Land Converted to Wetlands/4(V) Biomass Burning/Wildfires	IE	Emissions are included into Wetlands remaining Wetlands category
WASTE	CH ₄	5.C.2.1.a	Municipal Solid Waste	NE	Emissions are insignificant with accordance with Decision 24/CP.19
		5.C.2.1.b	Other (please specify)	NE	Emissions are insignificant with accordance with Decision 24/CP.19
		5.C.2.2.a	Municipal Solid Waste	NE	Emissions are insignificant with accordance with Decision 24/CP.19
		5.C.2.2.b	Other (please specify)	NE	Emissions are insignificant with accordance with Decision 24/CP.19
	CO ₂	5.C.2.1.a	Municipal Solid Waste	NE	Emissions are insignificant with accordance with Decision 24/CP.19
		5.C.2.1.b	Other (please specify)	NE	Emissions are insignificant with accordance with Decision 24/CP.19
		5.C.2.2.a	Municipal Solid Waste	NE	Emissions are insignificant with accordance with Decision 24/CP.19

	5.C.2.2.b	Other (please specify)	NE	Emissions are insignificant with accordance with Decision 24/CP.19
N ₂ O	5.C.2.1.a	Municipal Solid Waste	NE	Emissions are insignificant with accordance with Decision 24/CP.19
5.C.2.1.b Other (please specify)		NE	Emissions are insignificant with accordance with Decision 24/CP.19	
	5.C.2.2.a	Municipal Solid Waste	NE	Emissions are insignificant with accordance with Decision 24/CP.19
	5.C.2.2.b	Other (please specify)	NE	Emissions are insignificant with accordance with Decision 24/CP.19
NMVOC	5.C.1	Waste incineration	NE	No IPCC methodology
NO _x	5.C.1	Waste incineration	NE	No IPCC methodology
SO ₂	5.C.1	Waste incineration	NE	No IPCC methodology
CO	5.C.1	Waste incineration	NE	No IPCC methodology

A5.2 KP-LULUCF inventory

Table A5.2 shows detailed information about the KP-LULUCF categories, where notation keys were used (NE, $\rm IE$).

Table A5.2 Absent sources \slash sinks in the GHG inventory for activities under paragraphs 3 and 4 of Article 3 KP

Gas	Category source		Activity under article	Notation Key	The reason for the use in the NIR
CO ₂	NIR-1	Afforestation and Reforestation	3.3 KP	IE	CSC in HWP pool is reported under FM activity
CO ₂	KP.A.1	Afforestation and Reforestation	3.3 KP		Carbon gains of below-ground living biomass are included into above-ground living biomass gains
CO ₂	KP.A.1	Afforestation and Reforestation	3.3 KP		Carbon losses of below-ground living biomass from cuttings are included into above-ground living biomass losses
CO ₂	КР.В.1	Forest Management	3.4 KP	l IE	CO ₂ emissions are included in losses of above-ground biomass

ANNEX 6 SUPPLEMENTARY INFORMATION PRESENTED AS PART OF ANNUAL SUBMISSION AND THE INFORMATION REQUIRED IN ACCORDANCE WITH PARAGRAPH 1, ARTICLE 7 OF THE KYOTO PROTOCOL, AND OTHER APPLICABLE INFORMATION

A6.1 Annual submission of the National Inventory Report

A6.1.1 The legal framework for implementation of Ukraine's commitments under the United Nations Framework Convention on Climate Change and the Kyoto Protocol in terms of the national inventory of anthropogenic emissions and removals of greenhouse gases

##	Legal act (in the chronological order)	Links to the full text of the document
1	Law of Ukraine "On Ratification of UN Framework Convention on Climate Change" of 29.10.1996 No. 435/96-VR	http://zakon1.rada.gov.ua/cgi-bin/laws/main.cgi?nreg=435%2F96-%E2%F0
2	Resolution of the Cabinet of Ministers of Ukraine "On the Inter-agency Committee of UNFCCC Implementation" of 14.04.1999 No.583 with amendments (Resolution of the Cabinet of Ministers of December 04, 2019 of No. 1065)	http://zakon.rada.gov.ua/cgi-bin/laws/main.cgi?nreg=583-99-%EF
3	Law of Ukraine "On Ratification of the Kyoto Protocol for UN Framework Convention on Climate Change" of 04.02.2004 No. 1430-IV	http://zakon1.rada.gov.ua/cgi-bin/laws/main.cgi?nreg=995_801
4	Resolution of the Cabinet of Ministers of Ukraine "On Approval of the National Action Plan for the Implementation of the Kyoto Protocol to the UN Framework Convention on Climate Change" of 18.08.2005, No. 346-r	http://zakon.rada.gov.ua/cgi-bin/laws/main.cgi?nreg=346-2005-%F0
5	Decree of the President of Ukraine "On the Coordinator of Activities to Implement Ukraine's Commitments under the UN Framework Convention on Climate Change and Kyoto Protocol to the United Nations Framework Convention on Climate Change" of 12.09.2005 No. 1239/2005	https://zakon.rada.gov.ua/laws/show/1239/2005
6	Resolution of the Cabinet of Ministers of Ukraine "On the Coordination of Activities to Implement Ukraine's Commitments under the UN Framework Convention on Climate Change and the Kyoto Protocol to the Convention" of 10.04.2006, No. 468	http://zakon1.rada.gov.ua/cgi-bin/laws/main.cgi?nreg=468-2006-%EF
7	Resolution of the Cabinet of Ministers of Ukraine "On Approval of the Regulations on the National System for Estimation of Anthropogenic Emissions and Sinks of Greenhouse Gases not Regulated under Montreal Protocol on Ozone Layer Depleting Substances" of 21.04.2006, No. 554	http://zakon1.rada.gov.ua/cgi-bin/laws/main.cgi?nreg=554-2006-%EF
8	Resolution of the Cabinet of Ministers of Ukraine "On Establishment of the National Environmental Investment Agency of Ukraine" of 04.04.2007 No. 612	http://zakon1.rada.gov.ua/cgi-bin/laws/main.cgi?nreg=612-2007-%EF
9	Resolution of the Cabinet of Ministers of Ukraine "On Approval of the Regulations on the National Environmental Investment Agency of Ukraine" of 30.07.2007 No. 977	http://zakon.rada.gov.ua/cgi-bin/laws/main.cgi?nreg=977-2007-%EF

10	Resolution of the Cabinet of Ministers of Ukraine "On Ensuring Implementation of International Commitments of Ukraine under the UN Framework Convention on Climate Change and the Kyoto Protocol to It" of 17.04.2008, No. 392	http://zakon1.rada.gov.ua/cgi-bin/laws/main.cgi?nreg=392-2008-%EF
11	Resolution of the Cabinet of Ministers of Ukraine "On Optimization of the System of Central Executive Authorities" of 10.10.2014, No. 442	https://zakon.rada.gov.ua/laws/show/442-2014-п
12	Resolution of the Cabinet of Ministers of Ukraine "On Approval of the Regulations on the Ministry of Ecology and Natural Resources" of 21.01.2015, No. 32	https://zakon.rada.gov.ua/laws/show/32-2015-π
13	Resolution of the Cabinet of Ministers of Ukraine "On Amendments to Some Regulations of the Cabinet of Ministers of Ukraine and Deeming Void Paragraph 1 of Resolution of the Cabinet of Ministers of Ukraine of July 16, 2012 No. 672" of 12.08.2015 No. 616	https://zakon.rada.gov.ua/laws/show/616-2015-п/print
14	Resolution of the Cabinet of Ministers of Ukraine "On Approving the Concept of State Climate Change Policy Implementation until 2030" of 07.12.2016 No. 932-p	https://zakon.rada.gov.ua/laws/show/932-2016-p
15	Resolution of the Cabinet of Ministers of Ukraine "On Enactment of Action Plan on Concept of State Climate Change Policy Implementation until 2030" of 06.12.2017 No. 878-p	https://zakon.rada.gov.ua/laws/show/878-2017-p
16	Resolution of the Cabinet of Ministers of Ukraine "Some Issues of Optimization of the System of Central Executive Government Bodies" of 02.09.2019 No. 829	https://zakon.rada.gov.ua/laws/show/829-2019-π
17	Resolution of the Cabinet of Ministers of Ukraine "On Amendments to Some Regulations of the Cabinet of Ministers of Ukraine" of 18.09.2019 No. 847	https://zakon.rada.gov.ua/laws/show/847-2019-п

A6.1.2 Order of the Ministry of Environmental Protection No.268 of May 31, 2007

Order of the Ministry of Environmental Protection No. 268 of May 31, 2007 approving the Work Plan for Annual Preparation and Maintenance of the National Inventory of Greenhouse Gas Emissions and Sinks and the Work Plan to Maintain and Control the Quality of Input Data and Calculations for the Annual Preparation of the National Inventory Report of Emissions and Sinks of Greenhouse Gases

Pursuant to the Procedure for the National System for Estimation of Anthropogenic Emissions and Sinks of Greenhouse Gases not Regulated under Montreal Protocol on Ozone Layer Depleting Substances approved with Resolution of the Cabinet of Ministers of Ukraine of 21.04.06 No. 554 and to meet requirements of the UN Framework Convention on Climate Change, Kyoto Protocol to it, and Decisions of the Conference of the Parties to the UN Framework Convention on Climate Change/Meeting of the Parties to the Kyoto Protocol

I ORDER:

1. To adopt the attached:

The Action Plan on annual preparation and maintenance of the Annual National Inventory of emissions and sinks of greenhouse gases;

The Action Plan for quality assurance and control for raw data and calculation within the annual preparation of the National Inventory of emissions and sinks of greenhouse gases.

2. Control over execution of the Order shall be exerted by First Deputy Minister S. Kurulenko

Deputy Minister S. Hlazunov

ANNEX 7 UNCERTAINTIES

In this inventory, the uncertainty estimate is performed by using level 1 approach of the IPCC. This approach provides an estimation of uncertainty for types of emitted gases for each of the IPCC sectors. The uncertainty estimate is prepared of the inventory involves an estimating of AD uncertainties, which characterize the activity, and the uncertainty of EFs for major sources of emissions and their subsequent integrated assessment produced by combining uncertainties in accordance with the methodology set out by the 2006 IPCC Guidelines.

The results of the combined uncertainty estimate of GHG emissions (including and excluding LULUCF) reported in the Table A7.1 and Table A7.2, respectively.

Table A7.1 The results of the evaluation of the combined uncertainty of GHG emissions **including the LULUCF sector**

	IPCC category		Base 1990 year emissions or removals, kt CO ₂ equivalent	2018 year emissions or removals, kt CO ₂ equivalent	Activity data uncertainty, %	Emission factor / estimation parameter uncertainty, %	Combined uncertainty, %	Contribution to Variance by Category in 2018 year, %	Type A sensitivity, %	Type B sensitivity, %	Uncertainty in trend in national emissions introduced by emission factor / estimation parameter uncertainty, %	Uncertainty in trend in national emissions introduced by activity data uncertainty, %	Uncertainty introduced into the trend in total national emissions, %
	A	В	С	D	E	F	G	Н	I	J	K	L	M
1	ENERGY		<u>I</u>										
1.A.1	Energy Industries	CO_2	271861.68	98274.84	2.34	3.55	4.25	1.49	-0.01	0.11	-0.03	0.37	0.14
		CH ₄	184.29	88.38	2.34	85.47	85.50	0.00	0.00	0.00	0.00	0.00	0.00
		N ₂ O	635.15	392.35	2.34	407.25	407.26	0.22	0.00	0.00	0.07	0.00	0.00
1.A.2	Manufacturing Industries and Construction	CO ₂	111029.98	18332.05	6.99	5.32	8.79	0.22	-0.03	0.02	-0.15	0.21	0.06
		CH ₄	80.76	31.00	6.99	119.86	120.06	0.00	0.00	0.00	0.00	0.00	0.00
		N ₂ O	144.29	52.37	6.99	415.08	415.13	0.00	0.00	0.00	0.00	0.00	0.00
1.A.3	Transport	CO_2	107066.83	33632.42	9.77	4.49	10.75	1.12	-0.01	0.04	-0.04	0.53	0.28
		CH ₄	703.21	254.92	9.77	15.39	18.23	0.00	0.00	0.00	0.00	0.00	0.00
		N ₂ O	4022.81	1069.11	9.77	10.94	14.67	0.00	0.00	0.00	-0.01	0.02	0.00
1.A.4	Other Sectors	CO_2	98704.92	27660.60	7.40	7.50	10.53	0.73	-0.01	0.03	-0.09	0.33	0.12
		CH ₄	3009.05	282.51	7.40	95.44	95.73	0.01	0.00	0.00	-0.10	0.00	0.01
		N ₂ O	296.63	43.50	7.40	329.48	329.56	0.00	0.00	0.00	-0.03	0.00	0.00
1.A.5	Other (Not specified elsewhere)	CO_2	105.56	473.99	5.00	2.00	5.39	0.00	0.00	0.00	0.00	0.00	0.00
		CH ₄	0.11	0.49	5.00	150.00	150.08	0.00	0.00	0.00	0.00	0.00	0.00
		N ₂ O	0.26	1.16	5.00	500.00	500.02	0.00	0.00	0.00	0.00	0.00	0.00
1.B.1	Solid Fuels	CO_2	458.73	231.77	6.00	5.00	7.81	0.00	0.00	0.00	0.00	0.00	0.00
		CH ₄	61923.39	12899.59	11.10	5.00	12.17	0.21	-0.01	0.01	-0.06	0.23	0.06
1.B.2	Oil and Natural Gas and Other Emissions from Energy Produc- tion	CO ₂	3023.81	2167.55	5.01	8.66	10.00	0.00	0.00	0.00	0.01	0.02	0.00
		CH ₄	62065.54	30406.68	17.40	18.07	25.09	4.98	0.01	0.03	0.13	0.85	0.74
		N ₂ O	2.33	1.07	9.20	3.04	9.69	0.00	0.00	0.00	0.00	0.00	0.00

	IPCC category	Gas	Base 1990 year emissions or removals, kt CO ₂ equivalent	2018 year emissions or removals, kt CO ₂ equivalent	Activity data uncertainty, %	Emission factor / estimation parameter uncertainty, %	Combined uncertainty, %	Contribution to Variance by Category in 2018 year, %	Type A sensitivity, %	Type B sensitivity, %	Uncertainty in trend in national emissions introduced by emission factor / estimation parameter uncertainty, %	Uncertainty in trend in national emissions introduced by activity data uncertainty, %	Uncertainty introduced into the trend in total national emissions, %
	A	В	C	D	E	F	G	Н	I	J	K	L	M
2	INDUSTRIAL PROCESSES A												
2.A.1	Cement Production	CO_2	9400.94	3718.58	1.90	5.41	5.73	0.00	0.00	0.00	0.00	0.01	0.00
2.A.2	Lime Production	CO_2	5121.81	2317.02	12.03	16.06	20.07	0.02	0.00	0.00	0.01	0.04	0.00
2.A.3	Glass Production	CO ₂	173.23	239.65	6.64	2.31	7.03	0.00	0.00	0.00	0.00	0.00	0.00
2.A.4.a	Ceramics	CO_2	111.77	66.79	2.40	5.00	5.55	0.00	0.00	0.00	0.00	0.00	0.00
2.A.4.b	Other uses of Soda Ash	CO_2	298.81	18.97	6.00	7.00	9.22	0.00	0.00	0.00	0.00	0.00	0.00
2.B.1	Ammonia Production	CO_2	9402.92	1275.90	5.39	7.00	8.83	0.00	0.00	0.00	-0.02	0.01	0.00
2.B.2	Nitric Acid Production	N_2O	5284.58	1356.01	2.00	5.00	5.39	0.00	0.00	0.00	0.00	0.00	0.00
2.B.3	Adipic Acid Production	N ₂ O	235.38	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2.B.4.a	Caprolactam Production	N ₂ O	136.27	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2.B.5	Carbide Production	CO_2	122.08	59.03	5.00	10.00	11.18	0.00	0.00	0.00	0.00	0.00	0.00
		CH ₄	3.77	6.51	5.00	10.00	11.18	0.00	0.00	0.00	0.00	0.00	0.00
2.B.6	Titanium Dioxide Production	CO ₂	226.30	190.46	6.00	15.00	16.16	0.00	0.00	0.00	0.00	0.00	0.00
2.B.7	Soda ash production	CO_2	_	_	_	_	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2.B.8	Petrochemical and Carbon Black Production	CO ₂	1962.33	666.30	0.00	3.39	3.39	0.00	0.00	0.00	0.00	0.00	0.00
		CH ₄	256.76	2568.94	0.00	10.00	10.00	0.01	0.00	0.00	0.03	0.00	0.00
2.C.1	Iron and Steel Production	CO ₂	79689.69	39880.19	2.04	2.56	3.27	0.15	0.01	0.05	0.03	0.13	0.02
		CH ₄	1117.49	517.39	5.00	20.00	20.62	0.00	0.00	0.00	0.00	0.00	0.00
2.C.2	Ferroalloys Production	CO_2	3533.41	1958.67	7.07	5.00	8.66	0.00	0.00	0.00	0.00	0.02	0.00
		CH ₄	15.11	1.91	5.25	31.25	31.69	0.00	0.00	0.00	0.00	0.00	0.00
2.C.3	Aluminium Production	CO_2	170.28	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

	IPCC category	Gas	Base 1990 year emissions or removals, kt CO ₂ equivalent	2018 year emissions or removals, kt CO ₂ equivalent	Activity data uncertainty, %	Emission factor / estimation parameter uncertainty, %	Combined uncertainty, %	Contribution to Variance by Category in 2018 year, %	Type A sensitivity, %	Type B sensitivity, %	Uncertainty in trend in national emissions introduced by emission factor / estimation parameter uncertainty, %	Uncertainty in trend in national emissions introduced by activity data uncertainty, %	Uncertainty introduced into the trend in total national emissions, %
	A	В	C	D	E	\mathbf{F}	G	Н	I	J	K	${f L}$	M
		PFCs	235.82	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2.C.5	Lead Production	CO_2	22.10	17.36	10.00	50.00	50.99	0.00	0.00	0.00	0.00	0.00	0.00
2.C.6	Zinc Production	CO_2	24.25	1.31	10.00	50.00	50.99	0.00	0.00	0.00	0.00	0.00	0.00
2.D.1	Lubricant Use	CO_2	304.83	130.38	6.00	50.09	50.45	0.00	0.00	0.00	0.00	0.00	0.00
2.D.2	Paraffin Wax Use	CO_2	122.84	10.22	6.00	100.12	100.30	0.00	0.00	0.00	0.00	0.00	0.00
2.F	Product Uses as Substitutes for Ozone Depleting Substances	HFCs	0.00	1349.26	58.15	35.65	68.21	0.07	0.00	0.00	0.05	0.13	0.02
2.G.1	Electrical Equipment	SF ₆	0.01	33.29	34.10	18.00	38.56	0.00	0.00	0.00	0.00	0.00	0.00
2.G.3	N ₂ O from Product Uses	N ₂ O	15.31	141.51	13.63	28.25	31.37	0.00	0.00	0.00	0.00	0.00	0.00
3	AGRICULTURE	<u>'</u>											
3.A	Enteric Fermentation	CH ₄	39311.34	8298.21	3.12	10.18	10.65	0.07	-0.01	0.01	-0.08	0.04	0.01
3.B.1	Manure management / CH ₄ Emissions	CH ₄	3500.97	1000.28	6.00	12.48	13.85	0.00	0.00	0.00	-0.01	0.01	0.00
3.B.2	Manure management / N ₂ O and NMVOC Emissions	N ₂ O	3273.79	1002.44	6.00	50.00	50.36	0.02	0.00	0.00	-0.02	0.01	0.00
3.C	Rice cultivation	CH ₄	216.43	93.58	6.00	15.14	16.29	0.00	0.00	0.00	0.00	0.00	0.00
3.D.1	Direct N ₂ O Emissions from managed soils	N ₂ O	29655.98	26678.37	6.00	91.62	91.82	51.33	0.02	0.03	1.58	0.26	2.55
3.D.2	Indirect N ₂ O Emissions from managed soils	N ₂ O	8022.20	6800.92	6.00	102.72	102.90	4.19	0.00	0.01	0.43	0.07	0.19
3.G	Liming	CO ₂	2592.08	163.74	6.00	50.00	50.36	0.00	0.00	0.00	-0.05	0.00	0.00
3.H	Urea application	CO_2	270.14	201.18	6.00	50.00	50.36	0.00	0.00	0.00	0.01	0.00	0.00
4	LAND USE. LAND-USE CHAN	IGE ANI) FORESTRY	Y			<u> </u>		<u> </u>				
4.A	Forest Land	CO ₂	-64011.41	-50777.30	6.00	22.00	22.80	11.47	-0.03	-0.06	-0.65	-0.49	0.66
		CH ₄	7.94	4.12	15.00	37.90	40.76	0.00	0.00	0.00	0.00	0.00	0.00

	IPCC category	Gas	Base 1990 year emissions or removals, kt CO ₂ equivalent	2018 year emissions or removals, kt CO ₂ equivalent	Activity data uncertainty, %	Emission factor / estimation parameter uncertainty, %	Combined uncertainty, %	Contribution to Variance by Category in 2018 year, %	Type A sensitivity, %	Type B sensitivity, %	Uncertainty in trend in national emissions introduced by emission factor / estimation parameter uncertainty, %	Uncertainty in trend in national emissions introduced by activity data uncertainty, %	Uncertainty introduced into the trend in total national emissions, %
	A	В	C	D	E	\mathbf{F}	G	Н	I	J	K	L	M
		N ₂ O	52.86	56.86	15.00	22.98	27.44	0.00	0.00	0.00	0.00	0.00	0.00
4.B	Cropland	CO ₂	-4556.78	48234.99	6.00	40.00	40.45	32.56	0.06	0.05	2.27	0.46	5.35
		CH ₄	_	0.30	6.00	22.70	23.48	0.00	0.00	0.00	0.00	0.00	0.00
		N ₂ O	0.01	5.81	6.00	27.50	28.15	0.00	0.00	0.00	0.00	0.00	0.00
4.C	Grassland	CO ₂	-946.39	-244.46	6.00	26.32	27.00	0.00	0.00	0.00	0.00	0.00	0.00
		CH_4	0.13	0.20	6.00	39.10	39.56	0.00	0.00	0.00	0.00	0.00	0.00
		N ₂ O	0.15	0.28	6.00	47.60	47.98	0.00	0.00	0.00	0.00	0.00	0.00
4.D	Wetlands	CO_2	12232.72	255.56	10.00	24.50	26.46	0.00	-0.01	0.00	-0.12	0.00	0.02
		CH ₄	29.66	12.06	10.00	27.20	28.98	0.00	0.00	0.00	0.00	0.00	0.00
		N ₂ O	4.51	1.25	10.00	36.70	38.04	0.00	0.00	0.00	0.00	0.00	0.00
4.E.2	Land converted to Settlements	CO_2	9.18	4917.58	10.00	50.00	50.99	0.54	0.01	0.01	0.28	0.08	0.08
		N ₂ O	0.02	85.79	10.00	50.00	50.99	0.00	0.00	0.00	0.00	0.00	0.00
4.F.2	Land converted to Other Land	CO_2	1589.43	237.50	10.00	50.00	50.99	0.00	0.00	0.00	-0.02	0.00	0.00
		N ₂ O	135.21	19.93	10.00	50.00	50.99	0.00	0.00	0.00	0.00	0.00	0.00
4.G	Harvested Wood Products (HWP)	CO ₂	-3739.21	-166.45	13.00	26.80	29.79	0.00	0.00	0.00	0.04	0.00	0.00
4 (IV)	Indirect N2O Emissions from Managed Soils	N ₂ O	0.30	0.25	114.00	201.00	231.08	0.00	0.00	0.00	0.00	0.00	0.00
5	WASTE												
5.A.	Solid Waste Disposal	CH ₄	6534.85	8136.75	39.02	47.27	61.29	2.13	0.01	0.01	0.30	0.51	0.35
5.B.	Biological Treatment of Solid Waste	CH ₄	18.14	14.89	31.07	100.00	104.71	0.00	0.00	0.00	0.00	0.00	0.00
		N ₂ O	16.22	13.31	31.07	100.00	104.71	0.00	0.00	0.00	0.00	0.00	0.00

	IPCC category	Gas	Base 1990 year emissions or removals, kt CO ₂ equivalent	2018 year emissions or removals, kt CO ₂ equivalent	Activity data uncertainty, %	Emission factor / estimation parameter uncertainty, %	Combined uncertainty, %	Contribution to Variance by Category in 2018 year, %	Type A sensitivity, %	Type B sensitivity, %	Uncertainty in trend in national emissions introduced by emission factor / estimation parameter uncertainty, %	Uncertainty in trend in national emissions introduced by activity data uncertainty, %	Uncertainty introduced into the trend in total national emissions, %
	A	В	С	D	E	F	G	Н	I	J	K	L	M
5.C.	Incineration and Open Burning of Waste	CO ₂	28.68	5.19	34.65	25.98	43.31	0.00	0.00	0.00	0.00	0.00	0.00
		CH ₄	1.68	0.82	34.65	100.00	105.83	0.00	0.00	0.00	0.00	0.00	0.00
		N_2O	2.67	1.30	34.65	100.00	105.83	0.00	0.00	0.00	0.00	0.00	0.00
5.D.1	Domestic Wastewater	CH_4	2213.51	2140.00	21.27	36.92	42.61	0.07	0.00	0.00	0.05	0.07	0.01
5.D.1	Domestic Wastewater	CH ₄ N ₂ O	2213.51 1570.15	2140.00 1039.20	21.27 9.22	36.92 50.38	42.61 51.22	0.07 0.02	0.00	0.00	0.05 0.02	0.07 0.02	0.01
5.D.1 5.D.2	Domestic Wastewater Industrial Wastewater												
		N ₂ O	1570.15	1039.20	9.22	50.38	51.22	0.02	0.00	0.00	0.02	0.02	0.00
		N ₂ O CH ₄	1570.15 1416.29	1039.20 777.08	9.22 27.16	50.38 40.91	51.22 49.10	0.02	0.00	0.00	0.02 0.01	0.02 0.03	0.00

Table A7.2 the Results of the evaluation of the combined uncertainty of GHG emissions **excluding the LULUCF sector**

	IPCC category	Gas	Base 1990 year emissions or removals. kt CO ₂ equivalent	2018 year emissions or removals. kt CO ₂ equivalent	Activity data uncertainty. %	Emission factor / estimation parameter uncertainty. %	Combined uncertainty. %	Contribution to Variance by Category in 2018 year. %	Type A sensitivity. %	Type B sensitivity. %	Uncertainty in trend in national emissions introduced by emission factor / estimation parameter uncertainty. %	Uncertainty in trend in national emissions introduced by activity data uncertainty. %	Uncertainty introduced into the trend in total national emissions. %
	A	В	C	D	E	F	G	H	I	J	K	L	M
1	ENERGY												
1.A.1	Energy Industries	CO_2	271861.68	98274.84	2.34	3.55	4.25	1.52	0.00	0.10	0.00	0.35	0.12
		CH ₄	184.29	88.38	2.34	85.47	85.50	0.00	0.00	0.00	0.00	0.00	0.00
		N_2O	635.15	392.35	2.34	407.25	407.26	0.22	0.00	0.00	0.07	0.00	0.01
1.A.2	Manufacturing Industries and Construction	CO ₂	111029.98	18332.05	6.99	5.32	8.79	0.23	-0.02	0.02	-0.12	0.19	0.05
		CH ₄	80.76	31.00	6.99	119.86	120.06	0.00	0.00	0.00	0.00	0.00	0.00
		N ₂ O	144.29	52.37	6.99	415.08	415.13	0.00	0.00	0.00	0.00	0.00	0.00
1.A.3	Transport	CO_2	107066.83	33632.42	9.77	4.49	10.75	1.14	-0.01	0.04	-0.02	0.49	0.24
		CH_4	703.21	254.92	9.77	15.39	18.23	0.00	0.00	0.00	0.00	0.00	0.00
		N ₂ O	4022.81	1069.11	9.77	10.94	14.67	0.00	0.00	0.00	0.00	0.02	0.00
1.A.4	Other Sectors	CO ₂	98704.92	27660.60	7.40	7.50	10.53	0.74	-0.01	0.03	-0.06	0.31	0.10
		CH ₄	3009.05	282.51	7.40	95.44	95.73	0.01	0.00	0.00	-0.08	0.00	0.01
1.A.5	Other (Not specified elsewhere)	N ₂ O CO ₂	296.63 105.56	43.50 473.99	7.40 5.00	329.48 2.00	329.56 5.39	0.00	0.00	0.00	-0.02 0.00	0.00	0.00
	whole)	CH ₄	0.11	0.49	5.00	150.00	150.08	0.00	0.00	0.00	0.00	0.00	0.00
		N ₂ O	0.11	1.16	5.00	500.00	500.02	0.00	0.00	0.00	0.00	0.00	0.00
1.B.1	Solid Fuels	CO_2	458.73	231.77	6.00	5.00	7.81	0.00	0.00	0.00	0.00	0.00	0.00
		CH ₄	61923.39	12899.59	11.10	5.00	12.17	0.21	-0.01	0.01	-0.05	0.21	0.05
1.B.2	Oil and Natural Gas and Other Emissions from Energy Pro- duction	CO ₂	3023.81	2167.55	5.01	8.66	10.00	0.00	0.00	0.00	0.01	0.02	0.00
		CH_4	62065.54	30406.68	17.40	18.07	25.09	5.06	0.01	0.03	0.15	0.79	0.65

	IPCC category	Gas	Base 1990 year emissions or removals. kt CO ₂ equivalent	2018 year emissions or removals. kt CO ₂ equivalent	Activity data uncertainty. %	Emission factor / estimation parameter uncertainty. %	Combined uncertainty. %	Contribution to Variance by Category in 2018 year. %	Type A sensitivity. %	Type B sensitivity. %	Uncertainty in trend in national emissions introduced by emission factor / estimation parameter uncertainty. %	Uncertainty in trend in national emissions introduced by activity data uncertainty. %	Uncertainty introduced into the trend in total national emissions. %
	\mathbf{A}	В	C	D	E	\mathbf{F}	G	Н	I	J	K	L	M
		N ₂ O	2.33	1.07	9.20	3.04	9.69	0.00	0.00	0.00	0.00	0.00	0.00
2	INDUSTRIAL PROCESSES	AND PR	ODUCT USE										
2.A.1	Cement Production	CO_2	9400.94	3718.58	1.90	5.41	5.73	0.00	0.00	0.00	0.00	0.01	0.00
2.A.2	Lime Production	CO_2	5121.81	2317.02	12.03	16.06	20.07	0.02	0.00	0.00	0.01	0.04	0.00
2.A.3	Glass Production	CO_2	173.23	239.65	6.64	2.31	7.03	0.00	0.00	0.00	0.00	0.00	0.00
2.A.4.a	Ceramics	CO ₂	111.77	66.79	2.40	5.00	5.55	0.00	0.00	0.00	0.00	0.00	0.00
2.A.4.b	Other uses of Soda Ash	CO_2	298.81	18.97	6.00	7.00	9.22	0.00	0.00	0.00	0.00	0.00	0.00
2.B.1	Ammonia Production	CO_2	9402.92	1275.90	5.39	7.00	8.83	0.00	0.00	0.00	-0.02	0.01	0.00
2.B.2	Nitric Acid Production	N ₂ O	5284.58	1356.01	2.00	5.00	5.39	0.00	0.00	0.00	0.00	0.00	0.00
2.B.3	Adipic Acid Production	N ₂ O	235.38	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2.B.4.a	Caprolactam Production	N ₂ O	136.27	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2.B.5	Carbide Production	CO_2	122.08	59.03	5.00	10.00	11.18	0.00	0.00	0.00	0.00	0.00	0.00
		CH ₄	3.77	6.51	5.00	10.00	11.18	0.00	0.00	0.00	0.00	0.00	0.00
2.B.6	Titanium Dioxide Production	CO_2	226.30	190.46	6.00	15.00	16.16	0.00	0.00	0.00	0.00	0.00	0.00
2.B.7	Soda ash production	CO_2	_	_		_	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2.B.8	Petrochemical and Carbon Black Production	CO ₂	1962.33	666.30	0.00	3.39	3.39	0.00	0.00	0.00	0.00	0.00	0.00
		CH ₄	256.76	2568.94	0.00	10.00	10.00	0.01	0.00	0.00	0.03	0.00	0.00
2.C.1	Iron and Steel Production	CO ₂	79689.69	39880.19	2.04	2.56	3.27	0.15	0.01	0.04	0.03	0.12	0.02
		CH ₄	1117.49	517.39	5.00	20.00	20.62	0.00	0.00	0.00	0.00	0.00	0.00
2.C.2	Ferroalloys Production	CO_2	3533.41	1958.67	7.07	5.00	8.66	0.00	0.00	0.00	0.00	0.02	0.00
		CH ₄	15.11	1.91	5.25	31.25	31.69	0.00	0.00	0.00	0.00	0.00	0.00
2.C.3	Aluminium Production	CO_2	170.28	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
		PFCs	235.82	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2.C.5	Lead Production	CO_2	22.10	17.36	10.00	50.00	50.99	0.00	0.00	0.00	0.00	0.00	0.00

	IPCC category	Gas	Base 1990 year emissions or removals. kt CO ₂ equivalent	2018 year emissions or removals. kt CO ₂ equivalent	Activity data uncertainty. %	Emission factor / estimation parameter uncertainty. %	Combined uncertainty. %	Contribution to Variance by Category in 2018 year. %	Type A sensitivity. %	Type B sensitivity. %	Uncertainty in trend in national emissions introduced by emission factor / estimation parameter uncertainty. %	Uncertainty in trend in national emissions introduced by activity data uncertainty. %	Uncertainty introduced into the trend in total national emissions. %
	A	В	C	D	E	F	G	H	I	J	K	L	M
2.C.6	Zinc Production	CO ₂	24.25	1.31	10.00	50.00	50.99	0.00	0.00	0.00	0.00	0.00	0.00
2.D.1	Lubricant Use	CO ₂	304.83	130.38	6.00	50.09	50.45	0.00	0.00	0.00	0.00	0.00	0.00
2.D.2	Paraffin Wax Use	CO_2	122.84	10.22	6.00	100.12	100.30	0.00	0.00	0.00	0.00	0.00	0.00
2.F	Product Uses as Substitutes for Ozone Depleting Sub- stances	HFCs	0.00	1349.26	58.15	35.65	68.21	0.07	0.00	0.00	0.05	0.12	0.02
2.G.1	Electrical Equipment	SF ₆	0.01	33.29	34.10	18.00	38.56	0.00	0.00	0.00	0.00	0.00	0.00
2.G.3	N ₂ O from Product Uses	N ₂ O	15.31	141.51	13.63	28.25	31.37	0.00	0.00	0.00	0.00	0.00	0.00
3	AGRICULTURE				<u> </u>			L					
3.A	Enteric Fermentation	$\mathrm{CH_4}$	39311.34	8298.21	3.12	10.18	10.65	0.07	-0.01	0.01	-0.06	0.04	0.01
3.B.1	Manure management / CH ₄ Emissions	CH ₄	3500.97	1000.28	6.00	12.48	13.85	0.00	0.00	0.00	0.00	0.01	0.00
3.B.2	Manure management / N ₂ O and NMVOC Emissions	N ₂ O	3273.79	1002.44	6.00	50.00	50.36	0.02	0.00	0.00	-0.01	0.01	0.00
3.C	Rice cultivation	CH ₄	216.43	93.58	6.00	15.14	16.29	0.00	0.00	0.00	0.00	0.00	0.00
3.D.1	Direct N ₂ O Emissions from managed soils	N ₂ O	29655.98	26678.37	6.00	91.62	91.82	52.14	0.02	0.03	1.56	0.24	2.48
3.D.2	Indirect N ₂ O Emissions from managed soils	N ₂ O	8022.20	6800.92	6.00	102.72	102.90	4.26	0.00	0.01	0.43	0.06	0.19
3.G	Liming	CO_2	2592.08	163.74	6.00	50.00	50.36	0.00	0.00	0.00	-0.04	0.00	0.00
3.H	Urea application	CO ₂	270.14	201.18	6.00	50.00	50.36	0.00	0.00	0.00	0.01	0.00	0.00
5	WASTE												
5.A.	Solid Waste Disposal	CH ₄	6534.85	8136.75	39.02	47.27	61.29	2.16	0.01	0.01	0.29	0.48	0.31
5.B.	Biological Treatment of Solid Waste	CH ₄	18.14	14.89	31.07	100.00	104.71	0.00	0.00	0.00	0.00	0.00	0.00
		N_2O	16.22	13.31	31.07	100.00	104.71	0.00	0.00	0.00	0.00	0.00	0.00

IPCC category		Gas	Base 1990 year emissions or removals. kt CO ₂ equivalent	2018 year emissions or removals. kt CO ₂ equivalent	Activity data uncertainty. %	Emission factor / estimation parameter uncertainty. %	Combined uncertainty. %	Contribution to Variance by Category in 2018 year. %	Type A sensitivity. %	Type B sensitivity. %	Uncertainty in trend in national emissions introduced by emission factor / estimation parameter uncertainty. %	Uncertainty in trend in national emissions introduced by activity data uncertainty. %	Uncertainty introduced into the trend in total national emissions. %
	\mathbf{A}	В	С	D	E	F	G	Н	I	J	K	L	M
5.C.	Incineration and Open Burning of Waste	CO ₂	28.68	5.19	34.65	25.98	43.31	0.00	0.00	0.00	0.00	0.00	0.00
		CH ₄	1.68	0.82	34.65	100.00	105.83	0.00	0.00	0.00	0.00	0.00	0.00
		N ₂ O	2.67	1.30	34.65	100.00	105.83	0.00	0.00	0.00	0.00	0.00	0.00
5.D.1	Domestic Wastewater	CH ₄	2213.51	2140.00	21.27	36.92	42.61	0.07	0.00	0.00	0.05	0.07	0.01
		N ₂ O	1570.15	1039.20	9.22	50.38	51.22	0.02	0.00	0.00	0.03	0.01	0.00
5.D.2	Industrial Wastewater	CH ₄	1416.29	777.08	27.16	40.91	49.10	0.01	0.00	0.00	0.01	0.03	0.00
		N ₂ O	119.94	55.02	27.16	50.00	56.90	0.00	0.00	0.00	0.00	0.00	0.00
	TOTAL		942072.46	339244.28				68.14					4.26
						Percentage in total inve		8.25				Trend uncertainty	2.06

ANNEX 8 INFORMATION ON IMPROVEMENTS IN THE NIR

A8.1 Consideration of the recommendations of the expert review team (ERT) presented in the Report of the individual review of the inventory submission of Ukraine submitted in 2019 (ARR 19) in the NIR

Sector	ID#	Category	Recommendation	Comment
General	G.1	Article 3, paragraph 14, of the Kyoto Protocol	Report any change in the information provided under Article 3, paragraph 14, of the Kyoto Protocol, in accordance with decision 15/CMP.1 in conjunction with decision 3/CMP.11.	The updated information is provided in the Chapter 15
	G.2	National system	Implement the workplan in accordance with the proposed timelines and report in the NIR of the next and subsequent annual submissions on the workplan and on the progress of the implementation of the workplan, explaining in detail the ongoing activities in place to resolve all the problems identified.	The initial workplan was partially implemented during the preparation of NIR 2019 (on data of forestry). With regard to land use matrix reconstruction based on GIS data, Ukraine is in the process of seeking sources of financing such work and consequently will adjust the workplan in this part.
	G.4	CPR	The ERT recommends that Ukraine report in the NIR a value for the CPR without decimals, rounding it up to the nearest full unit.	CPR was reported with rounding to full units
	G.6	National registry	The ERT recommends, as was noted in the SIAR, that Ukraine clearly state in the NIR whether there were any changes during the reporting period related to (1) the conformance to technical standards of the national registry and (2) the results of test procedures.	The information reported in chapters 12 and 14
	G.7	National system	The ERT recommends that Ukraine submit the annual GHG inventory by 15 April each year.	As part of the inventory of greenhouse gas emissions, an annual step-by-step process planning is provided in accordance with the IPCC Guidelines for National Greenhouse Gas Inventories, 2006 (see 1.3.2 Planning and control of activities on greenhouse gas inventory and report development). For the 2020 the plan had foreseen the development and submission of Ukraine's GHG inventory submission before 15 April. However, the deadlines were not complied due the Optimization of the System of Central Executive Government Bodies and the Covid-19 pandemic.
Energy	E.1	1.A Fuel combustion activities (sectoral approach)	Develop and use country-specific CO2 EFs for liquid fuels (i.e. residual fuel, diesel oil, LPG, petroleum coke and refinery gases) which have a significant share in the fuel mix of stationary.	Addressed in chapters A2.5
	E.4	1.A.3.d Domestic navigation	The ERT recommends that Ukraine include in the NIR documentation of the observed trends in cargo for national and international navigation, particularly in the years from 2012 onward.	Addressed in chapter A.2.4.2

Sector	ID#	Category	Recommendation	Comment
	E.5	1.A.3.e Other transportation	The ERT recommends that Ukraine strive to collect data for biodiesel consumption for the period 1990–2012 and report the outcome of those efforts in the NIR and, if impossible, change the notation key for the period 1990–2012 from "NO" to "NE".	Addressed in chapter A.2.4.2
	E.6	1.A.4 Other sectors	The ERT recommends that Ukraine include in the NIR clear and detailed explanations for the decreasing trends of total GHG emissions in the residential and commercial/institutional subcategories of the other sectors category.	Addressed in chapter 3.2.10.2.2
	E.7	1.B.2.a Oil	The ERT recommends that Ukraine include an explanation in the NIR for the choice of CO ₂ , CH ₄ and N ₂ O EFs for estimating emissions for the oil category, including documentation of the current state of the oil industry infrastructure.	Addressed in chapter 3.3.2.1.2
	E.8	CRF table 1.A(b) Sectoral background data for Energy	The ERT recommends that Ukraine correct the unit (i.e. from TJ to kt) used to report solid fuels in CRF table 1.A(b).	Addressed in CRF table 1.A(b)
	E.10	1.A.1 Energy industries	The ERT recommends that Ukraine improve the QA/QC procedures for the energy sector in order enhance the accuracy and consistency of the information reported on recalculations in the NIR (table 3.6) and the CRF tables.	No response required
	E.11	1.A.3.b Road transportation	The ERT recommends that Ukraine demonstrate that the use of different data sources for 1990–2015 and 2016 onwards result in consistent CO2, CH4 and N2O emission estimates across the time series.	Addressed in chapter 3.2.9.2.2
	E.12	1.A.3.e Other transportation	The ERT recommends that Ukraine estimate and report the entire time series for CO2, CH4 and N2O emissions from biodiesel consumption (e.g. using one of the techniques included in the 2006 IPCC Guidelines, vol. 1, section 5.3.3)	Addressed in chapter A.2.4.2
	E.13	1.B.1.c Other	The ERT recommends that Ukraine improve the information on allocation of CH4 emissions from coal bed CH4 flaring. The ERT also recommends that the Party investigate whether double counting now occurs for coal bed CH4 flaring between categories 1.B.1.c and 1.A.1.c (i.e. clarify whether the flaring emissions reported under category 1.A.1.c in the 2017 submission were removed from category 1.A.1.c with the reporting of flaring under category 1.B.1.c) and report in the NIR on its findings.	No response required
	E.14	1.B.2.a Oil	he ERT recommends that Ukraine include in the NIR the information that a large quantity of oil transits through the country (i.e. it is not sourced from Ukraine and not transformed or used in Ukraine) and that oil is transported only by pipelines and not by any other sources mentioned in the 2006 IPCC Guidelines.	Addressed in chapter 3.3.2.1.1
	E.15	1.B.2.a.5 Distribution of oil products	The ERT recommends that Ukraine explain in CRF table 9 and the NIR that emissions from the distribution of oil products are not estimated because there is no corresponding default EF in the 2006 IPCC Guidelines.	Addressed in chapter 3.3.2.1.1
	E.16	1.B.2.b Natural gas	The ERT recommends that Ukraine improve the transparency of its reporting for this category by including in the NIR the explanation for the decreasing	No response required

Sector	ID#	Category	Recommendation	Comment
			trend observed in the natural gas transmission (compared with production increases) that was provided during the review.	
	E.17	1.B.2.b Natural gas	The ERT recommends that Ukraine enhance the transparency of its reporting for this category by explaining in the NIR that the majority of natural gas produced in the country is from conventional onshore sources and reporting the shares of natural gas produced (1) onshore and offshore in the Black Sea and (2) from coal seam and from conventional natural gas.	Addressed in chapter 3.3.2.2.1
	E.18	1.B.2.b Natural gas	The ERT recommends that Ukraine revise its emission estimates from the exploration, production and processing of natural gas using a tier that is in accordance with the 2006 IPCC Guidelines (vol. 2, figure 4.2.1). The ERT also recommends that the Party develop a category-specific improvement plan for this issue, detailing the plan in the NIR.	No response required
	E.19	1.B.2.c Venting and flaring	The ERT recommends that Ukraine enhance the transparency of its plans to improve the national inventory by including a detailed description of the planned improvement for estimating natural gas venting emissions.	No response required
IPPU	I.3	2.C.3 Aluminium production – CO ₂ and PFCs	Addressing. Include information on aluminium production in the NIR.	Taken into account Please see relevant section 4.16 Aluminum Production (CRF category 2.C.3)
	I.6	2.F.1 Refrigeration and air conditioning – HFCs	Not resolved. Document in the NIR the national circumstances supporting the use of an average lifetime of 18 years for domestic refrigeration equipment.	Taken into account. Please see relevant section 4.25.1.1.Refrigeration Equipment (CRF category 2.F.1.b)/ 4.25.1.1.2 Methodological issues/4.25.1.1.2.1 Commercial, domestic and industrial refrigeration.
	I.11	2.F.1 Refrigeration and air conditioning – HFCs	Not resolved. Include in the NIR information justifying the late introduction (from 2000) of air-conditioned cars into the Ukrainian market.	Taken into account. Please see relevant section 4.25.1.3 Mobile Air-Conditioning (CRF category 2.F.1.e)/ 4.25.1.3.2 Methodological issues.
	I.12	2.B.7 Soda ash production – CO ₂	The Party reported that "since the data of fuel use (coke, anthracite, coal) are not available, the estimate of CO ₂ emissions was calculated on the basis of data of soda ash use, not those on production, and it is accounted for in category 2.A.4.b – Other Uses of Soda Ash" (NIR, section 4.12.1, p.120). However, the Party reported AD and CO ₂ emissions for category 2.B.7 (soda ash production) as "NA" and "NO", respectively, in CRF table 2(I).A-Hs1. The ERT noted that this reporting is not in accordance with the 2006 IPCC Guidelines (vol. 1, table 8.1); the Guidelines require that whenever emissions and/or removals for an activity or category are estimated and included in the inventory but not presented separately for that category, the notation key "IE" is to be used. Thus, the notation "IE" should be used by the Party for AD and CO ₂ emissions from category 2.B.7 (soda ash production) given that, as reported in the NIR, they have been included and accounted for under category 2.A.4.b (other uses of soda ash). During the review, Ukraine explained that the CO ₂ emissions from soda ash production have not been	Taken into account. Please see relevant sections 4.5.2 Other Uses of Soda Ash (CRF category 2.A.4.b), 4.12 Soda Ash Production and Use (CRF category 2.B.7) and CRF table 2(I).A-Hs1.

Sector	ID#	Category	Recommendation	Comment
			accounted for under category 2.A.4.b. A study assessing CO ₂ emissions at the	
			only soda ash plant in the country found that all the CO ₂ released during side	
			reactions in the Solvay process is captured and recycled in the plant (and in	
			the process, because CO ₂ is a feedstock for the Solvay process), hence there	
			are no CO ₂ emissions. The Party indicated that as a result of the findings of	
			this study, the notation key "NO" would be used for AD and emissions in the	
			next submission. The ERT recommends that Ukraine report both AD and emissions for soda	
			ash production for category 2.B.7 (soda ash production) as "NO" in CRF table	
			2(I).A-Hs1 and update the category description in the NIR (section 4.12.1) by	
			removing the reference to accounting for soda ash production emissions under	
			category 2.A.4.b (other uses of soda ash).	
	I.13	2.B.7 Soda ash	The Party reported that "in Ukraine, soda ash production takes place at one	Taken into account. Please see relevant section
	1.13	production – CO ₂	plant with Solvay process (the synthesis process) since the data of fuel	4.12 Soda Ash Production and Use (CRF
		production CO ₂	use (coke, anthracite, coal) are not available, the estimate of CO ₂ emissions	category 2.B.7).
			was calculated on the basis of data of soda ash use, not those on production,	category 2.D.7).
			and it is accounted for in category 2.A.4.b Other Uses of Soda Ash" (NIR,	
			section 4.12.1, p.120). However, in section 4.5.2.2 of the NIR, where a	
			methodological description of category 2.A.4.b (other uses of soda ash) is	
			presented, the Party reported that a default CO ₂ EF of 0.415 t CO ₂ /t soda ash	
			use has been applied to kt soda ash use, which takes into account exports,	
			imports and production of soda ash and excludes soda ash used for glass	
			production. The ERT noted that this is not consistent with the statement that	
			CO ₂ emissions from soda ash production have been accounted for under	
			category 2.A.4.b, because the default EF (0.415 t CO ₂ /t soda ash use) only	
			accounts for emissions from calcination of soda ash and does not account	
			for emissions during the production of soda ash in the Solvay process (2006	
			IPCC Guidelines, vol. 3, table 2.1). During the review, Ukraine explained	
			that the CO ₂ emissions from soda production have not been accounted for	
			under category 2.A.4.b. A study assessing CO ₂ emissions at the only soda	
			ash plant in the country found that all the CO ₂ released during side reactions	
			in the Solvay process is captured and recycled in the plant, hence there are	
			no CO ₂ emissions.	
			The ERT recommends that Ukraine report in the NIR the reasons for there	
			being no CO ₂ emissions from the Solvay process used for soda ash production	
			at the only soda ash plant in the country.	
	I.14	2.B.8.b Ethylene – CO ₂ and	The Party reported AD for the production of ethylene in 2017 and CO ₂ and	Taken into account. Please see relevant section
		CH ₄	CH4 EFs in 2017 as "NO" in CRF table 2(I).A-Hs1. However, in the same	4.13 Petrochemical and Carbon Black
			CRF table, CO ₂ emissions and CH ₄ emissions related to the production of	Production (CRF category 2.B.8).
			ethylene in 2017 were reported as 185.06 and 0.29 kt, respectively. The ERT	
			noted that GHG emission estimates for ethylene production were reported	
			for 1990–2008, 2010–2012 and 2017, but no emission estimates were	
			reported for 2009 and 2013–2016. In the NIR (p.120), the Party reported	

Sector	ID#	Category	Recommendation	Comment
			that, since 2013, ethylene has not been produced in Ukraine, which was confirmed with data provided by Cherkasky State Scientific Research Institute of Technical and Economic Information in the Chemical Industry, but there are no reasons reported for why ethylene production did not occur in 2009 and 2013–2016. The ERT also noted that this reporting is not in accordance with the 2006 IPCC Guidelines (vol. 1, table 8.1); the notation key "NO" cannot be used for AD and IEFs for a category or activity that is occurring and emitting GHGs. During the review, Ukraine explained that while there was no production of ethylene in the country between 2013 and 2016, production resumed in 2017; hence the "NO" notation key used in the CRF tables and the statement in the NIR were errors that the Party will correct in the next submission. The Party also explained that information related to the AD and EFs for the production of ethylene is confidential; hence the appropriate notation key will be used in the CRF tables in the next submission. The ERT recommends that Ukraine correctly report in CRF table 2(I).A-Hs1 the appropriate notation key for confidential AD, the CO2 IEF and the CH4 EF for ethylene production, and explain in the NIR that there was no roduction	
Agriculture	A.2	3. General (agriculture) – CO ₂ , CH ₄ and N ₂ O (A.17, 2017) Convention reporting adherence	of ethylene in 2009 and 2013–2016. Improve the QC checks to ensure that all tables referred to in the text of the NIR actually exist in the NIR and contain the information stated	This issue considered and text correction was held
	A.11	3.B Manure management – N ₂ O (A.23, 2017) Transparency	 (a) Include in the NIR information on how distribution across the MMS is estimated, together with a reference to the expert(s) or organization(s) behind the assumptions made; (b) Include in the NIR an explanation regarding why it is considered valid to assume that the animal population size of an enterprise is directly correlated with the type of MMS used 	(a) / (b) The explanation of manure distribution and MMS estimation reported in the Chapter 5.3.2.1 Methane emissions from Manure Management (part "Manure management system").
	A.12	3.B.1 Cattle 3.B.3 Swine – CH ₄ (A.10, 2017) (A.23, 2016) Transparency	Include in the NIR relevant information on the reported MMS (e.g. how manure is handled, mechanically separated and stored, and the emptying frequencies of the lagoons/manure stores and field application) (the description should include a mass balance for all handled manure based on excreted VS in each MMS and indicate whether or not the manure is covered by a crusting layer)	The main institution that collected all kinds of agricultural data is SSSU. But SSSU do not collect MMS data. To estimate these data the expert judgment from National University of Life and Environmental Sciences used as an alternative source for the time series MMS values estimation. There is a necessity to verify this expert judgment, because ERT has some important comments to it (ARR 2019, A 11-A 13 on p. 16; ARR 2017, A 10 on p. 19, A 23 on p. 47 and other). To solve this issue, MEEP has an offer to include to their activity plan and conduct a relevant research study. However, due

Sector	ID#	Category	Recommendation	Comment
				to the difficult political and economic situation in the country, the chance of this study conducting and its timing is unknown. Also, see Chapter 5.3.2.1 Methane emissions from Manure Management (part "Manure management system").
	A.13	3.B.1 Cattle 3.B.3 Swine – CH ₄ (A.10, 2017) (A.23, 2016) Accuracy	If the lagoons do not have a crusting layer, use the most appropriate MCF from table 10.17 of the 2006 IPCC Guidelines	SSSU do not collected MMS data. That is why expert judgment from National University of Life and Environmental Sciences used as an alternative source for the time series MMS values estimation (Annex 3.2.3, Table A3.2.3.2). Uncovered anaerobic lagoons used by large animal agrienterprises according to this judgment that is conflicted with ERT opinion. A special study offers to MEEP to solve this problem (deadline is not determined). Default MCF values for each MMS used from the Table 10.17 [1] and its current values reported in Table 5.10.
	A.15	3.B.3 Swine – CH ₄ (A.12, 2017) (A.25, 2016) Accuracy	Investigate in detail the VS excretion rates for swine, revise them as needed and report their values together with supporting information in the NIR	Swine VS calculated in accordance with Equation 5.1 and reported in Table A3.2.3.3 (Annex 3.2.3). Characteristics of AD sources for VS estimation reported in Table 5.9. Swine VS values were recalculated in current NIR. The reason of this recalculation is MDMex revising. The source of swine MDMex values is a judgment from the NAASU (№30432/10-17 on 28 Nov 2017), where they show an algorithm of its calculation according to "Departmental standards of technological design" [14-16]. MDMex revised according to this algorithm and standards.
	A.21	3.G Liming – CO ₂ (A.31, 2017) Accuracy	 (a) Conduct an assessment of the proportion of inert materials in ground lime and document the results in the NIR; (b) If ground lime is considered to include inert materials, revise the CO₂ emissions for the entire time series, excluding the portion of the inert materials in ground lime 	The source of data on liming materials introduced (in particular, ground lime) was Statistical bulletin: "The application of synthetic and organic fertilizers for harvest of agricultural crops" [24] and analytical study [2], which collected data in full weight. The opinion that industrial limestone fertilizers contain not less than 85 % of the active substance [19-20] used to exclude inert materials. CO ₂ emissions were recalculated and reported in NIR 2018

Sector	ID#	Category	Recommendation	Comment
				(please, see NIR 2018, Chapter 5.8.5 Category-specific recalculations, Table 5.27, p. 201). The amount of ground lime in full weight and in weight of active matter reported in Table A3.2.6.1 (Annex A3.2.6 of current NIR).
	A.22	3.B Manure management – CH ₄	The ERT noted ID# A.12. The ERT encourages the Party to report on the outcomes of the study on distribution of cattle and swine manure and the MMS determination and the consequent improvements in transparency in its NIR, and to include the study timeline in the NIR section on category-specific planned improvements.	MEEP has an offer to include to their activity plan and conduct research study for cattle and swine MMS data estimation ("Scientific researches on environmental impact assessment of the cattle and swine manure distribution and the various systems for its managing"). Planned results of this study: MMS determination in accordance with 2006 IPCC Guidelines; quantitative indicators of cattle and swine manure (tones) at agrienterprises and households, and its distribution (%). However, due to the difficult political and economic situation in the country, the chance of this study conducting and its timing is unknown. Also, see Annex 8.2 and recommendation A.12.
LULUCF	L.1	4. General (LULUCF)	For the model used to calculate the net changes in SOM in mineral soils, verify the model's outputs with measurements annually conducted in the country.	As recommended by the ERT possible steps of verification (application of Tier 1 approach) were taken and described in chapter 6.3.4. Ukraine recognizes the need for further verification of the model, by recognizing the need for scientific research into annex 8.2.
	L.2	4. General (LULUCF)	Enhance data collection on the other land uses under which organic soils are reported and on their status, either drained or rewetted or, for wetlands only, natural conditions, and supplement the current data gaps with available ancillary data and expert judgment to ensure that no systematic errors affect the estimates of GHG emissions in the time series of each land-use category.	Ukraine has limited information on organic soils management. Currently reported in the Forest land, Cropland and Grassland organic soils assumed to be all drained (thus N ₂ O emissions estimated as well). Nevertheless, more accurate data is possible to obtain by overlapping soil type map and land use map, when these will be ready.
	L.5	Land representation	Collect sufficient data on the land area and changes in the land area, verify the conversions between land-use categories and demonstrate how the accuracy of land representation has improved, clearly documenting the AD used for the sector in the NIR.	Ukraine made efforts to use freely available data for delivering more accurate land representation (described in NIR 2019 chapter 6.1.1). Nevertheless, the results obtained had poor quality, thus was not considered to be the main source for land use matrix recalculation. Ukraine continues to seek for funding to perform in-depth work for land representation improvements

Sector	ID#	Category	Recommendation	Comment
	L.6	Land representation	Report annual land-conversion areas in CRF table 4.1 and report cumulated 20-year conversion areas in CRF tables 4.A–4.F, which implies the calculation of annual land use and land-use change matrices for the years 1971–1989.	Areas in the CRF table 4.1 was reported on the annual basis. However due to ongoing work with regard to land representation (please see comment on L.5), land use matrices for years 1971-1989 were not developed, but will be delivered after work on land representation based on spatial analysis will be finished.
	L.7	Land representation	Ensure that in any year X of the GHG inventory time series: (1) the area (A_X) of any land-remaining category A is the area of A in the previous year (A_{X-1}) minus the area of A converted in the year X to all other land-use categories (A to OLU _X) plus the area converted to A from all other land-use categories 20 years before (OLU to A_{X-20}) (i.e. $A_X = A_{X-1} - A$ to OLU _X +OLU to A_{X-20}); and (2) the area of any land-converted category B to A (B to A_X) is the cumulated area converted to category A from B (B to A) in the 20-year time period from year X to year X-19 (i.e. B to $A_X = \sum_{x=19}^{x} B \text{ to A}$).	The areas of CRF Table 4.1 was checked. Revised values were reported in the Table 4.1
	L.9	4.A Forest land	Revise the calculations of GHG emissions and removals from forest land in mineral soils following the methods presented in the 2006 IPCC Guidelines and implement sector-specific QC procedures to ensure the accuracy of the estimates reported across the time series.	The work to define land use categories using GIS is under progress. That would allow to assign proper soil types to land use conversions, and thus select proper SOC_{ref} . For the time being Ukraine applies Tier 1 method, until more accurate data will be available.
	L.10	4.A Forest land	a) recalculate nationwide CSC factors for biomass increments and for DOM net changes, stratified by forest type, ecological region and age class by compiling available information in the country and where feasible by collecting novel data through a national forest inventory system. b) while new CSC factors are being calculated, and noting that Ukraine referenced the use of Buksha et al.'s (2007) report in its 2017 annual submission, the ERT recommends that Ukraine use data contained in table 3.9 (p.126) of Buksha et al.'s (2007) report for biomass increments as stratified by age class and main forest species, together with an age-class distribution for the entire time series 1990–2016 and revise the DOM CSC factors and method to ensure time-series consistency.	Ukraine revised estimates of C-removals due to biomass growth applying biomass increments as stratified by age class and main forest species, together with an age-class distribution for the entire time series (please see chapter 6 and annex 3.3). CSC in DOM was also revised applying Tier 1 method and default EFs until country-specific EFs will be available (please see chapter 6 and annex 3.3). Ukraine is unable to apply Tier 2 due to lack of proper country-specific data. The scientific research for estimation of country-specific DOM EFs is recognized in annex 8.2.
	L.12	4.A.1 Forest land remaining forest land	Include clear definitions of managed and unmanaged forest land and of how unmanaged forest land is detected in the land representation and, if necessary, revise the distribution of forest land between managed and unmanaged.	The definitions were included into chapter 6. Areas of Forest land were reallocated correspondingly. With regard to table A3.3.1 the headings were revised in order to be more clear
	L.13	4.B Cropland	Enhance data collection on the use under which organic soils are reported, and supplement the current data gaps with available ancillary data and expert	Please see response to L.2

Sector	ID#	Category	Recommendation	Comment
			judgment, where needed, to ensure that no systematic errors affect the estimates of GHG emissions in the time series.	
	L.15	4.C.1 Grassland remaining grassland	Use subdivisions of managed grassland to report those areas of grassland that are not subject to changes in management activities or for which management activities do not result in net emissions or net removals of GHGs.	Ukraine considered all grasslands to be managed in NIR 2019.
	L.16	4.D.1 Wetlands remaining wetlands	Enhance the data collection on the drainage status of peat production sites once abandoned; supplement the current data gaps with available ancillary data and expert judgment where needed; and estimate GHG emissions in sites for peat production which, although abandoned, are still under drainage to ensure that no errors affect the GHG emission trend.	Initial search of information demonstrated that there are limited information on status of lands previously drained including peat extraction sites. The work to collect information on status of these lands are continuing, It is foreseen that the work on use of GIS could deliver more accurate land use transition matrices will contribute to address this recommendation as well. Ukraine also seeks experts with knowledge of peat extraction sites management
	L.17	4.D.2 Land converted to wetlands	Report all land converted to wetlands under the organic soils subdivision and discount such areas from the original land-use category area of drained organic soils.	In order to keep consistent reporting of soils it is essentially that previous land use before conversions to Wetlands would have organic soils as well. But since there is an information on organic soils of Forest land, Cropland and Grassland and the area of organic soils in these categories is rather stable it is possible that the conversions were on mineral soils. However this recommendation is highly connected to accurate land representation. As soon as spatial data will be available to deliver land use matrices and soils of Ukraine, this issue can be addressed.
	L.19	4.F Other land	Revise the classification of category 66 ("dry open lands with special vegetation cover"), noting that category 66 appears to more closely match the definition of the IPCC category grassland than other land	New statistical form 16-zem has other categories, thus category 66 is not applicable anymore. The work on use of GIS to deliver more accurate land use transition matrices is expected to address this recommendation
	L.21	4.F.2.1 Forest land converted to other land uses	Subdivide and report separately deforested areas between those that did contain trees and those that did not contain trees before deforestation; report in the NIR a table where, for each carbon pool, the standing carbon stocks before deforestation and after deforestation are reported for those lands that did contain trees before deforestation.	The recommendation is closely related to L.5. Delivering of land use-change matrix based on spatial data is expected to address this recommendation as well.
	L.23	General	The ERT recommends that Ukraine report consistent areas for organic soils in NIR table A3.2.5.4, in CRF table 3.D, and for the sum of organic soils in cropland and grassland in CRF tables 4.B and 4.C. The ERT encourages the	The discrepancies between reporting of organic soils in Agriculture and LULUCF sector were eliminated.

Sector	ID#	Category	Recommendation	Comment
			Party to explain the differences in the areas of organic soils in FAOSTAT data	
			and the inventory (i.e. FAOSTAT for 2017 indicates 669 kha organic soils	
			under cropland and 127 kha under managed grassland, while CRF tables 4.B	
			and 4.C report 108,520 ha organic soils in cropland and 369,830 ha in	
			grassland).	
	L.24	General	The ERT recommends that Ukraine (1) improve the documentation of	The uncertainty is estimated by a combination
			uncertainty estimates reported in NIR table 6.10, particularly when expert	of expert judgements and simple error
			judgment is involved; and (2) describe in the NIR the methodology used to	propagation.
			calculate total uncertainty, in accordance with good practice to document any	
			expert judgment (2006 IPCC Guidelines, vol. 1, annex 2A.1). The ERT	
			encourages the Party to discuss qualitatively in the NIR the uncertainties in a	
			transparent manner, in accordance with paragraph 15 of the UNFCCC Annex	
	1.07	To a Law and a disco	I inventory reporting guidelines.	Th
	L.27	Land representation	The ERT recommends that Ukraine ensure transparency by correctly labelling	The name of table 6.4 was changed
			tables, that is, the title of NIR table 6.4 should indicate that the areas of conversions shown are cumulative. The ERT encourages the Party to use the	
			same format for the land-use change matrices presented in the NIR as in CRF	
			table 4.1 and CRF table NIR-2, in order to enhance transparency.	
	L.28	Land representation	The ERT recommends that Ukraine include in the NIR the information that	Additional explanation with regard to "donor
	L.20	Land representation	donor categories are those from which land-use conversion occurs in a	categories" was added to annex 3.3.1.
			particular year and that they are defined on the basis of the definitions given	categories was added to aimex 5.5.1.
			in the country-specific forms.	
	L.29	Forest land	The ERT recommends that Ukraine include in the NIR or in a technical annex	Information was added to chapter 6.2.2.
	2.2	1 ofest faile	the information on national forest inventories that was provided to the ERT	information was added to enapter 0.2.2.
			during the review, namely:	
			(a) Previously, the forest inventory was compiled for the entire area of	
			managed forest when the owner (State or private) requested a forest inventory	
			to be performed. Currently, inventories are made for all the forests managed	
			by the State Forest Resources Agency of Ukraine and for forests managed by	
			some private enterprises (in total around 75 per cent of the forest area in the	
			country). Other forest enterprises are not obliged to perform a forest	
			inventory, but are encouraged to;	
			(b) Ukrainian State Forest Design is responsible for performing forest	
			inventories and regulates all the technical aspects through "instructions" that	
			it develops, which are adopted by the State Forest Resources Agency;	
			(c) Temporary sampling plots are usually used to collect data for forest	
			managers (including species, diameter at breast height, height of stands,	
			volume and merchantable wood). These data are used by the forest agencies	
			to provide enterprises with a management plan. Ukrainian State Forest Design	
			contributes to data processing and storage by maintaining databases with	
			information on every area of every enterprise that has undergone a forest	
			inventory (e.g. every plot on a map is measured and the information is stored	
			in the databases). Usually, every region has a forest inventory every 10 years;	

Sector	ID#	Category	Recommendation	Comment
			(d) Ukrainian State Forest Design stores the databases as well as paper copies of previous forest inventories (i.e. for 1988, 1996 and 2002). For the purpose of the GHG inventory, data on areas of every species in every region were exported from the databases to be used together with the EFs in NIR table A3.3.4.	
	L.30	Forest land	The ERT recommends that Ukraine explain in the NIR that, because table 4.5 in the 2006 IPCC Guidelines (vol. 4) does not contain information for softwood species in temperate zones, it applied further guidance from the 2006 IPCC Guidelines (below equation 2.12), which states that if BCEFR is not available, then the equation BEFR multiplied by wood density can be used instead; lacking country-specific values for BEFR, Ukraine decided to use available BEFR values for softwood species in temperate zones; and because Ukraine did not apply a BEFR for other species, the cells in NIR table A3.3.6 for conifers and hardwood species are empty.	Additional information was added to annex 3.3.1.
	L.31	Forest land	The ERT recommends that from the data after 2014 the Party estimate an average loss in a comparable manner to estimating the average stock and derive a correction factor based on such averaged data, to ensure the comparability of values and enhance the transparency and accuracy of estimates of losses from disturbances (in the approach used in the 2019 submission, the correction factor could result in values of more than 1 because absolute values of actual losses are compared with average values of stocks). The ERT also recommends that Ukraine improve its explanation in the NIR regarding how the correction factors for estimating carbon loss from disturbances were derived and what the implications may be of using a constant value of the factor.	The values of correction factor were revised. Please see annex 3.3.1 for more details.
	L.32	Forest land	The ERT recommends that the Party improve the description in the NIR of the stratification by explaining what the subcategories of managed forest land "Total area of the category", "Area covered by forest vegetation (managed)" and "Unstocked areas" represent.	The table A3.3.1 was modified in rder to be more clear. Please see annex 3.3.1.
	L.34	Forest land remaining forest land	The ERT recommends that Ukraine correct the value for the area of forest land remaining forest land in 2015 reported in CRF table 4.A from 10,370.69 to 10,373.36 kha.	The areas of forest land were checked and corrected in the Table 4.A and 4.1 of the CRF to ensure consistency
	L.35	Forest land remaining forest land	The ERT recommends that Ukraine ensure the time-series consistency of the estimates of gains in living biomass on forest land remaining forest land, including in relation to data on forest age classes and the assumptions for stand age.	Ukraine recognizes this issue (discussed in the chapter 6.2.2). Currently the most likely option is to make overlapping for several years when electronic databases are available (after 2005), using old categorization (connected to "maturity" of stands) and new 10-year approach. Nevertheless, this requires time to extract data from outdated databases. This may be done in the next submission

Sector	ID#	Category	Recommendation	Comment
	L.37	Cropland	The ERT recommends that Ukraine include the information on the land-use categories under cropland (arable land, fallow land and gardens) provided to the ERT during the review, namely that (1) it does not have information on the spatial distribution of lands because this information depends on the completion of the work on land representation; and (2) for fallow land, it does not have a specific methodology for estimating the effect on carbon stocks and changes of abandoning previously actively used cropland; however because on such lands natural processes of restoration of carbon stocks are occurring, it considers its assumption does not overestimate carbon removals. The ERT also recommends that Ukraine describe in NIR section 6.3 the methodology for estimating CSCs for arable land or indicate there that the methodology is described in an annex to the NIR.	The information was added to chapter 6.3.2.
	L.38	Forest land converted to grassland	The ERT recommends that Ukraine replace the notation key "NO" with an estimated value for the conversion of forest land to grassland for 1990–1993 in CRF table 4.1 and estimate the related emissions and removals. The ERT also recommends that the Party revise the labelling of NIR table A3.3.2 to indicate that the areas in the table relate to the Convention and include the 20-year transition period elected by Ukraine.	Areas of Forest land converted to grassland in the CRF Table 4.1 were revised. The labelling of table A3.3.2 was corrected.
	L.40	Wetlands	The ERT recommends that Ukraine revise NIR table 6.21 to reflect the recalculations between the previous and the current submission (i.e. in the NIR 2020, the table should compare emissions between the 2019 and 2020 submissions).	The table related to recalculations in Wetlands category is not included into NIR 2020 since there were no recalculations
	L.41	HWP	The ERT recommends that Ukraine explain in the NIR the methodology it used for estimating emissions from HWP – including the splicing technique, the use of GDP data and the World Bank as the source of the GDP data, and the use of 2010 prices. The ERT also recommends that the Party investigate alternative statistical sources to GDP to more accurately represent the industrial activity of the wood products industry, such as those that may be used by Ukraine's economic agencies to calculate domestic gross value added (a major component of GDP) for the wood products industry and, if the investigation results in revisions to the approach or the estimates compared with the 2019 submission, that the Party explain any recalculations, including their impact.	Please see more information in chapter 6.8.2.
	L.42	N leaching and run-off	The ERT recommends that Ukraine use correct values and units for AD reported for emission estimates for N leaching and run-off in CRF table 4(IV).	The values in the CRF table 4(IV) were revised

Sector	ID#	Category	Recommendation	Comment
Waste	W.1	General	Improve the description in the NIR of the solid waste management practices in the country, including landfilling of MSW (with and without CH ₄ recovery), composting, incineration, recycling and management of hazardous waste. The management of hazardous waste and wastewater sludge, and waste recycling are not described in section 7.2.1 of the NIR (p.253). It also does not show the complete pathway for illegally dumped solid waste, whether this is illegally open-burned or aerobically degrades at the illegal dump site.	The information on the management of hazardous waste and waste recycling is described in section 7.2.1 of the NIR. The ways of treatment and final destination of sludge from wastewater treatment are presented in chapter 7.5.2.2.3 and on the figure 7.11. According to official data, more than 26,000 unauthorized dumps are created annually. And they are liquidated by disposal at the MSW landfills.
	W.2	General	Revise the schematic representation of waste treatment (figure 7.3 in the NIR) by including all categories (in all relevant sectors), the sources of each type of waste, ways of treatment and final destination, particularly of sludge from wastewater treatment. The ERT noted that all pathways were included except the flow pathways for sludge from wastewater treatment, hazardous waste and illegally dumped solid waste.	List of wastes by materials according to the Order of the SSSU of January 23.2015 №24 (see section II Category (type) of waste on the figure 7.3) include such type of waste as industrial and domestic wastewater sludge (code: 03.2, 03.3). The ways of treatment and final destination of sludge from wastewater treatment are presented in chapter 7.5.2.2.3 and on the figure 7.11.
	W.4	5.A Solid waste disposal	Continue to further investigate MSW, taking into consideration the fact that the sampling should be conducted in several typical cities in each season and that the methods, frequency of sampling and implications for the time series should be documented with a view to developing a country-specific EF for the category. Regarding degradable organic carbon, Ukraine reported that there was some research for food waste but the results were significantly lower than the default values from the 2006 IPCC Guidelines and, given the one-off and non-systematic nature of the research, Ukraine considered that additional activities are needed to develop country-specific values. Ukraine reported that waste composition in 2014–2017 was based on the data for 2013.	Ukraine continues to use the default value of degradable organic carbon for food waste and for other types of waste from the 2006 IPCC Guidelines. At present, research on the morphological composition of waste is economically difficult for the country.
	W.12	5.A.1 Managed waste disposal sites	The ERT recommends that Ukraine increase the transparency of reporting CH4 utilization at landfills by including in the NIR information on the volumes of landfill gas flared, landfill gas density and CH4 content in the landfill gas.	Because this information is confidential, we cannot include it in the report.
	W.13	5.C.1 Waste incineration	The ERT recommends that Ukraine transparently explain in the NIR the selection and values of the country-specific CH ₄ and N ₂ O EFs used for waste incineration and report the correct units for those EFs (i.e. kg/Gg waste (wet) for CH ₄ EF, g/t MSW (wet) for N ₂ O EF for MSW and g/t industrial waste (wet) for N ₂ O EF for industrial and medical waste.	Ukraine clarified information on technology and type of waste incineration and thus revised values of the CH ₄ and N ₂ O emission factors. See chapter 7.4.2.3 and also ID# W.15 below.
	W.14	5.C.1 Waste incineration	The ERT recommends that Ukraine correct and enhance the description of the parameters used to estimate AD for industrial waste and medical waste incineration without energy recovery for 1990–2009 in its NIR.	Taken into account. See chapter 7.4.2.2.

Sector	ID#	Category	Recommendation	Comment
	W.15	5.C.1 Waste incineration	The ERT recommends that Ukraine revise the CH ₄ and N ₂ O EFs used for waste incineration and either use technology-specific EFs for CH ₄ and N ₂ O (2006 IPCC Guidelines, vol. 5, tables 5.3 and 5.4 for CH ₄ and N ₂ O, respectively) or follow IPCC good practice for CH ₄ (2006 IPCC Guidelines, vol. 5, section 5.4.2) and N ₂ O (section 5.4.3).	Ukraine clarified information on technology and type of waste incineration and thus revised values of the CH ₄ and N ₂ O emission factors (using stationary combustion default EFs (from the 2006 IPCC Guidelines, vol. 2, table 2.2)). See chapter 7.4.2.3.
	W.16	5.D.1 Domestic wastewater	The ERT recommends that Ukraine enhance the transparency of its reporting on domestic wastewater treatment and discharge by (1) clarifying what "insufficiently treated" wastewater means in relation to the IPCC classification of wastewater treatment systems (2006 IPCC Guidelines, vol. 5, table 6.3), and (2) justifying that the MCF of 0.05 used to estimate CH ₄ emissions from insufficiently treated domestic wastewater is more appropriate than the IPCC defaults (0.3 for centralized aerobic plants – not well managed and overloaded; and 0.1 for untreated systems) and that it does not lead to underestimation of emissions for the category.	An explanation of what "insufficiently treated" wastewater means is given in chapter 7.5.2.2.2 and justification that the MCF of 0.05 used to estimate CH ₄ emissions from insufficiently treated domestic wastewater is more appropriate than the IPCC defaults is given in chapter 7.5.2.2.3.
	W.17	5.D.2 Industrial wastewater	The ERT recommends that Ukraine enhance the transparency of its reporting on industrial wastewater treatment and discharge by providing in the NIR (1) clear information on industrial wastewater treatment methods, the relevant MCF for industrial wastewater treatment and discharge and the pathway for industrial wastewater sludge after dehydration, and (2) a justification for the use of an MCF _{UA} value of 0.299.	The information on the relevant MCF for industrial wastewater treatment and discharge is presented in chapter 7.5.4.2.3, table 7.30. The information on the pathway for industrial wastewater sludge after dehydration and justification for the use of an MCF _{UA} value of 0.299 are presented in chapter 7.5.2.2.3 (for domestic wastewater). Since the industrial wastewater released into domestic sewer systems the regularities of the decomposition of organic matter and the removal of sludge are common and corresponding coefficients are the same.
KP-LULUCF	KL.1	General	Implement a complete analysis of relevant information collected by and stored in the databases of the State Forest Resources Agency, which would be used to derive nationwide CSC factors for biomass increments and for DOM net changes, stratified by forest type, ecological region and age class; and while new CSC factors are being calculated by the State Forest Resources Agency databases, use data contained in table 3.9 of Buksha et al. (2007) for biomass increments, as stratified by age class and main forest species, together with an age-class distribution for the time series 2013–2016 and revise the DOM CSC factors and method to ensure time-series consistency.	Recommended analysis requiring scientific work together with analytical work, since databases include information, collected for management purposes, thus focusing on stem wood and not including information on litter at all. The need to update/develop new factors is highlighted in annex 8.2 as well. But the implementation of such measure depends on availability of funding. So far CSC factors from Buksha et al. (2007) was used as well as data on areas of forest species by age and region to estimate C-removals by biomass growth. For DOM calculations Tier 1 method was applied until new factors will be developed.

Sector	ID#	Category	Recommendation	Comment
	KL.2	General	Add to the national forest inventory data collected through statistically sound surveys for the time series 1990–2016 on land cover and land-use for the entire territory, noting that the land survey may be implemented using freely available data sets of satellite images within a time frame of a few months and with a budget limited to the time of the operators that need to collect data by visual interpretation of satellite images and to analyse data collected to derive a complete time series of consistent land representation for the entire national territory.	Ukraine seeks funding to use GIS for land use matrix development.
	KL.3	General	a) explore alternative data sets of spatial information (e.g. Landsat free imageries) and consider applying survey methods instead of wall-to-wall mapping, as they require fewer resources in an order of magnitude than wall-to-wall mapping and are proven to be easier to implement and provide more accurate data for a given level of resources allocated. b) report in the NIR on data sets and methods the country is planning to use to ensure that a complete time series of land representation will be available for the 2019 annual submission.	Ukraine put efforts to use freely available data sets of spatial analysis to deliver more accurate land use matrices for entire time series (described in chapter 6 of NIR 2019). Unfortunately the results presented considerably low accuracy and high probability of misallocation or/and misinterpretation of land use categories. Currently new solutions are under consideration on how to deliver better quality land use matrices based on spatial data.
	KL.4	Afforestation and reforestation	Report in the NIR additional information on the model applied to estimate the SOM CSCs in land converted to forest land, as well as a table where the areas converted to forest land and the CSCs in each carbon pool are reported, stratified by land use conversion type, climatic zone and year of conversion.	So far, Ukraine applies Tier 1 method while seeking funding for research to develop higher tier method. More information on assumption of soils is provided in the annex 3.3.1.
	KL.6	Forest management	Report information on how unmanaged forest land is defined and identified and document, if unmanaged forest land is subject to the impact of any human activity, how any possible unbalanced accounting is avoided.	Ukraine revised definition of unmanaged forests (please see chapter 11.1.1). Because national definition of forested areas includes also unstocked lands, the table A3.3.1 was revised compared to the one reported in NIR 2019 to be more clear. Should be noticed that unmanaged forests are considered to be the same in both reporting (under Convention and KP). The only discrepancy between is related to accounting of converted to forest areas (afforestation) in KP
	KL.7	Forest management	Report complete and clear information to ensure the transparency of each technical correction to its FMRL on: (i) the rationale for calculating the FMRLcorr value; (ii) the methods used to calculate the FMRLcorr value (including all background data and parameters used); (iii) the results (i.e. the FMRLcorr and the technical correction value) and a discussion of the differences between the FMRLcorr and the FMRL values (i.e. the causes and, where possible, the percentage impact for each cause); in particular, for this purpose, it is good practice to report a comparison of the recalculated estimates with the previous estimates (see table 2.7.2 of the Kyoto Protocol	Technical correction of FMRL was revised. The information is presented in chapter 11.5.5.

Sector	ID#	Category	Recommendation	Comment
			Supplement); and (iv) complete information that demonstrates consistency between the FMRLcorr value and the FM GHG estimates.	
	KL.10	Forest management	Remove HWP produced during the first commitment period from the calculation of the contribution of HWP.	HWP produced during the first commitment period was removed from the calculations (please see chapter 11.3.1.1).
	KL.11	General	The ERT recommends that Ukraine ensure accuracy and consistency of the data of the land-use transition matrix reported in the NIR and in the CRF tables, including by correcting the following errors: the area of AR at the end of 2016 (308.95 kha) plus the area converted to AR in 2017 (1.44 kha), 310.39 kha, is not equal to the area at the end of inventory year 2017 (310.67 kha); the area presented in row "Other" of NIR table 11.1 (i.e. area that has never been subject to any KP-LULUCF activity) is converted to deforestation (e.g. 1.71 kha, as presented in NIR table 11.1); and the area of FM at the beginning of the inventory year does not agree with the area of FM in CRF table 4(KP-I)B.1 for 2016.	Ukraine revised the values in the table NIR-2.
	KL.12	FM	The ERT recommends that Ukraine justify the use of the tier 1 approach to estimate the carbon balance of DOM on FM land and demonstrate that the deadwood and litter pools are not a net source.	Additional information was added in the chapter 11.3.1.1.
	KL.13	FM	The ERT recommends that Ukraine report, for its FM cap, the value inscribed in the report on the review of the report to facilitate the calculation of the assigned amount for the second commitment period of the Kyoto Protocol of Ukraine (262,627.177 kt CO2 eq) in the CRF table accounting and in the NIR.	The value of FM cap was reported as it is inscribed in the report on the review of the report to facilitate the calculation of the assigned amount for the second commitment period of the Kyoto Protocol of Ukraine
	KL.14	Deforestation	The ERT recommends that the Party explain in more detail, in the NIR, how the data on biomass carbon stocks gains and losses are estimated.	More information was added in the chapter 11.3.1.1.

A8.2 Improvement Plan for the NIR

Taking into account the recommendations of the ERT contained in the ARR 2019, as well as the national planning process to improve the inventory system, below is a list of the areas where work should start as soon as possible.

IPCC sector	IPCC category	Description of improvements	NIR submission year when the im- provement imple- mentation is planned	Current status of implementation/fi- nancing/exploration of work on im- provement implementation	Notes
	1.A.3.b Road Transport	Estimation of GHG emissions	2020-2022	Funding is envisaged from different sources including international technical assistance	
Energy	1.A.3.e Other Transportation	Estimation of GHG emissions	2020-2022	Funding is envisaged from different sources including international technical assistance	
	1.B.2 Oil and Natural Gas	Development of the method to account for greenhouse gas emissions by sources and losses of natural gas for end users in Ukraine to carry out the national greenhouse gas inventory	2020-2022	Funding is envisaged from different sources including international technical assistance	
Industrial Pro- cesses and Product Use	2.C.1 Iron and Steel production 2.C.2 Ferroalloys Production	Development of methodological guidelines on determination of carbon dioxide emissions from limestone, dolomite, and other reducing agents use in pig iron, steel and ferroalloys production, with adjustment of the estimations according to 2006 IPCC Guidelines	2020-2022	Taken for consideration to amend the activity plan of the MEEP. It is expected to attract financing	
Froduct Ose	2.F Use of Ozone-Depleting Substances 2.G.1 Electric Equipment	Analysis and development of methodological guidelines on determination of the emissions from manufacturing, stocks and disposal of equipment containing HFCs, PFCs, and SF ₆ .	2020-2022	Taken for consideration to amend the activity plan of the MEEP. It is expected to attract financing	
Agriculture	3.B Manure Management	Scientific researches on environmental impact assessment of the cattle and swine manure distribution, and the various sys- tems for its managing	2020-2022	The offer for including to the MEEP activity plan. State funding	
	4.A Forest land	Development and clarification of national factors for carbon stock changes in living biomass, dead organic matter and soil pools in the Forest Land category	2020-2022	Funding is envisaged from different sources including international technical assistance	
LULUCF	4.A Forest land	Filling the database of plots by activities under paragraphs 3 and 4, Article 3 of the Kyoto Protocol	2020-2022	Funding is envisaged from different sources including international technical assistance	
	4.B Cropland 4.C Grassland	Improvement of parameters and factors used in the model of balance estimations of nitrogen flows in soils used in the GHG inventory in the categories Cropland and Grassland	2020-2022	Funding is envisaged from different sources including international technical assistance	

IPCC sector	IPCC category	Description of improvements	NIR submission year when the im- provement imple- mentation is planned	· •	Notes
	4.B Cropland 4.C Grassland	Verification of calculation results from Tier 3 model applica- tion in soil organic matter pool of Cropland and Grassland cat- egories by design and performance of measurements	2020-2022	Funding is envisaged from different sources including international technical assistance	
	4.A Forest land 4.B Cropland 4.C Grassland 4.D Wetlands 4.E Settlements 4.F Other Land	Estimation of carbon stock changes in soil pool during conversions between land-use categories	2020-2022	Funding is envisaged from different sources including international technical assistance	
	5.A Solid Waste Disposal	Investigation of the MSW composition in Ukraine	2020-2022	Funding is envisaged from different sources including international technical assistance	
Waste	5.A Solid Waste Disposal	Monitoring and type definition (classification) of solid waste disposal sites (SWDS) in Ukraine	2020-2022	Funding is envisaged from different sources including international technical assistance	
	5.D Wastewater Treatment and Discharge	Approach improvement for the estimation of emissions (CH ₄ , N ₂ O) from domestic and industrial wastewater treatment and sludge management	2020-2022	Funding is envisaged from different sources including international technical assistance	

The Ministry of Energy and Environmental Protection of Ukraine is making efforts to attract financing for development of research studies in the sectors of Energy, LULUCF, IPPU, Agriculture and Waste. The opportunities of involving international technical assistance to continue filling in the database of plots by activities reported on under paragraphs 3 and 4, Article 3 of the Kyoto Protocol.